메뉴 건너뛰기




Volumn 43, Issue 1, 2010, Pages 143-152

Out-of-bag estimation of the optimal sample size in bagging

Author keywords

Bagging; Bootstrap sampling; Decision trees; Ensembles of classifiers; Optimal sampling ratio; Subagging; Subsampling

Indexed keywords

BAGGING; BOOTSTRAP SAMPLING; ENSEMBLES OF CLASSIFIERS; OPTIMAL SAMPLING RATIO; SUBAGGING; SUBSAMPLING;

EID: 68949164781     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.05.010     Document Type: Article
Times cited : (118)

References (28)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms, boosting, and variants: bagging
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms, boosting, and variants: bagging. Machine Learning 36 1-2 (1999) 105-139
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees, boosting, and randomization: bagging
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees, boosting, and randomization: bagging. Machine Learning 40 2 (2000) 139-157
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 6
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: a technique for combining boosting and wagging
    • Webb G.I. Multiboosting: a technique for combining boosting and wagging. Machine Learning 40 2 (2000) 159-196
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 7
    • 34250744208 scopus 로고    scopus 로고
    • R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning algorithms, in: ICML '06: Proceedings of the 23rd International Conference on Machine Learning, ACM Press, New York, NY, USA, 2006, pp. 161-168. doi: http://doi.acm.org/10.1145/1143844.1143865.
    • R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning algorithms, in: ICML '06: Proceedings of the 23rd International Conference on Machine Learning, ACM Press, New York, NY, USA, 2006, pp. 161-168. doi: http://doi.acm.org/10.1145/1143844.1143865.
  • 10
    • 33746171809 scopus 로고    scopus 로고
    • Observations on bagging
    • Buja A., and Stuetzle W. Observations on bagging. Statistica Sinica 16 (2006) 323-351
    • (2006) Statistica Sinica , vol.16 , pp. 323-351
    • Buja, A.1    Stuetzle, W.2
  • 13
    • 0004140497 scopus 로고    scopus 로고
    • Out-of-bag estimation
    • Technical Report, Statistics Department, University of California
    • L. Breiman, Out-of-bag estimation, Technical Report, Statistics Department, University of California, 1996.
    • (1996)
    • Breiman, L.1
  • 15
    • 0642310183 scopus 로고    scopus 로고
    • Resampling fewer then n observations, losses, and remedies for losses: gains
    • Bickel P.J., Gtze F., and van Zwet W.R. Resampling fewer then n observations, losses, and remedies for losses: gains. Statistica Sinica 7 (1997) 1-31
    • (1997) Statistica Sinica , vol.7 , pp. 1-31
    • Bickel, P.J.1    Gtze, F.2    van Zwet, W.R.3
  • 16
    • 0035285745 scopus 로고    scopus 로고
    • Optimal bootstrap sample size in construction of percentile confidence bounds
    • Chung K.-H., and Lee S.M.S. Optimal bootstrap sample size in construction of percentile confidence bounds. Scandinavian Journal of Statistics 28 (2001) 225-239
    • (2001) Scandinavian Journal of Statistics , vol.28 , pp. 225-239
    • Chung, K.-H.1    Lee, S.M.S.2
  • 19
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and on-line
    • Breiman L. Pasting small votes for classification in large databases and on-line. Machine Learning 36 1-2 (1999) 85-103
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 85-103
    • Breiman, L.1
  • 20
    • 84902236815 scopus 로고    scopus 로고
    • Bagging subagging and bragging for improving some prediction algorithms
    • Akritas M.G., and Politis D.N. (Eds), Elsevier, New York
    • Bühlmann P. Bagging subagging and bragging for improving some prediction algorithms. In: Akritas M.G., and Politis D.N. (Eds). Recent Advances and Trends in Nonparametric Statistics (2003), Elsevier, New York 19-34
    • (2003) Recent Advances and Trends in Nonparametric Statistics , pp. 19-34
    • Bühlmann, P.1
  • 25
    • 68949125724 scopus 로고    scopus 로고
    • UCI machine learning repository, URL
    • A. Asuncion, D. Newman, UCI machine learning repository, 2007 URL 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 27
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L. Arcing classifiers. Annals of Statistics 26 3 (1998) 801-849
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 28
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.