메뉴 건너뛰기




Volumn 12, Issue 1, 2011, Pages

Random KNN feature selection - a fast and stable alternative to Random Forests

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ACCURACY; CLASSIFICATION PERFORMANCE; FEATURE SELECTION METHODS; GENE EXPRESSION PROFILING; HIGH DIMENSIONAL DATA; K-NEAREST NEIGHBORS; MICROARRAY DATA SETS; SELECTION PROCEDURES;

EID: 81255178681     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-12-450     Document Type: Article
Times cited : (106)

References (36)
  • 1
    • 0004172718 scopus 로고    scopus 로고
    • Pattern recognition
    • Academic Press
    • Theodoridis S, Koutroumbas K. Pattern recognition. 2003, Academic Press.
    • (2003)
    • Theodoridis, S.1    Koutroumbas, K.2
  • 2
    • 0003922190 scopus 로고    scopus 로고
    • Pattern Classification
    • New York: John Wiley & Sons
    • Duda RO, Hart PE, Stork DG. Pattern Classification. 2000, New York: John Wiley & Sons.
    • (2000)
    • Duda, R.O.1    Hart, P.E.2    Stork, D.G.3
  • 3
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19).
    • (2007) Bioinformatics , vol.23 , Issue.19
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 4
    • 0003802343 scopus 로고
    • Classification and Regression Trees
    • Chapman & Hall/CRC
    • Breiman L, Friedman J, Stone CJ, Olshen R. Classification and Regression Trees. 1984, Chapman & Hall/CRC.
    • (1984)
    • Breiman, L.1    Friedman, J.2    Stone, C.J.3    Olshen, R.4
  • 5
  • 6
    • 38049072198 scopus 로고    scopus 로고
    • A new mutual information based measure for feature selection
    • Al-Ani A, Deriche M, Chebil J. A new mutual information based measure for feature selection. Intelligent Data Analysis 2003, 7:43-57.
    • (2003) Intelligent Data Analysis , vol.7 , pp. 43-57
    • Al-Ani, A.1    Deriche, M.2    Chebil, J.3
  • 7
    • 0035336996 scopus 로고    scopus 로고
    • Information-theoretic algorithm for feature selection
    • Last M, Kandel A, Maimon O. Information-theoretic algorithm for feature selection. Pattern Recognition Letters 2001, 22(6-7):799-811.
    • (2001) Pattern Recognition Letters , vol.22 , Issue.6-7 , pp. 799-811
    • Last, M.1    Kandel, A.2    Maimon, O.3
  • 8
    • 0347513609 scopus 로고    scopus 로고
    • A Spatial Feature Selection Method Based on Maximum Entropy Theory
    • Song GJ, Tang SW, Yang DQ, Wang TJ. A Spatial Feature Selection Method Based on Maximum Entropy Theory. Journal of Software 2003, 14(9):1544-1550.
    • (2003) Journal of Software , vol.14 , Issue.9 , pp. 1544-1550
    • Song, G.J.1    Tang, S.W.2    Yang, D.Q.3    Wang, T.J.4
  • 11
    • 0030735972 scopus 로고    scopus 로고
    • Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF
    • Kononenko I, Šimec E, Robnik-Šikonja M. Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Applied Intelligence 1997, 7:39-55.
    • (1997) Applied Intelligence , vol.7 , pp. 39-55
    • Kononenko, I.1    Šimec, E.2    Robnik-Šikonja, M.3
  • 14
    • 25144492516 scopus 로고    scopus 로고
    • Efficient Feature Selection via Analysis of Relevance and Redundancy
    • Yu L, Liu H. Efficient Feature Selection via Analysis of Relevance and Redundancy. The Journal of Machine Learning Research 2004, 5:1205-1224.
    • (2004) The Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 15
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature selection
    • Kohavi R, John GH. Wrappers for feature selection. Artificial Intelligence 1997, 97(1-2):273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 16
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A, Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 1997, 97(1-2):245-271.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 17
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974, 19(6):716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 18
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. The Annals of Statistics 1978, 6(2):461-4643.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-4643
    • Schwarz, G.1
  • 20
    • 23844503717 scopus 로고    scopus 로고
    • Application of the Random Forest Method in Studies of Local Lymph Node Assay Based Skin Sensitization Data
    • 10.1021/ci050049u, 16045289
    • Li S, Fedorowicz A, Singh H, Soderholm SC. Application of the Random Forest Method in Studies of Local Lymph Node Assay Based Skin Sensitization Data. Journal of Chemical Information and Modeling 2005, 45(4):952-964. 10.1021/ci050049u, 16045289.
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.4 , pp. 952-964
    • Li, S.1    Fedorowicz, A.2    Singh, H.3    Soderholm, S.C.4
  • 21
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte R, de Andrés SA. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006, 7(3).
    • (2006) BMC Bioinformatics , vol.7 , Issue.3
    • Díaz-Uriarte, R.1    de Andrés, S.A.2
  • 22
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • Strobl C, Boulesteix AL, Zeileis A, Hothorn T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 2007, 8(25).
    • (2007) BMC Bioinformatics , vol.8 , Issue.25
    • Strobl, C.1    Boulesteix, A.L.2    Zeileis, A.3    Hothorn, T.4
  • 23
    • 79551641353 scopus 로고    scopus 로고
    • Letter to the Editor: Stability of Random Forest importance measures
    • 10.1093/bib/bbq011, 20360022
    • Calle ML, Urrea V. Letter to the Editor: Stability of Random Forest importance measures. Briefings in Bioinformatics 2011, 12:86-89. 10.1093/bib/bbq011, 20360022.
    • (2011) Briefings in Bioinformatics , vol.12 , pp. 86-89
    • Calle, M.L.1    Urrea, V.2
  • 24
    • 82255174148 scopus 로고    scopus 로고
    • Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures
    • Nicodemus KK. Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures. Briefings in Bioinformatics 12(4):369-373.
    • Briefings in Bioinformatics , vol.12 , Issue.4 , pp. 369-373
    • Nicodemus, K.K.1
  • 25
    • 84857108536 scopus 로고    scopus 로고
    • Random KNN Modeling and Variable Selection for High Dimensional Data
    • West Virginia University
    • Li S. Random KNN Modeling and Variable Selection for High Dimensional Data. PhD thesis 2009, West Virginia University.
    • (2009) PhD thesis
    • Li, S.1
  • 26
    • 0003909532 scopus 로고
    • Discriminatory Analysis-Nonparametric Discrimination: Consistency Properties
    • Tech. Rep. 21-49-004, 4, US Air Force, School of Avaiation Medicine
    • Fix E, Hodges J. Discriminatory Analysis-Nonparametric Discrimination: Consistency Properties. 1951, Tech. Rep. 21-49-004, 4, US Air Force, School of Avaiation Medicine.
    • (1951)
    • Fix, E.1    Hodges, J.2
  • 28
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning - Data Mining, Inference, and Prediction
    • New York: Springer, chap. 9, section 2
    • Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning - Data Mining, Inference, and Prediction. 2001, New York: Springer, chap. 9, section 2.
    • (2001)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 32
    • 0031361611 scopus 로고    scopus 로고
    • Machine-Learning Research: Four Current Directions
    • Dietterich TG. Machine-Learning Research: Four Current Directions. The AI Magazine 1998, 18(4):97-136.
    • (1998) The AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 33
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman L. Heuristics of instability and stabilization in model selection. The Annals of Statistics 1996, 24(6):2350-2383.
    • (1996) The Annals of Statistics , vol.24 , Issue.6 , pp. 2350-2383
    • Breiman, L.1
  • 34
    • 0000596361 scopus 로고
    • Note on the sampling error of the difference between correlated proportions or percentages
    • 10.1007/BF02295996, 20254758
    • McNemar Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12:153-157. 10.1007/BF02295996, 20254758.
    • (1947) Psychometrika , vol.12 , pp. 153-157
    • McNemar, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.