메뉴 건너뛰기




Volumn 35, Issue , 2012, Pages 21-27

In silico prediction of toxic action mechanisms of phenols for imbalanced data with random forest learner

Author keywords

Cost sensitive; Phenols; QSAR; Random Forest; Toxic action mechanisms

Indexed keywords

COMPUTATIONAL EXPERIMENT; COST MATRICES; COST-SENSITIVE; COST-SENSITIVE LEARNING; DATA CLASS; DATA IMBALANCE; DATA SETS; ENVIRONMENTAL HAZARDS; EXPLORATION TECHNIQUES; IMBALANCED DATA; IN-SILICO; LOCAL MODEL; MACHINE LEARNING TECHNIQUES; MISCLASSIFICATIONS; MOLECULAR DESCRIPTORS; PRACTICAL PROBLEMS; PREDICTION ACCURACY; PREDICTION MODEL; PREDICTION PERFORMANCE; QSAR; QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP; RANDOM FORESTS; RARE CLASS; SAFETY ASSESSMENTS; TECHNICAL CHALLENGES; TETRAHYMENA PYRIFORMIS; TOXIC ACTION; TOXICITY DATA;

EID: 84859802343     PISSN: 10933263     EISSN: 18734243     Source Type: Journal    
DOI: 10.1016/j.jmgm.2012.01.002     Document Type: Article
Times cited : (18)

References (26)
  • 2
    • 77951471715 scopus 로고    scopus 로고
    • QSAR with quantum topological molecular similarity indices: Toxicity of aromatic aldehydes to Tetrahymena pyriformis
    • S. Kar, A.P. Harding, K. Roy, P.L.A. Popelier, QSAR with quantum topological molecular similarity indices: toxicity of aromatic aldehydes to Tetrahymena pyriformis, SAR QSAR Environ. Res. 21 (2010) 149-168.
    • (2010) SAR QSAR Environ. Res. , vol.21 , pp. 149-168
    • Kar, S.1    Harding, A.P.2    Roy, K.3    Popelier, P.L.A.4
  • 5
    • 37349087826 scopus 로고    scopus 로고
    • Comparative QSTR studies for predicting mutagenicity of nitro compounds
    • DOI 10.1016/j.jmgm.2007.06.006, PII S1093326307001027
    • P.C. Nair, M.E. Sobhia, Comparative QSTR studies for predicting mutagenicity of nitro compounds, J. Mol. Graph. Model. 26 (2008) 916-934. (Pubitemid 350298012)
    • (2008) Journal of Molecular Graphics and Modelling , vol.26 , Issue.6 , pp. 916-934
    • Nair, P.C.1    Sobhia, M.E.2
  • 6
    • 20444404916 scopus 로고    scopus 로고
    • Assessing the reliability of a QSAR model's predictions
    • DOI 10.1016/j.jmgm.2005.03.003, PII S1093326305000173
    • L. He, P.C. Jurs, Assessing the reliability of a QSAR model's predictions, J. Mol. Graph. Model. 23 (2005) 503-523. (Pubitemid 40803520)
    • (2005) Journal of Molecular Graphics and Modelling , vol.23 , Issue.6 , pp. 503-523
    • He, L.1    Jurs, P.C.2
  • 7
    • 78649522324 scopus 로고    scopus 로고
    • Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counter-propagation artificial neural networks
    • N. Stojić c, S. Erić, I. Kuzmanovski, Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counter-propagation artificial neural networks, J. Mol. Graph. Model. 29 (2010) 450-460.
    • (2010) J. Mol. Graph. Model. , vol.29 , pp. 450-460
    • Stojićc, N.1    Erić, S.2    Kuzmanovski, I.3
  • 8
    • 34250825348 scopus 로고    scopus 로고
    • Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow
    • DOI 10.1016/j.jmgm.2006.12.009, PII S1093326306001525
    • H. Yuan, Y.Y. Wang, Y.Y. Cheng, Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow, J. Mol. Graph. Model. 26 (2007) 327-335. (Pubitemid 46977265)
    • (2007) Journal of Molecular Graphics and Modelling , vol.26 , Issue.1 , pp. 327-335
    • Yuan, H.1    Wang, Y.-Y.2    Cheng, Y.-Y.3
  • 9
    • 37249035097 scopus 로고    scopus 로고
    • Modeling the toxicity of chemicals to tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks
    • DOI 10.1021/Ci700231c
    • I. Kahn, S. Sild, U. Maran, Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks, J. Chem. Inf. Model. 47 (2007) 2271-2279. (Pubitemid 350275093)
    • (2007) Journal of Chemical Information and Modeling , vol.47 , Issue.6 , pp. 2271-2279
    • Kahn, I.1    Sild, S.2    Maran, U.3
  • 10
    • 50049090548 scopus 로고    scopus 로고
    • Classification of chemicals according to mechanism of aquatic toxicity: An evaluation of the implementation of the Verhaar scheme in Toxtree
    • S.J. Enoch, M. Hewitt, M.T.D. Cronin, S. Azam, J.C. Madden, Classification of chemicals according to mechanism of aquatic toxicity: an evaluation of the implementation of the Verhaar scheme in Toxtree, Chemosphere 73 (2008) 243-248.
    • (2008) Chemosphere , vol.73 , pp. 243-248
    • Enoch, S.J.1    Hewitt, M.2    Cronin, M.T.D.3    Azam, S.4    Madden, J.C.5
  • 12
    • 44149114693 scopus 로고    scopus 로고
    • Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shuffling-adaptive neuro fuzzy inference system and artificial neural networks
    • M. Jalali-Heravi, A. Kyani, Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shuffling-adaptive neuro fuzzy inference system and artificial neural networks, Chemosphere 72 (2008) 733-740.
    • (2008) Chemosphere , vol.72 , pp. 733-740
    • Jalali-Heravi, M.1    Kyani, A.2
  • 13
    • 0041632145 scopus 로고    scopus 로고
    • Phenol mechanism of toxic action classification and prediction: A decision tree approach
    • S.J. Ren, Phenol mechanism of toxic action classification and prediction: a decision tree approach, Toxicol. Lett. 144 (2003) 313-323.
    • (2003) Toxicol. Lett. , vol.144 , pp. 313-323
    • Ren, S.J.1
  • 14
    • 61749099319 scopus 로고    scopus 로고
    • Predicting toxic action mechanisms of phenols using Adaboost learner
    • B. Niu, Y.H. Jin, W.C. Lu, G.Z. Li, Predicting toxic action mechanisms of phenols using Adaboost learner, Chemometr. Intell. Lab. 96 (2009) 43-48.
    • (2009) Chemometr. Intell. Lab. , vol.96 , pp. 43-48
    • Niu, B.1    Jin, Y.H.2    Lu, W.C.3    Li, G.Z.4
  • 15
    • 79951721392 scopus 로고    scopus 로고
    • In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods
    • F.X. Cheng, J. Shen, Y. Yu, W.H. Li, G.X. Liu, P.W. Lee, et al., In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods, Chemosphere 82 (2011) 1636-1643.
    • (2011) Chemosphere , vol.82 , pp. 1636-1643
    • Cheng, F.X.1    Shen, J.2    Yu, Y.3    Li, W.H.4    Liu, G.X.5    Lee, P.W.6
  • 16
    • 33746238242 scopus 로고    scopus 로고
    • Discrimination between modes of toxic action of phenols using rule based methods
    • DOI 10.1007/s11030-006-9019-3
    • U. Norinder, P. Lidén, H. Boström, Discrimination between modes of toxic action of phenols using rule based methods, Mol. Divers. 10 (2006) 207-212. (Pubitemid 44092209)
    • (2006) Molecular Diversity , vol.10 , Issue.2 , pp. 207-212
    • Norinder, U.1    Liden, P.2    Bostrom, H.3
  • 18
    • 0036882521 scopus 로고    scopus 로고
    • Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis
    • DOI 10.1016/S0045-6535(02)00508-8, PII S0045653502005088
    • M.T.D. Cronin, A.O. Aptula, J.C. Duffy, T.I. Netzeva, P.H. Rowe, I.V. Valkova, et al., Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis, Chemosphere 49 (2002) 1201-1221. (Pubitemid 35386582)
    • (2002) Chemosphere , vol.49 , Issue.10 , pp. 1201-1221
    • Cronin, M.T.D.1    Aptula, A.O.2    Duffy, J.C.3    Netzeva, T.I.4    Rowe, P.H.5    Valkova, I.V.6    Schultz, T.W.7
  • 20
    • 33748702895 scopus 로고    scopus 로고
    • Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods
    • DOI 10.1021/tx0600550
    • Y. Xue, H. Li, C.Y. Ung, C.W. Yap, Y.Z. Chen, Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods, Chem. Res. Toxicol. 19 (2006) 1030-1039. (Pubitemid 44389202)
    • (2006) Chemical Research in Toxicology , vol.19 , Issue.8 , pp. 1030-1039
    • Xue, Y.1    Li, H.2    Ung, C.Y.3    Yap, C.W.4    Chen, Y.Z.5
  • 21
    • 84859792138 scopus 로고    scopus 로고
    • T. Olsson, V. Sherbukhin, SELMA, Synthesis and Structure Administration (SaSA), AstraZeneca R&D, Mölndal, Sweden, 1997
    • T. Olsson, V. Sherbukhin, SELMA, Synthesis and Structure Administration (SaSA), AstraZeneca R&D, Mölndal, Sweden, 1997.
  • 22
    • 0035478854 scopus 로고    scopus 로고
    • Random forest
    • L. Breiman, Random forest, Mach. Learn. 45 (2001) 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 25
    • 84859790506 scopus 로고    scopus 로고
    • On extending F-measure and G-mean metrics to multi-class problems
    • R.P. Espíndola, N.F.F. Ebecken, On extending F-measure and G-mean metrics to multi-class problems, Data Min. VI 35 (2005) 25-34.
    • (2005) Data Min. VI , vol.35 , pp. 25-34
    • Espíndola, R.P.1    Ebecken, N.F.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.