메뉴 건너뛰기




Volumn 2, Issue , 2007, Pages 310-317

An empirical study of learning from imbalanced data using random forest

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CYBERNETICS; RANDOM PROCESSES;

EID: 48649089002     PISSN: 10823409     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICTAI.2007.46     Document Type: Conference Paper
Times cited : (350)

References (24)
  • 1
    • 0004267735 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, Norwell, MA, USA
    • D. W. Aha. Lazy learning. Kluwer Academic Publishers, Norwell, MA, USA, 1997.
    • (1997) Lazy learning
    • Aha, D.W.1
  • 3
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Sciences, University of California, Irvine
    • C. Blake and C. Merz. UCI repository of machine learning databases. http://www.ics.uci.edu/ mlearn/ MLRepository.html, 1998. Department of Information and Computer Sciences, University of California, Irvine.
    • (1998) UCI repository of machine learning databases
    • Blake, C.1    Merz, C.2
  • 4
    • 48649085439 scopus 로고    scopus 로고
    • Ensembling classifiers - an application to image data classification from cherenkov telescope experiment
    • P. Boinee, A. D. Angelis, and G. L. Foresti. Ensembling classifiers - an application to image data classification from cherenkov telescope experiment. In IEC (Prague), pages 394-398, 2005.
    • (2005) IEC (Prague) , pp. 394-398
    • Boinee, P.1    Angelis, A.D.2    Foresti, G.L.3
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 26(2):123-140, 1996.
    • (1996) Machine Learning , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 7
    • 20444392475 scopus 로고    scopus 로고
    • Using random forest to learn imbalanced data
    • Technical Report 666, Statistics Department, University of California at Berkeley, Available at
    • C. Chen, A. Liaw, and L. Breiman. Using random forest to learn imbalanced data. Technical Report 666, Statistics Department, University of California at Berkeley, Available at http://www.stat.berkeley.edu/users/chenchao/666.pdf, 2004.
    • (2004)
    • Chen, C.1    Liaw, A.2    Breiman, L.3
  • 8
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning, 2-3(29):103-130, 1997.
    • (1997) Machine Learning , vol.2-3 , Issue.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 9
    • 48649097096 scopus 로고    scopus 로고
    • Fraud detection for online retail using random forests
    • Technical Report
    • J. D. E. Altendrof, P. Brende and L. Lessard. Fraud detection for online retail using random forests. Technical Report, 2005.
    • (2005)
    • Altendrof, J.D.E.1    Brende, P.2    Lessard, L.3
  • 11
    • 24144464528 scopus 로고    scopus 로고
    • Good practice in retail credit scorecard assessment
    • D. J. Hand. Good practice in retail credit scorecard assessment. Journal of the Operational Research Society, 56:1109-1117, 2005.
    • (2005) Journal of the Operational Research Society , vol.56 , pp. 1109-1117
    • Hand, D.J.1
  • 13
    • 48649088067 scopus 로고    scopus 로고
    • F. Livingston. Implementation of breiman's random forest machine learning algorithm. Machine Learning Journal Paper, Fall 2005.
    • F. Livingston. Implementation of breiman's random forest machine learning algorithm. Machine Learning Journal Paper, Fall 2005.
  • 16
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42:203-231, 2001.
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 17
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 19
    • 0004282518 scopus 로고    scopus 로고
    • SAS Institute, SAS Institute Inc
    • SAS Institute. SAS/STAT User's Guide. SAS Institute Inc., 2004.
    • (2004) SAS/STAT User's Guide
  • 20
    • 0003798627 scopus 로고    scopus 로고
    • B. Schlkopf, C. J. C. Burges, and A. J. Smola, editors, MIT Press, Cambridge, Massachusetts
    • B. Schlkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, Massachusetts, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning
  • 21
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G. M. Weiss and F. Provost. Learning when training data are costly: the effect of class distribution on tree induction. Journal of Artificial Intelligence Research, (19):315-354, 2003.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.