-
1
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
2
-
-
0030370417
-
Bagging, boosting, and C4.5
-
Cambridge, MA
-
J.R. Quinlan, Bagging, boosting, and C4.5, in: Proceedings of the 13th National Conference on Artificial Intelligence, Cambridge, MA, 1996, pp. 725-730.
-
(1996)
Proceedings of the 13th National Conference on Artificial Intelligence
, pp. 725-730
-
-
Quinlan, J.R.1
-
4
-
-
0032645080
-
An empirical comparison of voting classification algorithms, boosting, and variants: bagging
-
Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms, boosting, and variants: bagging. Machine Learning 36 1-2 (1999) 105-139
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
5
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees, boosting, and randomization: bagging
-
Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees, boosting, and randomization: bagging. Machine Learning 40 2 (2000) 139-157
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
6
-
-
0034247206
-
Multiboosting: a technique for combining boosting and wagging
-
Webb G.I. Multiboosting: a technique for combining boosting and wagging. Machine Learning 40 2 (2000) 159-196
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 159-196
-
-
Webb, G.I.1
-
7
-
-
34250744208
-
-
R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning algorithms, in: ICML '06: Proceedings of the 23rd International Conference on Machine Learning, ACM Press, New York, NY, USA, 2006, pp. 161-168. doi: http://doi.acm.org/10.1145/1143844.1143865.
-
R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning algorithms, in: ICML '06: Proceedings of the 23rd International Conference on Machine Learning, ACM Press, New York, NY, USA, 2006, pp. 161-168. doi: http://doi.acm.org/10.1145/1143844.1143865.
-
-
-
-
8
-
-
0003991665
-
-
Chapman & Hall, CRC, New York, Boca Raton, FL
-
Efron B., and Tibshirani R.J. An Introduction to the Bootstrap (1994), Chapman & Hall, CRC, New York, Boca Raton, FL
-
(1994)
An Introduction to the Bootstrap
-
-
Efron, B.1
Tibshirani, R.J.2
-
13
-
-
0004140497
-
Out-of-bag estimation
-
Technical Report, Statistics Department, University of California
-
L. Breiman, Out-of-bag estimation, Technical Report, Statistics Department, University of California, 1996.
-
(1996)
-
-
Breiman, L.1
-
15
-
-
0642310183
-
Resampling fewer then n observations, losses, and remedies for losses: gains
-
Bickel P.J., Gtze F., and van Zwet W.R. Resampling fewer then n observations, losses, and remedies for losses: gains. Statistica Sinica 7 (1997) 1-31
-
(1997)
Statistica Sinica
, vol.7
, pp. 1-31
-
-
Bickel, P.J.1
Gtze, F.2
van Zwet, W.R.3
-
16
-
-
0035285745
-
Optimal bootstrap sample size in construction of percentile confidence bounds
-
Chung K.-H., and Lee S.M.S. Optimal bootstrap sample size in construction of percentile confidence bounds. Scandinavian Journal of Statistics 28 (2001) 225-239
-
(2001)
Scandinavian Journal of Statistics
, vol.28
, pp. 225-239
-
-
Chung, K.-H.1
Lee, S.M.S.2
-
17
-
-
0004188510
-
-
Springer, Berlin
-
Politis D., Romano J.P., and Wolf M. Subsampling, Springer Series in Statistics (1999), Springer, Berlin
-
(1999)
Subsampling, Springer Series in Statistics
-
-
Politis, D.1
Romano, J.P.2
Wolf, M.3
-
19
-
-
0032634129
-
Pasting small votes for classification in large databases and on-line
-
Breiman L. Pasting small votes for classification in large databases and on-line. Machine Learning 36 1-2 (1999) 85-103
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 85-103
-
-
Breiman, L.1
-
20
-
-
84902236815
-
Bagging subagging and bragging for improving some prediction algorithms
-
Akritas M.G., and Politis D.N. (Eds), Elsevier, New York
-
Bühlmann P. Bagging subagging and bragging for improving some prediction algorithms. In: Akritas M.G., and Politis D.N. (Eds). Recent Advances and Trends in Nonparametric Statistics (2003), Elsevier, New York 19-34
-
(2003)
Recent Advances and Trends in Nonparametric Statistics
, pp. 19-34
-
-
Bühlmann, P.1
-
21
-
-
68949104323
-
The effect of subsampling rate on subagging performance
-
M. Terabe, T. Washio, H. Motoda, The effect of subsampling rate on subagging performance, in: Proceedings of ECML2001/PKDD2001 Workshop on Active Learning, Database Sampling, and Experimental Design: Views on Instance Selection, 2001, pp. 48-55.
-
(2001)
Proceedings of ECML2001/PKDD2001 Workshop on Active Learning, Database Sampling, and Experimental Design: Views on Instance Selection
, pp. 48-55
-
-
Terabe, M.1
Washio, T.2
Motoda, H.3
-
25
-
-
68949125724
-
-
UCI machine learning repository, URL
-
A. Asuncion, D. Newman, UCI machine learning repository, 2007 URL 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
-
(2007)
-
-
Asuncion, A.1
Newman, D.2
-
26
-
-
0003802343
-
-
Chapman & Hall, New York
-
Breiman L., Friedman J.H., Olshen R.A., and Stone C.J. Classification and Regression Trees (1984), Chapman & Hall, New York
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
27
-
-
0346786584
-
Arcing classifiers
-
Breiman L. Arcing classifiers. Annals of Statistics 26 3 (1998) 801-849
-
(1998)
Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
28
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
|