메뉴 건너뛰기




Volumn 3644, Issue PART I, 2005, Pages 878-887

Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SCIENCE; EVALUATION; INFORMATION TECHNOLOGY; LEARNING SYSTEMS; METRIC SYSTEM; PROBLEM SOLVING; SAMPLING; INTELLIGENT COMPUTING; RADAR; SODIUM AZIDE;

EID: 27144501672     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/11538059_91     Document Type: Conference Paper
Times cited : (3467)

References (25)
  • 1
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • Nitesh V.Chawla, Nathalie Japkowicz and Aleksander Kolcz.: Editorial: Special Issue on Learning from Imbalanced Data Sets. SIGKDD Explorations 6 (1) (2004) 1-6
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kolcz, A.3
  • 2
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • G. Weiss: Mining with rarity: A unifying framework. SIGKDD Explorations 6 (1) (2004) 7-19
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.1
  • 4
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat, m., Holte, R., and Matwin, S.: Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Machine Learning 30 195-215
    • Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 6
    • 16644402628 scopus 로고    scopus 로고
    • Feature selection for text categorization on imbalanced data
    • Zhaohui Zheng, Xiaoyun Wu, Rohini Srihari: Feature Selection for Text Categorization on Imbalanced Data. SIGKDD Explorations 6 (1) (2004) 80-89
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 80-89
    • Zheng, Z.1    Wu, X.2    Srihari, R.3
  • 9
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30 (7) (1997) 1145-1159
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.1
  • 11
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the course of imbalanced training sets: One-sided selection
    • Kubat, M., and Matwin, S. Addressing the Course of Imbalanced Training Sets: One-sided Selection. In ICML'97 (1997) 179-186
    • (1997) ICML'97 , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 14
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Gustavo, E.A., Batista, P.A., Ronaldo, C., Prati, Maria Carolina Monard: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. SIGKDD Explorations 6(1) (2004) 20-29
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 20-29
    • Gustavo, E.A.1    Batista, P.A.2    Ronaldo, C.3    Prati, M.C.M.4
  • 15
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • Andrew Estabrooks, Taeho Jo and Nathalie Japkowicz: A Multiple Resampling Method for Learning from Imbalanced Data Sets. Comprtational Intelligence 20 (1) (2004) 18-36
    • (2004) Comprtational Intelligence , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 16
    • 27144540575 scopus 로고    scopus 로고
    • Class imbalances versus small disjuncts
    • Taeho Jo, Nathalie Japkowicz: Class Imbalances versus Small Disjuncts. Sigkdd Explorations 6 (1) (2004) 40-49
    • (2004) Sigkdd Explorations , vol.6 , Issue.1 , pp. 40-49
    • Jo, T.1    Japkowicz, N.2
  • 17
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach
    • Hongyu Guo, Herna L Viktor: Learning from Imbalanced Data Sets with Boosting and Data Generation: The DataBoost-IM Approach. Sigkdd Explorations 6 (1) (2004) 30-39
    • (2004) Sigkdd Explorations , vol.6 , Issue.1 , pp. 30-39
    • Guo, H.1    Viktor, H.L.2
  • 18
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Yoav Freund, Robert Schapire: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 (1) (1997) 119-139
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 24
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Sciences, University of California, Irvine
    • Blake, C., & Merz, C. (1998). UCI Repository of Machine Learning Databases http://www.ics.uci.edu/~mlearn/~MLRepository.html. Department of Information and Computer Sciences, University of California, Irvine
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Merz, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.