메뉴 건너뛰기




Volumn 400, Issue , 2016, Pages 32-41

A centroid-based gene selection method for microarray data classification

Author keywords

Class centroid; Classification; Gene selection; L1 regularization; Microarray data

Indexed keywords

ALGORITHM; CLASSIFICATION; COMPLEXITY; DATA SET; GENE; OPTIMIZATION;

EID: 84975246835     PISSN: 00225193     EISSN: 10958541     Source Type: Journal    
DOI: 10.1016/j.jtbi.2016.03.034     Document Type: Article
Times cited : (32)

References (49)
  • 3
    • 84905179334 scopus 로고    scopus 로고
    • A review of microarray datasets and applied feature selection methods
    • Bolón-Canedo V., Sánchez-Maroño N., Alonso-Betanzos A., et al. A review of microarray datasets and applied feature selection methods. Inf. Sci. 2014, 282:111-135.
    • (2014) Inf. Sci. , vol.282 , pp. 111-135
    • Bolón-Canedo, V.1    Sánchez-Maroño, N.2    Alonso-Betanzos, A.3
  • 6
    • 0016521175 scopus 로고
    • On a class of computationally efficient feature selection criteria
    • Chen C.H. On a class of computationally efficient feature selection criteria. Pattern Recognit. 1975, 7(1):87-94.
    • (1975) Pattern Recognit. , vol.7 , Issue.1 , pp. 87-94
    • Chen, C.H.1
  • 7
    • 0033266804 scopus 로고    scopus 로고
    • A nonlinear conjugate gradient method with a strong global convergence property
    • Dai Y.H., Yuan Y. A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 2000, 10:177-182.
    • (2000) SIAM J. Optim. , vol.10 , pp. 177-182
    • Dai, Y.H.1    Yuan, Y.2
  • 10
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7(2):179-188.
    • (1936) Ann. Eugen. , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 11
    • 84937349757 scopus 로고
    • Feature selection in pattern recognition
    • Fu K., Min P., Li T. Feature selection in pattern recognition. IEEE Trans. Syst. Sci. Cybern. 1970, 1(6):33-39.
    • (1970) IEEE Trans. Syst. Sci. Cybern. , vol.1 , Issue.6 , pp. 33-39
    • Fu, K.1    Min, P.2    Li, T.3
  • 12
    • 84903727497 scopus 로고    scopus 로고
    • Bias and stability of single variable classifiers for feature ranking and selection
    • Fakhraei S., Soltanian-Zadeh H., Fotouhi F. Bias and stability of single variable classifiers for feature ranking and selection. Expert. Syst. Appl. 2014, 41(15):6945-6958.
    • (2014) Expert. Syst. Appl. , vol.41 , Issue.15 , pp. 6945-6958
    • Fakhraei, S.1    Soltanian-Zadeh, H.2    Fotouhi, F.3
  • 14
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 15
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 18
    • 67349134205 scopus 로고    scopus 로고
    • Multiclass classification and gene selection with a stochastic algorithm
    • Le Cao K.A., Bonnet A., Gada S. Multiclass classification and gene selection with a stochastic algorithm. Comput. Stat. Data Anal. 2009, 53:3601-3615.
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 3601-3615
    • Le Cao, K.A.1    Bonnet, A.2    Gada, S.3
  • 19
    • 84923192940 scopus 로고    scopus 로고
    • Robust L1-norm two-dimensional linear discriminant analysis
    • Li C., Shao Y., Deng N. Robust L1-norm two-dimensional linear discriminant analysis. Neural Netw. 2015, 25:92-104.
    • (2015) Neural Netw. , vol.25 , pp. 92-104
    • Li, C.1    Shao, Y.2    Deng, N.3
  • 20
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction by maximum margin criterion
    • Li H., Jiang T., Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Netw. 2006, 17(1):157-165.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.1 , pp. 157-165
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 21
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17(4):491-502.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 23
    • 84921858312 scopus 로고    scopus 로고
    • A co-expression module based gene selection for cancer recognition
    • Lu X., Deng Y., Huang L., et al. A co-expression module based gene selection for cancer recognition. J. Theor. Biol. 2014, 362:75-82.
    • (2014) J. Theor. Biol. , vol.362 , pp. 75-82
    • Lu, X.1    Deng, Y.2    Huang, L.3
  • 25
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint l2, 1 norms minimization
    • Nie F., Huang H., Cai X., Ding C. Efficient and robust feature selection via joint l2, 1 norms minimization. Adv. Neural Inf. Process. Syst. 2010, 23:1813-1821.
    • (2010) Adv. Neural Inf. Process. Syst. , vol.23 , pp. 1813-1821
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.4
  • 27
    • 12844260916 scopus 로고    scopus 로고
    • Hybrid genetic algorithms for feature selection
    • Oh I.S., Lee J.S., Moon B.R. Hybrid genetic algorithms for feature selection. Pattern Anal. Mach. Intell. 2004, 26(22):1424-1437.
    • (2004) Pattern Anal. Mach. Intell. , vol.26 , Issue.22 , pp. 1424-1437
    • Oh, I.S.1    Lee, J.S.2    Moon, B.R.3
  • 28
    • 0037245772 scopus 로고    scopus 로고
    • Genetic algorithms applied to multi-class prediction for the analysis of gene expression data
    • Ooi C.H., Tan P. Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 2003, 19:37-44.
    • (2003) Bioinformatics , vol.19 , pp. 37-44
    • Ooi, C.H.1    Tan, P.2
  • 30
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(8):1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 32
    • 35748932917 scopus 로고    scopus 로고
    • Inza, In, Larrañaga P. A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza, In, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19):2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1
  • 33
    • 84859203545 scopus 로고    scopus 로고
    • A top-r feature selection algorithm for microarray gene expression data. IEEE/ACM Trans
    • Sharma A., Imoto S., Miyano S. A top-r feature selection algorithm for microarray gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2012, 9:754-764.
    • (2012) Comput. Biol. Bioinform. , vol.9 , pp. 754-764
    • Sharma, A.1    Imoto, S.2    Miyano, S.3
  • 34
    • 77949503812 scopus 로고    scopus 로고
    • Fast hybrid algorithm for large-scale l1-regularized logistic regression
    • Shi J., Yin W., Osher S., Sajda P.A. fast hybrid algorithm for large-scale l1-regularized logistic regression. J. Mach. Learn. Res. 2010, 11:713-741.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 713-741
    • Shi, J.1    Yin, W.2    Osher, S.3    Sajda, P.A.4
  • 35
    • 84904543846 scopus 로고    scopus 로고
    • A kernel-based multivariate feature selection method for microarray data classification
    • Sun S., Peng Q., Shakoor A. A kernel-based multivariate feature selection method for microarray data classification. PLoS One 2014, 9(7):e102541.
    • (2014) PLoS One , vol.9 , Issue.7
    • Sun, S.1    Peng, Q.2    Shakoor, A.3
  • 36
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • Sugiyama M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J. Mach. Learn. Res. 2007, 8:1027-1061.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 37
  • 38
    • 84885171377 scopus 로고    scopus 로고
    • Minimax sparse logistic regression for very high-dimensional feature selection
    • Tan M., Tsang I., Wang L. Minimax sparse logistic regression for very high-dimensional feature selection. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24:1609-1622.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , pp. 1609-1622
    • Tan, M.1    Tsang, I.2    Wang, L.3
  • 39
    • 84975320840 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 1996, 58:267-288.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 40
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • Van't, Veer L., Dai H., van, de, Vijver M., et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415:530-536.
    • (2002) Nature , vol.415 , pp. 530-536
    • Van't Veer, L.1    Dai, H.2    van de Vijver, M.3
  • 41
    • 84897022693 scopus 로고    scopus 로고
    • Fisher discriminant analysis with L1-norm
    • Wang H., Hu Z., Zheng W. Fisher discriminant analysis with L1-norm. IEEE Trans. Cybern. 2014, 44:653-662.
    • (2014) IEEE Trans. Cybern. , vol.44 , pp. 653-662
    • Wang, H.1    Hu, Z.2    Zheng, W.3
  • 42
    • 48049087439 scopus 로고    scopus 로고
    • Feature selection with Kernel class separability
    • Wang L. Feature selection with Kernel class separability. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30:1534-1546.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , pp. 1534-1546
    • Wang, L.1
  • 44
    • 13844310310 scopus 로고    scopus 로고
    • Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
    • Wang Y., Klijn J., Zhang Y., et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005, 365:671-679.
    • (2005) Lancet , vol.365 , pp. 671-679
    • Wang, Y.1    Klijn, J.2    Zhang, Y.3
  • 45
    • 84864920041 scopus 로고    scopus 로고
    • An improved GLMNET for L1-regularized logistic regression and support vector machines
    • Yuan G.X., Ho C.H., Lin C.J. An improved GLMNET for L1-regularized logistic regression and support vector machines. J. Mach. Learn. Res. 2012, 13:1999-2030.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 1999-2030
    • Yuan, G.X.1    Ho, C.H.2    Lin, C.J.3
  • 46
    • 3242767684 scopus 로고    scopus 로고
    • An optimization criterion for generalized discriminant analysis on undersampled problems
    • Ye J., Janardan R., Park C.H., et al. An optimization criterion for generalized discriminant analysis on undersampled problems. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26(8):982-994.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.8 , pp. 982-994
    • Ye, J.1    Janardan, R.2    Park, C.H.3
  • 48
    • 84878502282 scopus 로고    scopus 로고
    • Linear discriminant analysis based on L1-norm maximization
    • Zhong F., Zhang J. Linear discriminant analysis based on L1-norm maximization. IEEE Trans. Image Process. 2013, 22:3018-3027.
    • (2013) IEEE Trans. Image Process. , vol.22 , pp. 3018-3027
    • Zhong, F.1    Zhang, J.2
  • 49
    • 34249855141 scopus 로고    scopus 로고
    • MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data
    • Zhou X., Tuck D.P. MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics 2007, 23:1106-1114.
    • (2007) Bioinformatics , vol.23 , pp. 1106-1114
    • Zhou, X.1    Tuck, D.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.