메뉴 건너뛰기




Volumn , Issue , 2010, Pages 160-163

Trees Weighting Random Forest method for classifying high-dimensional noisy data

Author keywords

Classification; Data mining; Ensemble learning; Random forest

Indexed keywords

CLASSIFICATION; CLASSIFICATION ABILITY; CLASSIFICATION ACCURACY; DATA SETS; ENSEMBLE LEARNING; GENERALIZATION ABILITY; HIGH DIMENSIONS; HIGH-DIMENSIONAL; IN-BUILDINGS; NEW APPROACHES; NOISY DATA; RANDOM FOREST METHODS; RANDOM FORESTS; RANDOM INPUT; RANDOM SUBSETS; SPLITTING NODES; TRAINING DATA;

EID: 79951794668     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICEBE.2010.99     Document Type: Conference Paper
Times cited : (71)

References (17)
  • 1
    • 34547903943 scopus 로고    scopus 로고
    • Data mining: A key contribution to ebusiness
    • Oct.
    • Nordine Melab, "Data Mining: A Key Contribution to Ebusiness". Information & Communications Technology Law, Vol 10, Issue 3, pp. 309-318, Oct. 2001.
    • (2001) Information & Communications Technology Law , vol.10 , Issue.3 , pp. 309-318
    • Melab, N.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman, "Random forests," Machine Learning, Vol 45, no. 1, pp. 5-32, 2001. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 0025448521 scopus 로고
    • The strength of weak learn ability
    • R. E. Schapire, "The strength of weak learn ability", Machine Learning, Vol 5, No. 2, pp. 197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors", Machine Learning, Vol 24, No. 2, pp. 123-140, 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 9
    • 33745653724 scopus 로고    scopus 로고
    • Random forests and adaptive nearest neighbors
    • DOI 10.1198/016214505000001230
    • Y. Lin, and Y. Jeon. "Random forests and adaptive nearest neighbors", Journal of the American Statistical Association, Vol 101, pp. 578-590, 2006. (Pubitemid 43972300)
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.474 , pp. 578-590
    • Lin, Y.1    Jeon, Y.2
  • 10
  • 12
    • 68849096223 scopus 로고    scopus 로고
    • Random forest classification for automatic delineation of myocardium in real-time 3D echocardiography
    • Victor Lempitsky, Michael Verhoek, Alison Noble, and Andrew Blake, "Random Forest Classification for Automatic Delineation of Myocardium in Real-Time 3D Echocardiography", Lecture Notes In Computer Science, Vol 5528, pp. 447-456, 2009.
    • (2009) Lecture Notes in Computer Science , vol.5528 , pp. 447-456
    • Lempitsky, V.1    Verhoek, M.2    Noble, A.3    Blake, A.4
  • 13
    • 66849113848 scopus 로고    scopus 로고
    • Virtual high throughput screening using combined random forest and flexible docking
    • June
    • Plewczynski Dariusz, V. Grotthuss Marcin, Rychlewski Leszek, and Ginalski Krzysztof, "Virtual High Throughput Screening Using Combined Random Forest and Flexible Docking", Combinatorial Chemistry & High Throughput Screening, Vol 12, No 5, pp. 484-489, June 2009.
    • (2009) Combinatorial Chemistry & High Throughput Screening , vol.12 , Issue.5 , pp. 484-489
    • Dariusz, P.1    Marcin, V.G.2    Leszek, R.3    Krzysztof, G.4
  • 14
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • DOI 10.1016/S0004-3702(02)00190-X, PII S000437020200190X
    • Z.-H. Zhou, J. Wu, and W. Tang, "Ensembling neural networks: Many could be better than all", Artificial Intelligence, Vol 137, pp. 239-263, 2002. (Pubitemid 34405220)
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 16
    • 79951797887 scopus 로고    scopus 로고
    • http://archive.ics.uci.edu/ml/
  • 17
    • 79951805236 scopus 로고    scopus 로고
    • http://www.cs.waikato.ac.nz/ml/weka/


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.