-
3
-
-
84905179334
-
A review of microarray datasets and applied feature selection methods
-
Bolón-Canedo V., Sánchez-Maroño N., Alonso-Betanzos A., et al. A review of microarray datasets and applied feature selection methods. Inf. Sci. 2014, 282:111-135.
-
(2014)
Inf. Sci.
, vol.282
, pp. 111-135
-
-
Bolón-Canedo, V.1
Sánchez-Maroño, N.2
Alonso-Betanzos, A.3
-
6
-
-
0016521175
-
On a class of computationally efficient feature selection criteria
-
Chen C.H. On a class of computationally efficient feature selection criteria. Pattern Recognit. 1975, 7(1):87-94.
-
(1975)
Pattern Recognit.
, vol.7
, Issue.1
, pp. 87-94
-
-
Chen, C.H.1
-
7
-
-
0033266804
-
A nonlinear conjugate gradient method with a strong global convergence property
-
Dai Y.H., Yuan Y. A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 2000, 10:177-182.
-
(2000)
SIAM J. Optim.
, vol.10
, pp. 177-182
-
-
Dai, Y.H.1
Yuan, Y.2
-
8
-
-
38049073815
-
-
Springer Berlin Heidelberg
-
Duan K.B., Jagath, Rajapakse C., Minh N.N. One-Versus-One and One-Versus-All Multiclass SVM-RFE for Gene Selection in Cancer Classification. Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics 2007, 47-56. Springer Berlin Heidelberg.
-
(2007)
One-Versus-One and One-Versus-All Multiclass SVM-RFE for Gene Selection in Cancer Classification. Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
, pp. 47-56
-
-
Duan, K.B.1
Rajapakse, J.C.2
Minh, N.N.3
-
10
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Fisher R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7(2):179-188.
-
(1936)
Ann. Eugen.
, vol.7
, Issue.2
, pp. 179-188
-
-
Fisher, R.A.1
-
12
-
-
84903727497
-
Bias and stability of single variable classifiers for feature ranking and selection
-
Fakhraei S., Soltanian-Zadeh H., Fotouhi F. Bias and stability of single variable classifiers for feature ranking and selection. Expert. Syst. Appl. 2014, 41(15):6945-6958.
-
(2014)
Expert. Syst. Appl.
, vol.41
, Issue.15
, pp. 6945-6958
-
-
Fakhraei, S.1
Soltanian-Zadeh, H.2
Fotouhi, F.3
-
13
-
-
84963516854
-
-
In: Proceedings of the IEEE Conference on Software Quality, Reliability and Security-Companion (QRS-C), Canada
-
Guo, S., Guo, D., 2015. Mining potential information for Multiclass Microarray Data using Centroid-based Dimension Reduction. In: Proceedings of the IEEE Conference on Software Quality, Reliability and Security-Companion (QRS-C), Canada, pp. 190-194.
-
(2015)
Mining potential information for Multiclass Microarray Data using Centroid-based Dimension Reduction.
, pp. 190-194
-
-
Guo, S.1
Guo, D.2
-
14
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
15
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
-
(2002)
Mach. Learn.
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
17
-
-
0034807546
-
Knowledge discovery approach to automated cardiac spect diagnosis
-
Kurgan L.A., Cios K.J., Tadeusiewicz R., Ogiela M., Goodenday L.S. Knowledge discovery approach to automated cardiac spect diagnosis. Artif. Intell. Med. 2001, 23:149-169.
-
(2001)
Artif. Intell. Med.
, vol.23
, pp. 149-169
-
-
Kurgan, L.A.1
Cios, K.J.2
Tadeusiewicz, R.3
Ogiela, M.4
Goodenday, L.S.5
-
18
-
-
67349134205
-
Multiclass classification and gene selection with a stochastic algorithm
-
Le Cao K.A., Bonnet A., Gada S. Multiclass classification and gene selection with a stochastic algorithm. Comput. Stat. Data Anal. 2009, 53:3601-3615.
-
(2009)
Comput. Stat. Data Anal.
, vol.53
, pp. 3601-3615
-
-
Le Cao, K.A.1
Bonnet, A.2
Gada, S.3
-
19
-
-
84923192940
-
Robust L1-norm two-dimensional linear discriminant analysis
-
Li C., Shao Y., Deng N. Robust L1-norm two-dimensional linear discriminant analysis. Neural Netw. 2015, 25:92-104.
-
(2015)
Neural Netw.
, vol.25
, pp. 92-104
-
-
Li, C.1
Shao, Y.2
Deng, N.3
-
20
-
-
33144458972
-
Efficient and robust feature extraction by maximum margin criterion
-
Li H., Jiang T., Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Netw. 2006, 17(1):157-165.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.1
, pp. 157-165
-
-
Li, H.1
Jiang, T.2
Zhang, K.3
-
21
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
Liu H., Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17(4):491-502.
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
22
-
-
84878017358
-
Large Margin Subspace Learning for feature selection
-
Liu B., Fang B., Liu X., Chen J., Huang Z., He X. Large Margin Subspace Learning for feature selection. Pattern Recognit. 2013, 46:2798-2806.
-
(2013)
Pattern Recognit.
, vol.46
, pp. 2798-2806
-
-
Liu, B.1
Fang, B.2
Liu, X.3
Chen, J.4
Huang, Z.5
He, X.6
-
23
-
-
84921858312
-
A co-expression module based gene selection for cancer recognition
-
Lu X., Deng Y., Huang L., et al. A co-expression module based gene selection for cancer recognition. J. Theor. Biol. 2014, 362:75-82.
-
(2014)
J. Theor. Biol.
, vol.362
, pp. 75-82
-
-
Lu, X.1
Deng, Y.2
Huang, L.3
-
25
-
-
85135939782
-
Efficient and robust feature selection via joint l2, 1 norms minimization
-
Nie F., Huang H., Cai X., Ding C. Efficient and robust feature selection via joint l2, 1 norms minimization. Adv. Neural Inf. Process. Syst. 2010, 23:1813-1821.
-
(2010)
Adv. Neural Inf. Process. Syst.
, vol.23
, pp. 1813-1821
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.4
-
26
-
-
57749182885
-
-
In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence
-
Nie, F., Xiang, S., Jia, Y., Zhang, C., Yan, S., 2008. Trace ratio criterion for feature selection. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, 2: pp.671-676.
-
(2008)
Trace ratio criterion for feature selection
, vol.2
, pp. 671-676
-
-
Nie, F.1
Xiang, S.2
Jia, Y.3
Zhang, C.4
Yan, S.5
-
27
-
-
12844260916
-
Hybrid genetic algorithms for feature selection
-
Oh I.S., Lee J.S., Moon B.R. Hybrid genetic algorithms for feature selection. Pattern Anal. Mach. Intell. 2004, 26(22):1424-1437.
-
(2004)
Pattern Anal. Mach. Intell.
, vol.26
, Issue.22
, pp. 1424-1437
-
-
Oh, I.S.1
Lee, J.S.2
Moon, B.R.3
-
28
-
-
0037245772
-
Genetic algorithms applied to multi-class prediction for the analysis of gene expression data
-
Ooi C.H., Tan P. Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 2003, 19:37-44.
-
(2003)
Bioinformatics
, vol.19
, pp. 37-44
-
-
Ooi, C.H.1
Tan, P.2
-
30
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
-
Peng H., Long F., Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(8):1226-1238.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
31
-
-
0003704121
-
-
John Wiley, Sons, New York
-
Richard O., Duda, Peter E., Hart, David G. Stork Pattern Classification 2001, John Wiley, Sons, New York.
-
(2001)
Stork Pattern Classification
-
-
Richard, O.1
Peter, D.E.2
David, H.G.3
-
32
-
-
35748932917
-
Inza, In, Larrañaga P. A review of feature selection techniques in bioinformatics
-
Saeys Y., Inza, In, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19):2507-2517.
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
-
33
-
-
84859203545
-
A top-r feature selection algorithm for microarray gene expression data. IEEE/ACM Trans
-
Sharma A., Imoto S., Miyano S. A top-r feature selection algorithm for microarray gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2012, 9:754-764.
-
(2012)
Comput. Biol. Bioinform.
, vol.9
, pp. 754-764
-
-
Sharma, A.1
Imoto, S.2
Miyano, S.3
-
34
-
-
77949503812
-
Fast hybrid algorithm for large-scale l1-regularized logistic regression
-
Shi J., Yin W., Osher S., Sajda P.A. fast hybrid algorithm for large-scale l1-regularized logistic regression. J. Mach. Learn. Res. 2010, 11:713-741.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 713-741
-
-
Shi, J.1
Yin, W.2
Osher, S.3
Sajda, P.A.4
-
35
-
-
84904543846
-
A kernel-based multivariate feature selection method for microarray data classification
-
Sun S., Peng Q., Shakoor A. A kernel-based multivariate feature selection method for microarray data classification. PLoS One 2014, 9(7):e102541.
-
(2014)
PLoS One
, vol.9
, Issue.7
-
-
Sun, S.1
Peng, Q.2
Shakoor, A.3
-
36
-
-
34249086815
-
Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
-
Sugiyama M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J. Mach. Learn. Res. 2007, 8:1027-1061.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 1027-1061
-
-
Sugiyama, M.1
-
38
-
-
84885171377
-
Minimax sparse logistic regression for very high-dimensional feature selection
-
Tan M., Tsang I., Wang L. Minimax sparse logistic regression for very high-dimensional feature selection. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24:1609-1622.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.24
, pp. 1609-1622
-
-
Tan, M.1
Tsang, I.2
Wang, L.3
-
39
-
-
84975320840
-
Regression shrinkage and selection via the Lasso
-
Tibshirani R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 1996, 58:267-288.
-
(1996)
J. R. Stat. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
40
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
Van't, Veer L., Dai H., van, de, Vijver M., et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415:530-536.
-
(2002)
Nature
, vol.415
, pp. 530-536
-
-
Van't Veer, L.1
Dai, H.2
van de Vijver, M.3
-
41
-
-
84897022693
-
Fisher discriminant analysis with L1-norm
-
Wang H., Hu Z., Zheng W. Fisher discriminant analysis with L1-norm. IEEE Trans. Cybern. 2014, 44:653-662.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, pp. 653-662
-
-
Wang, H.1
Hu, Z.2
Zheng, W.3
-
42
-
-
48049087439
-
Feature selection with Kernel class separability
-
Wang L. Feature selection with Kernel class separability. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30:1534-1546.
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.30
, pp. 1534-1546
-
-
Wang, L.1
-
43
-
-
34547983091
-
-
In: Proceedings of the 24th International Conference on Machine Learning, ACMPress
-
Wang, L., Zhu, J., Zou, H., 2007. Hybrid huberized support vector machines for microarray classification and gene selection. In: Proceedings of the 24th International Conference on Machine Learning, ACMPress, pp. 983-990.
-
(2007)
Hybrid huberized support vector machines for microarray classification and gene selection
, pp. 983-990
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
44
-
-
13844310310
-
Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
-
Wang Y., Klijn J., Zhang Y., et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005, 365:671-679.
-
(2005)
Lancet
, vol.365
, pp. 671-679
-
-
Wang, Y.1
Klijn, J.2
Zhang, Y.3
-
45
-
-
84864920041
-
An improved GLMNET for L1-regularized logistic regression and support vector machines
-
Yuan G.X., Ho C.H., Lin C.J. An improved GLMNET for L1-regularized logistic regression and support vector machines. J. Mach. Learn. Res. 2012, 13:1999-2030.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 1999-2030
-
-
Yuan, G.X.1
Ho, C.H.2
Lin, C.J.3
-
46
-
-
3242767684
-
An optimization criterion for generalized discriminant analysis on undersampled problems
-
Ye J., Janardan R., Park C.H., et al. An optimization criterion for generalized discriminant analysis on undersampled problems. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26(8):982-994.
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.26
, Issue.8
, pp. 982-994
-
-
Ye, J.1
Janardan, R.2
Park, C.H.3
-
47
-
-
84873278481
-
On similarity preserving feature selection
-
Zhao Z., Wang L., Liu H., Ye J. On similarity preserving feature selection. IEEE Trans. Knowl. Data Eng. 2013, 25:619-632.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, pp. 619-632
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
Ye, J.4
-
48
-
-
84878502282
-
Linear discriminant analysis based on L1-norm maximization
-
Zhong F., Zhang J. Linear discriminant analysis based on L1-norm maximization. IEEE Trans. Image Process. 2013, 22:3018-3027.
-
(2013)
IEEE Trans. Image Process.
, vol.22
, pp. 3018-3027
-
-
Zhong, F.1
Zhang, J.2
-
49
-
-
34249855141
-
MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data
-
Zhou X., Tuck D.P. MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics 2007, 23:1106-1114.
-
(2007)
Bioinformatics
, vol.23
, pp. 1106-1114
-
-
Zhou, X.1
Tuck, D.P.2
|