-
1
-
-
84859994220
-
Computational Approaches for Analyzing Information Flow in Biological Networks
-
2510471,.; ():
-
Kholodenko B, Yaffe MB, Kolch W, Computational Approaches for Analyzing Information Flow in Biological Networks. Sci Signal. 2012;5(220):re1. doi: 10.1126/scisignal.200296122510471
-
(2012)
Sci Signal
, vol.5
, Issue.220
, pp. re1
-
-
Kholodenko, B.1
Yaffe, M.B.2
Kolch, W.3
-
2
-
-
84949522663
-
Modeling Signaling Networks to Advance New Cancer Therapies
-
6274601
-
Saez-Rodriguez J, MacNamara A, Cook S, Modeling Signaling Networks to Advance New Cancer Therapies. Annu Rev Biomed Eng. 2015;17(1):143–163. doi: 10.1146/annurev-bioeng-071813-10492726274601
-
(2015)
Annu Rev Biomed Eng
, vol.17
, Issue.1
, pp. 143-163
-
-
Saez-Rodriguez, J.1
MacNamara, A.2
Cook, S.3
-
3
-
-
84891892050
-
Reverse engineering and identification in systems biology: strategies, perspectives and challenges
-
4307566,.; ():
-
Villaverde AF, Banga JR, Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J R Soc Interface. 2014;11(91):20130505. doi: 10.1098/rsif.2013.050524307566
-
(2014)
J R Soc Interface
, vol.11
, Issue.91
, pp. 20130505
-
-
Villaverde, A.F.1
Banga, J.R.2
-
4
-
-
33847055114
-
How to infer gene networks from expression profiles
-
7299415,.; ():
-
Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D, How to infer gene networks from expression profiles. Mol Syst Biol. 2007;3(1):78. doi: 10.1038/msb410012017299415
-
(2007)
Mol Syst Biol
, vol.3
, Issue.1
, pp. 78
-
-
Bansal, M.1
Belcastro, V.2
Ambesi-Impiombato, A.3
di Bernardo, D.4
-
5
-
-
77957110013
-
Advantages and limitations of current network inference methods
-
0805835
-
De Smet R, Marchal K, Advantages and limitations of current network inference methods. Nature Rev Microbiol. 2010;8(10):717–729. doi: 10.1038/nrmicro241920805835
-
(2010)
Nature Rev Microbiol
, vol.8
, Issue.10
, pp. 717-729
-
-
De Smet, R.1
Marchal, K.2
-
6
-
-
84891892293
-
Reverse engineering cellular networks with information theoretic methods
-
4709703
-
Villaverde AF, Ross J, Banga JR, Reverse engineering cellular networks with information theoretic methods. Cells. 2013;2(2):306–329. doi: 10.3390/cells202030624709703
-
(2013)
Cells
, vol.2
, Issue.2
, pp. 306-329
-
-
Villaverde, A.F.1
Ross, J.2
Banga, J.R.3
-
7
-
-
84928721957
-
Exact reconstruction of gene regulatory networks using compressive sensing
-
5495633
-
Chang YH, Gray JW, Tomlin CJ, Exact reconstruction of gene regulatory networks using compressive sensing. BMC Bioinform. 2014;15(1):1–22. doi: 10.1186/s12859-014-0400-425495633
-
(2014)
BMC Bioinform
, vol.15
, Issue.1
, pp. 1-22
-
-
Chang, Y.H.1
Gray, J.W.2
Tomlin, C.J.3
-
8
-
-
33747813561
-
The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
-
6686963
-
Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, et al. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 2006;7(5):1–16. doi: 10.1186/gb-2006-7-5-r3616686963
-
(2006)
Genome Biol
, vol.7
, Issue.5
, pp. 1-16
-
-
Bonneau, R.1
Reiss, D.J.2
Shannon, P.3
Facciotti, M.4
Hood, L.5
Baliga, N.S.6
-
9
-
-
71149116758
-
Systems analysis of cellular networks under uncertainty
-
9879267
-
Kaltenbach HM, Dimopoulos S, Stelling J, Systems analysis of cellular networks under uncertainty. FEBS Lett. 2009;583(24):3923–3930. doi: 10.1016/j.febslet.2009.10.07419879267
-
(2009)
FEBS Lett
, vol.583
, Issue.24
, pp. 3923-3930
-
-
Kaltenbach, H.M.1
Dimopoulos, S.2
Stelling, J.3
-
10
-
-
58849118519
-
Nested uncertainties in biochemical models
-
9154080
-
Schaber J, Liebermeister W, Klipp E, Nested uncertainties in biochemical models. IET Syst Biol. 2009;3(1):1–9. doi: 10.1049/iet-syb:2007004219154080
-
(2009)
IET Syst Biol
, vol.3
, Issue.1
, pp. 1-9
-
-
Schaber, J.1
Liebermeister, W.2
Klipp, E.3
-
11
-
-
78650218972
-
Modeling of uncertainties in biochemical reactions
-
0830674
-
Mišković L, Hatzimanikatis V, Modeling of uncertainties in biochemical reactions. Biotechnol Bioeng. 2011;108(2):413–423. doi: 10.1002/bit.2293220830674
-
(2011)
Biotechnol Bioeng
, vol.108
, Issue.2
, pp. 413-423
-
-
Mišković, L.1
Hatzimanikatis, V.2
-
14
-
-
78951491903
-
A Review of Ensemble Methods in Bioinformatics
-
Yang P, Yang YH, Zhou BB, Zomaya AY, A Review of Ensemble Methods in Bioinformatics. Curr Bioinform. 2010;5(4):296–308. doi: 10.2174/157489310794072508
-
(2010)
Curr Bioinform
, vol.5
, Issue.4
, pp. 296-308
-
-
Yang, P.1
Yang, Y.H.2
Zhou, B.B.3
Zomaya, A.Y.4
-
15
-
-
4444311806
-
A proposal for using the ensemble approach to understand genetic regulatory networks
-
5363677
-
Kauffman S, A proposal for using the ensemble approach to understand genetic regulatory networks. J Theor Biol. 2004;230(4):581–590. doi: 10.1016/j.jtbi.2003.12.01715363677
-
(2004)
J Theor Biol
, vol.230
, Issue.4
, pp. 581-590
-
-
Kauffman, S.1
-
16
-
-
84905640975
-
Ensemble Inference and Inferability of Gene Regulatory Networks
-
5093509,.; ():
-
Ud-Dean SMM, Gunawan R, Ensemble Inference and Inferability of Gene Regulatory Networks. PLoS ONE. 2014;9(8):e103812. doi: 10.1371/journal.pone.010381225093509
-
(2014)
PLoS ONE
, vol.9
, Issue.8
, pp. e103812
-
-
Ud-Dean, S.M.M.1
Gunawan, R.2
-
17
-
-
84857702241
-
Metabolic ensemble modeling for strain engineers
-
2021171
-
Tan Y, Liao JC, Metabolic ensemble modeling for strain engineers. Biotechnol J. 2012;7(3, SI):343–353. doi: 10.1002/biot.20110018622021171
-
(2012)
Biotechnol J
, vol.7
, Issue.3, SI
, pp. 343-353
-
-
Tan, Y.1
Liao, J.C.2
-
18
-
-
84875090763
-
Ensemble kinetic modeling of metabolic networks from dynamic metabolic profiles
-
4957767
-
Jia G, Stephanopoulos G, Gunawan R, Ensemble kinetic modeling of metabolic networks from dynamic metabolic profiles. Metabolites. 2012;2(4):891–912. doi: 10.3390/metabo204089124957767
-
(2012)
Metabolites
, vol.2
, Issue.4
, pp. 891-912
-
-
Jia, G.1
Stephanopoulos, G.2
Gunawan, R.3
-
19
-
-
34948840834
-
Ensemble modeling for analysis of cell signaling dynamics
-
7846631
-
Kuepfer L, Peter M, Sauer U, Stelling J, Ensemble modeling for analysis of cell signaling dynamics. Nat Biotechnol. 2007;25(9):1001–1006. doi: 10.1038/nbt133017846631
-
(2007)
Nat Biotechnol
, vol.25
, Issue.9
, pp. 1001-1006
-
-
Kuepfer, L.1
Peter, M.2
Sauer, U.3
Stelling, J.4
-
21
-
-
0030211964
-
Bagging predictors
-
Breiman L, Bagging predictors. Mach Learn. 1996;24(2):123–140. doi: 10.1007/BF00058655
-
(1996)
Mach Learn
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
22
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire R, Freund Y, Bartlett P, Lee W, Boosting the margin: A new explanation for the effectiveness of voting methods. Ann Stat. 1998;26(5):1651–1686. doi: 10.1214/aos/1024691352
-
(1998)
Ann Stat
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.1
Freund, Y.2
Bartlett, P.3
Lee, W.4
-
23
-
-
0346786584
-
Arcing classifiers
-
Breiman L, Arcing classifiers. Ann Stat. 1998;26(3):801–824.
-
(1998)
Ann Stat
, vol.26
, Issue.3
, pp. 801-824
-
-
Breiman, L.1
-
24
-
-
77958570788
-
Inferring Regulatory Networks from Expression Data Using Tree-Based Methods
-
0927193
-
Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P, Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE. 2010;5(9):1–10. doi: 10.1371/journal.pone.001277620927193
-
(2010)
PLoS ONE
, vol.5
, Issue.9
, pp. 1-10
-
-
Huynh-Thu, V.A.1
Irrthum, A.2
Wehenkel, L.3
Geurts, P.4
-
25
-
-
84929612020
-
Combining tree-based and dynamical systems for the inference of gene regulatory networks
-
5573916
-
Huynh-Thu VA, Sanguinetti G, Combining tree-based and dynamical systems for the inference of gene regulatory networks. Bioinformatics. 2015;31(10):1614–1622. doi: 10.1093/bioinformatics/btu86325573916
-
(2015)
Bioinformatics
, vol.31
, Issue.10
, pp. 1614-1622
-
-
Huynh-Thu, V.A.1
Sanguinetti, G.2
-
26
-
-
79953670434
-
Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis
-
1423713,..; ():
-
Xing H, McDonagh PD, Bienkowska J, Cashorali T, Runge K, Miller RE, et al. Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis. PLoS Comput Biol. 2011;7(3):e1001105. doi: 10.1371/journal.pcbi.100110521423713
-
(2011)
PLoS Comput Biol
, vol.7
, Issue.3
, pp. e1001105
-
-
Xing, H.1
McDonagh, P.D.2
Bienkowska, J.3
Cashorali, T.4
Runge, K.5
Miller, R.E.6
-
27
-
-
34547177691
-
The use of the multi-model ensemble in probabilistic climate projections
-
7569654
-
Tebaldi C, Knutti R, The use of the multi-model ensemble in probabilistic climate projections. Phil Trans R Soc A. 2007;365(1857):2053–2075. doi: 10.1098/rsta.2007.207617569654
-
(2007)
Phil Trans R Soc A
, vol.365
, Issue.1857
, pp. 2053-2075
-
-
Tebaldi, C.1
Knutti, R.2
-
28
-
-
18544371178
-
The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept
-
Hagedorn R, Doblas-Reyes F, Palmer T, The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A. 2005;57(3):219–233.
-
(2005)
Tellus A
, vol.57
, Issue.3
, pp. 219-233
-
-
Hagedorn, R.1
Doblas-Reyes, F.2
Palmer, T.3
-
29
-
-
84904296838
-
Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways
-
4972370,.;: –
-
Lee Y, Rivera JGL, Liao JC, Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways. Metab Eng. 2014;25:63–71. doi: 10.1016/j.ymben.2014.06.00624972370
-
(2014)
Metab Eng
, vol.25
, pp. 63-71
-
-
Lee, Y.1
Rivera, J.G.L.2
Liao, J.C.3
-
30
-
-
84883476230
-
Exhaustively characterizing feasible logic models of a signaling network using Answer Set Programming
-
3853063
-
Guziolowski C, Videla S, Eduati F, Thiele S, Cokelaer T, Siegel A, et al. Exhaustively characterizing feasible logic models of a signaling network using Answer Set Programming. Bioinformatics. 2013;29(18):2320–2326. doi: 10.1093/bioinformatics/btt39323853063
-
(2013)
Bioinformatics
, vol.29
, Issue.18
, pp. 2320-2326
-
-
Guziolowski, C.1
Videla, S.2
Eduati, F.3
Thiele, S.4
Cokelaer, T.5
Siegel, A.6
-
31
-
-
84892376552
-
Supervised, semi-supervised and unsupervised inference of gene regulatory networks
-
3698722,.;p
-
Maetschke SR, Madhamshettiwar PB, Davis MJ, Ragan MA, Supervised, semi-supervised and unsupervised inference of gene regulatory networks. Briefings in bioinformatics. 2013;p. bbt034. doi: 10.1093/bib/bbt03423698722
-
(2013)
Briefings in bioinformatics
, pp. bbt034
-
-
Maetschke, S.R.1
Madhamshettiwar, P.B.2
Davis, M.J.3
Ragan, M.A.4
-
32
-
-
85001129911
-
Computational inference of gene regulatory networks: Approaches, limitations and opportunities
-
7641093,.;
-
Banf M, Rhee SY, Computational inference of gene regulatory networks: Approaches, limitations and opportunities. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2016;. doi: 10.1016/j.bbagrm.2016.09.00327641093
-
(2016)
Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms
-
-
Banf, M.1
Rhee, S.Y.2
-
33
-
-
17644427718
-
Causal protein-signaling networks derived from multiparameter single-cell data
-
5845847
-
Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP, Causal protein-signaling networks derived from multiparameter single-cell data. Science. 2005;308(5721):523–529. doi: 10.1126/science.110580915845847
-
(2005)
Science
, vol.308
, Issue.5721
, pp. 523-529
-
-
Sachs, K.1
Perez, O.2
Pe’er, D.3
Lauffenburger, D.A.4
Nolan, G.P.5
-
34
-
-
84940644968
-
A Mathematical Theory of Communication
-
Shannon CE, A Mathematical Theory of Communication. Bell Syst Tech J. 1948;27(3):379–423. doi: 10.1002/j.1538-7305.1948.tb00917.x
-
(1948)
Bell Syst Tech J
, vol.27
, Issue.3
, pp. 379-423
-
-
Shannon, C.E.1
-
35
-
-
0036207347
-
Modeling and simulation of genetic regulatory systems: A literature review
-
1911796
-
De Jong H, Modeling and simulation of genetic regulatory systems: A literature review. J Comp Biol. 2002;9(1):67–103. doi: 10.1089/1066527025283320811911796
-
(2002)
J Comp Biol
, vol.9
, Issue.1
, pp. 67-103
-
-
De Jong, H.1
-
36
-
-
85047688512
-
Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models
-
3422247
-
Faria JP, Overbeek R, Xia F, Rocha M, Rocha I, Henry CS, Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models. Brief Bioinform. 2014;15(4):592–611. doi: 10.1093/bib/bbs07123422247
-
(2014)
Brief Bioinform
, vol.15
, Issue.4
, pp. 592-611
-
-
Faria, J.P.1
Overbeek, R.2
Xia, F.3
Rocha, M.4
Rocha, I.5
Henry, C.S.6
-
37
-
-
38449088751
-
Inferring cellular networks—a review
-
7903286
-
Markowetz F, Spang R, Inferring cellular networks—a review. BMC Bioinform. 2007;8(6):1–17. doi: 10.1186/1471-2105-8-S6-S517903286
-
(2007)
BMC Bioinform
, vol.8
, Issue.6
, pp. 1-17
-
-
Markowetz, F.1
Spang, R.2
-
38
-
-
34547844096
-
Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: Synthetic versus real data
-
7485431
-
Soranzo N, Bianconi G, Altafini C, Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: Synthetic versus real data. Bioinformatics. 2007;23(13):1640–1647. doi: 10.1093/bioinformatics/btm16317485431
-
(2007)
Bioinformatics
, vol.23
, Issue.13
, pp. 1640-1647
-
-
Soranzo, N.1
Bianconi, G.2
Altafini, C.3
-
39
-
-
77954484005
-
Revealing differences in gene network inference algorithms on the network level by ensemble methods
-
0501553
-
Altay G, Emmert-Streib F, Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics. 2010;26(14):1738–1744. doi: 10.1093/bioinformatics/btq25920501553
-
(2010)
Bioinformatics
, vol.26
, Issue.14
, pp. 1738-1744
-
-
Altay, G.1
Emmert-Streib, F.2
-
40
-
-
84859371992
-
Gene network inference and visualization tools for biologists: application to new human transcriptome datasets
-
2121215
-
Hurley D, Araki H, Tamada Y, Dunmore B, Sanders D, Humphreys S, et al. Gene network inference and visualization tools for biologists: application to new human transcriptome datasets. Nucleic Acids Res. 2012;40(6):2377–2398. doi: 10.1093/nar/gkr90222121215
-
(2012)
Nucleic Acids Res
, vol.40
, Issue.6
, pp. 2377-2398
-
-
Hurley, D.1
Araki, H.2
Tamada, Y.3
Dunmore, B.4
Sanders, D.5
Humphreys, S.6
-
41
-
-
33947305781
-
ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
-
6723010
-
Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, et al. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2006;7(1):1–15. doi: 10.1186/1471-2105-7-S1-S716723010
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
, pp. 1-15
-
-
Margolin, A.1
Nemenman, I.2
Basso, K.3
Wiggins, C.4
Stolovitzky, G.5
Dalla Favera, R.6
-
42
-
-
77952663448
-
TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
-
0338053
-
Zoppoli P, Morganella S, Ceccarelli M, TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics. 2010;11(1):1–15. doi: 10.1186/1471-2105-11-15420338053
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
, pp. 1-15
-
-
Zoppoli, P.1
Morganella, S.2
Ceccarelli, M.3
-
43
-
-
84879435511
-
hARACNe: improving the accuracy of regulatory model reverse engineering via higher-order data processing inequality tests
-
4511376,.; ():
-
Jang IS, Margolin A, Califano A, hARACNe: improving the accuracy of regulatory model reverse engineering via higher-order data processing inequality tests. Interface Focus. 2013;3(4):20130011. doi: 10.1098/rsfs.2013.001124511376
-
(2013)
Interface Focus
, vol.3
, Issue.4
, pp. 20130011
-
-
Jang, I.S.1
Margolin, A.2
Califano, A.3
-
44
-
-
33846400424
-
Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
-
7214507
-
Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 2007;5(1):54–66. doi: 10.1371/journal.pbio.005000817214507
-
(2007)
PLoS Biol
, vol.5
, Issue.1
, pp. 54-66
-
-
Faith, J.J.1
Hayete, B.2
Thaden, J.T.3
Mogno, I.4
Wierzbowski, J.5
Cottarel, G.6
-
45
-
-
36248999573
-
Information-theoretic inference of large transcriptional regulatory networks
-
8354736
-
Meyer PE, Kontos K, Lafitte F, Bontempi G, Information-theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinform Syst Biol. 2007;2007(1):1–9. doi: 10.1155/2007/7987918354736
-
(2007)
EURASIP J Bioinform Syst Biol
, vol.2007
, Issue.1
, pp. 1-9
-
-
Meyer, P.E.1
Kontos, K.2
Lafitte, F.3
Bontempi, G.4
-
46
-
-
58149349958
-
Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information
-
8980677,.; ():
-
Luo W, Hankenson KD, Woolf PJ, Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information. BMC Bioinform. 2008;9(1):467. doi: 10.1186/1471-2105-9-46718980677
-
(2008)
BMC Bioinform
, vol.9
, Issue.1
, pp. 467
-
-
Luo, W.1
Hankenson, K.D.2
Woolf, P.J.3
-
47
-
-
84900566215
-
MIDER: Network Inference with Mutual Information Distance and Entropy Reduction
-
4806471,.; ():
-
Villaverde AF, Ross J, Moran F, Banga JR, MIDER: Network Inference with Mutual Information Distance and Entropy Reduction. PLoS ONE. 2014;9(5):e96732. doi: 10.1371/journal.pone.009673224806471
-
(2014)
PLoS ONE
, vol.9
, Issue.5
, pp. e96732
-
-
Villaverde, A.F.1
Ross, J.2
Moran, F.3
Banga, J.R.4
-
48
-
-
80052592949
-
Crowdsourcing Network Inference: The DREAM Predictive Signaling Network Challenge
-
1900204,.; ():
-
Prill RJ, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, Stolovitzky G, Crowdsourcing Network Inference: The DREAM Predictive Signaling Network Challenge. Sci Signal. 2011;4(189):mr7. doi: 10.1126/scisignal.200221221900204
-
(2011)
Sci Signal
, vol.4
, Issue.189
, pp. mr7
-
-
Prill, R.J.1
Saez-Rodriguez, J.2
Alexopoulos, L.G.3
Sorger, P.K.4
Stolovitzky, G.5
-
49
-
-
84870305264
-
Wisdom of crowds for robust gene network inference
-
2796662
-
Marbach D, Costello JC, Kueffner R, Vega NM, Prill RJ, Camacho DM, et al. Wisdom of crowds for robust gene network inference. Nat Methods. 2012;9(8):796–804. doi: 10.1038/nmeth.201622796662
-
(2012)
Nat Methods
, vol.9
, Issue.8
, pp. 796-804
-
-
Marbach, D.1
Costello, J.C.2
Kueffner, R.3
Vega, N.M.4
Prill, R.J.5
Camacho, D.M.6
-
50
-
-
84923647642
-
NAIL, a software toolset for inferring, analyzing and visualizing regulatory networks
-
5246431
-
Hurley DG, Cursons J, Wang YK, Budden DM, Print CG, Crampin EJ, NAIL, a software toolset for inferring, analyzing and visualizing regulatory networks. Bioinformatics. 2015;31(2):277–278. doi: 10.1093/bioinformatics/btu61225246431
-
(2015)
Bioinformatics
, vol.31
, Issue.2
, pp. 277-278
-
-
Hurley, D.G.1
Cursons, J.2
Wang, Y.K.3
Budden, D.M.4
Print, C.G.5
Crampin, E.J.6
-
51
-
-
40749128970
-
Flexible informatics for linking experimental data to mathematical models via DataRail
-
8218655
-
Saez-Rodriguez J, Goldsipe A, Muhlich J, Alexopoulos LG, Millard B, Lauffenburger DA, et al. Flexible informatics for linking experimental data to mathematical models via DataRail. Bioinformatics. 2008;24(6):840–847. doi: 10.1093/bioinformatics/btn01818218655
-
(2008)
Bioinformatics
, vol.24
, Issue.6
, pp. 840-847
-
-
Saez-Rodriguez, J.1
Goldsipe, A.2
Muhlich, J.3
Alexopoulos, L.G.4
Millard, B.5
Lauffenburger, D.A.6
-
52
-
-
0042526388
-
The mutual information: Detecting and evaluating dependencies between variables
-
2386007
-
Steuer R, Kurths J, Daub C, Weise J, Selbig J, The mutual information: Detecting and evaluating dependencies between variables. Bioinformatics. 2002;18(suppl 2):S231–S240. 12386007
-
(2002)
Bioinformatics
, vol.18
, pp. S231-S240
-
-
Steuer, R.1
Kurths, J.2
Daub, C.3
Weise, J.4
Selbig, J.5
-
53
-
-
59949086432
-
minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information
-
8959772,.; ():
-
Meyer PE, Lafitte F, Bontempi G, minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information. BMC Bioinform. 2008;9(1):461. doi: 10.1186/1471-2105-9-46118959772
-
(2008)
BMC Bioinform
, vol.9
, Issue.1
, pp. 461
-
-
Meyer, P.E.1
Lafitte, F.2
Bontempi, G.3
-
54
-
-
70449481350
-
Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling
-
9785753,.;
-
Wittmann DM, Krumsiek J, Saez-Rodriguez J, Lauffenburger DA, Klamt S, Theis FJ, Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol. 2009;3. doi: 10.1186/1752-0509-3-9819785753
-
(2009)
BMC Syst Biol
, vol.3
-
-
Wittmann, D.M.1
Krumsiek, J.2
Saez-Rodriguez, J.3
Lauffenburger, D.A.4
Klamt, S.5
Theis, F.J.6
-
55
-
-
85014295550
-
Odefy—From discrete to continuous models
-
Krumsiek J, Poelsterl S, Wittmann DM, Theis FJ, Odefy—From discrete to continuous models. BMC Bioinform. 2009;3(1):1–21.
-
(2009)
BMC Bioinform
, vol.3
, Issue.1
, pp. 1-21
-
-
Krumsiek, J.1
Poelsterl, S.2
Wittmann, D.M.3
Theis, F.J.4
-
56
-
-
84941769665
-
Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach
-
6002881
-
Henriques D, Rocha M, Saez-Rodriguez J, Banga JR, Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach. Bioinformatics. 2015;31(18):2999–3007. doi: 10.1093/bioinformatics/btv31426002881
-
(2015)
Bioinformatics
, vol.31
, Issue.18
, pp. 2999-3007
-
-
Henriques, D.1
Rocha, M.2
Saez-Rodriguez, J.3
Banga, J.R.4
-
58
-
-
84900846604
-
MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics
-
4885957
-
Egea JA, Henriques D, Cokelaer T, Villaverde AF, MacNamara A, Danciu DP, et al. MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics. BMC Bioinform. 2014;15(1):1–9. doi: 10.1186/1471-2105-15-13624885957
-
(2014)
BMC Bioinform
, vol.15
, Issue.1
, pp. 1-9
-
-
Egea, J.A.1
Henriques, D.2
Cokelaer, T.3
Villaverde, A.F.4
MacNamara, A.5
Danciu, D.P.6
-
59
-
-
33745217791
-
SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers
-
Hindmarsh A, Brown P, Grant K, Lee S, Serban R, Shumaker D, et al. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Software. 2005;31(3):363–396. doi: 10.1145/1089014.1089020
-
(2005)
ACM Trans Math Software
, vol.31
, Issue.3
, pp. 363-396
-
-
Hindmarsh, A.1
Brown, P.2
Grant, K.3
Lee, S.4
Serban, R.5
Shumaker, D.6
-
60
-
-
22844456607
-
The role of occam’s razor in knowledge discovery
-
Domingos P, The role of occam’s razor in knowledge discovery. Data Min Knowl Discov. 1999;3(4):409–425.
-
(1999)
Data Min Knowl Discov
, vol.3
, Issue.4
, pp. 409-425
-
-
Domingos, P.1
-
61
-
-
84878742739
-
Automatic Generation of Predictive Dynamic Models Reveals Nuclear Phosphorylation as the Key Msn2 Control Mechanism
-
3716718,..; ():
-
Sunnaker M, Zamora-Sillero E, Dechant R, Ludwig C, Busetto AG, Wagner A, et al. Automatic Generation of Predictive Dynamic Models Reveals Nuclear Phosphorylation as the Key Msn2 Control Mechanism. Sci Signal. 2013;6(277):ra41. doi: 10.1126/scisignal.200362123716718
-
(2013)
Sci Signal
, vol.6
, Issue.277
, pp. ra41
-
-
Sunnaker, M.1
Zamora-Sillero, E.2
Dechant, R.3
Ludwig, C.4
Busetto, A.G.5
Wagner, A.6
-
64
-
-
26844438590
-
Weather forecasting with ensemble methods
-
6224011
-
Gneiting T, Raftery AE, Weather forecasting with ensemble methods. Science. 2005;310(5746):248–249. doi: 10.1126/science.111525516224011
-
(2005)
Science
, vol.310
, Issue.5746
, pp. 248-249
-
-
Gneiting, T.1
Raftery, A.E.2
-
65
-
-
0002806690
-
OpenMP: An industry standard API for shared-memory programming
-
Dagum L, Menon R, OpenMP: An industry standard API for shared-memory programming. IEEE Comput Sci Eng. 1998;5(1):46–55. doi: 10.1109/99.660313
-
(1998)
IEEE Comput Sci Eng
, vol.5
, Issue.1
, pp. 46-55
-
-
Dagum, L.1
Menon, R.2
-
66
-
-
84867537553
-
CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms
-
3079107
-
Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris MK, et al. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst Biol. 2012;6(1):1–14. doi: 10.1186/1752-0509-6-13323079107
-
(2012)
BMC Syst Biol
, vol.6
, Issue.1
, pp. 1-14
-
-
Terfve, C.1
Cokelaer, T.2
Henriques, D.3
MacNamara, A.4
Goncalves, E.5
Morris, M.K.6
-
67
-
-
0029790351
-
Ultrasensitivity in the mitogen-activated protein kinase cascade
-
816754
-
Huang C, Ferrell J, Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA. 1996;93(19):10078–10083. doi: 10.1073/pnas.93.19.100788816754
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, Issue.19
, pp. 10078-10083
-
-
Huang, C.1
Ferrell, J.2
-
68
-
-
84883260760
-
Modeling signaling networks with different formalisms: A preview
-
3715981,.;: –
-
MacNamara A, Henriques D, Saez-Rodriguez J, Modeling signaling networks with different formalisms: A preview. Methods Mol Biol. 2013;1021:89–105. doi: 10.1007/978-1-62703-450-0_523715981
-
(2013)
Methods Mol Biol
, vol.1021
, pp. 89-105
-
-
MacNamara, A.1
Henriques, D.2
Saez-Rodriguez, J.3
-
69
-
-
58549083142
-
Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data
-
9156131,..; ():
-
Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, et al. Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol. 2009;5(1):239. doi: 10.1038/msb.2008.7419156131
-
(2009)
Mol Syst Biol
, vol.5
, Issue.1
, pp. 239
-
-
Chen, W.W.1
Schoeberl, B.2
Jasper, P.J.3
Niepel, M.4
Nielsen, U.B.5
Lauffenburger, D.A.6
-
70
-
-
84978621488
-
Inferring causal molecular networks: empirical assessment through a community-based effort
-
6901648,..;
-
Hill SM, Heiser LM, Cokelaer T, Unger M, Nesser NK, Carlin DE, et al. Inferring causal molecular networks: empirical assessment through a community-based effort. Nat Methods. 2016;. doi: 10.1038/nmeth.377326901648
-
(2016)
Nat Methods
-
-
Hill, S.M.1
Heiser, L.M.2
Cokelaer, T.3
Unger, M.4
Nesser, N.K.5
Carlin, D.E.6
-
71
-
-
0037032817
-
Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases
-
2471242
-
Johnson G, Lapadat R, Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911–1912. doi: 10.1126/science.107268212471242
-
(2002)
Science
, vol.298
, Issue.5600
, pp. 1911-1912
-
-
Johnson, G.1
Lapadat, R.2
-
73
-
-
84888276484
-
BioComp’10
-
Meyer P, Marbach D, Roy S, Kellis M. Information-Theoretic Inference of Gene Networks Using Backward Elimination. In: BioComp’10, International Conference on Bioinformatics and Computational Biology; 2010. p. 700–705.
-
International Conference on Bioinformatics and Computational Biology
, vol.2010
, pp. 700-705
-
-
Meyer, P.1
Marbach, D.2
Roy, S.3
Kellis, M.4
-
74
-
-
63749101088
-
Reconstructing generalized logical networks of transcriptional regulation in mouse brain from temporal gene expression data
-
9300527,..; ():
-
Song MJ, Lewis CK, Lance ER, Chesler EJ, Yordanova RK, Langston MA, et al. Reconstructing generalized logical networks of transcriptional regulation in mouse brain from temporal gene expression data. EURASIP Journal on Bioinformatics and Systems Biology. 2009;2009(1):1. doi: 10.1155/2009/54517619300527
-
(2009)
EURASIP Journal on Bioinformatics and Systems Biology
, vol.2009
, Issue.1
, pp. 1
-
-
Song, M.J.1
Lewis, C.K.2
Lance, E.R.3
Chesler, E.J.4
Yordanova, R.K.5
Langston, M.A.6
-
75
-
-
84999106855
-
OmniPath: guidelines and gateway for literature-curated signaling pathway resources
-
7898060
-
Türei D, Korcsmáros T, Saez-Rodriguez J, OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nature methods. 2016;13(12):966–967. doi: 10.1038/nmeth.407727898060
-
(2016)
Nature methods
, vol.13
, Issue.12
, pp. 966-967
-
-
Türei, D.1
Korcsmáros, T.2
Saez-Rodriguez, J.3
-
76
-
-
73449142148
-
Optimal experimental design for parameter estimation of a cell signaling model
-
9911077,.; ():
-
Bandara S, Schlöder JP, Eils R, Bock HG, Meyer T, Optimal experimental design for parameter estimation of a cell signaling model. PLoS Comput Biol. 2009;5(11):e1000558. doi: 10.1371/journal.pcbi.100055819911077
-
(2009)
PLoS Comput Biol
, vol.5
, Issue.11
, pp. e1000558
-
-
Bandara, S.1
Schlöder, J.P.2
Eils, R.3
Bock, H.G.4
Meyer, T.5
-
77
-
-
58149232578
-
Parameter estimation and optimal experimental design
-
8793133,.;: –
-
Banga JR, Balsa-Canto E, Parameter estimation and optimal experimental design. Essays in biochemistry. 2008;45:195–210. doi: 10.1042/BSE045019518793133
-
(2008)
Essays in biochemistry
, vol.45
, pp. 195-210
-
-
Banga, J.R.1
Balsa-Canto, E.2
|