메뉴 건너뛰기




Volumn 13, Issue 2, 2017, Pages

Data-driven reverse engineering of signaling pathways using ensembles of dynamic models

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; ORDINARY DIFFERENTIAL EQUATIONS; REVERSE ENGINEERING; SIGNAL TRANSDUCTION; SIGNALING;

EID: 85014202761     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1005379     Document Type: Article
Times cited : (46)

References (77)
  • 1
    • 84859994220 scopus 로고    scopus 로고
    • Computational Approaches for Analyzing Information Flow in Biological Networks
    • 2510471,.; ():
    • Kholodenko B, Yaffe MB, Kolch W, Computational Approaches for Analyzing Information Flow in Biological Networks. Sci Signal. 2012;5(220):re1. doi: 10.1126/scisignal.200296122510471
    • (2012) Sci Signal , vol.5 , Issue.220 , pp. re1
    • Kholodenko, B.1    Yaffe, M.B.2    Kolch, W.3
  • 2
    • 84949522663 scopus 로고    scopus 로고
    • Modeling Signaling Networks to Advance New Cancer Therapies
    • 6274601
    • Saez-Rodriguez J, MacNamara A, Cook S, Modeling Signaling Networks to Advance New Cancer Therapies. Annu Rev Biomed Eng. 2015;17(1):143–163. doi: 10.1146/annurev-bioeng-071813-10492726274601
    • (2015) Annu Rev Biomed Eng , vol.17 , Issue.1 , pp. 143-163
    • Saez-Rodriguez, J.1    MacNamara, A.2    Cook, S.3
  • 3
    • 84891892050 scopus 로고    scopus 로고
    • Reverse engineering and identification in systems biology: strategies, perspectives and challenges
    • 4307566,.; ():
    • Villaverde AF, Banga JR, Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J R Soc Interface. 2014;11(91):20130505. doi: 10.1098/rsif.2013.050524307566
    • (2014) J R Soc Interface , vol.11 , Issue.91 , pp. 20130505
    • Villaverde, A.F.1    Banga, J.R.2
  • 4
  • 5
    • 77957110013 scopus 로고    scopus 로고
    • Advantages and limitations of current network inference methods
    • 0805835
    • De Smet R, Marchal K, Advantages and limitations of current network inference methods. Nature Rev Microbiol. 2010;8(10):717–729. doi: 10.1038/nrmicro241920805835
    • (2010) Nature Rev Microbiol , vol.8 , Issue.10 , pp. 717-729
    • De Smet, R.1    Marchal, K.2
  • 6
    • 84891892293 scopus 로고    scopus 로고
    • Reverse engineering cellular networks with information theoretic methods
    • 4709703
    • Villaverde AF, Ross J, Banga JR, Reverse engineering cellular networks with information theoretic methods. Cells. 2013;2(2):306–329. doi: 10.3390/cells202030624709703
    • (2013) Cells , vol.2 , Issue.2 , pp. 306-329
    • Villaverde, A.F.1    Ross, J.2    Banga, J.R.3
  • 7
    • 84928721957 scopus 로고    scopus 로고
    • Exact reconstruction of gene regulatory networks using compressive sensing
    • 5495633
    • Chang YH, Gray JW, Tomlin CJ, Exact reconstruction of gene regulatory networks using compressive sensing. BMC Bioinform. 2014;15(1):1–22. doi: 10.1186/s12859-014-0400-425495633
    • (2014) BMC Bioinform , vol.15 , Issue.1 , pp. 1-22
    • Chang, Y.H.1    Gray, J.W.2    Tomlin, C.J.3
  • 8
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • 6686963
    • Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, et al. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 2006;7(5):1–16. doi: 10.1186/gb-2006-7-5-r3616686963
    • (2006) Genome Biol , vol.7 , Issue.5 , pp. 1-16
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.S.6
  • 9
    • 71149116758 scopus 로고    scopus 로고
    • Systems analysis of cellular networks under uncertainty
    • 9879267
    • Kaltenbach HM, Dimopoulos S, Stelling J, Systems analysis of cellular networks under uncertainty. FEBS Lett. 2009;583(24):3923–3930. doi: 10.1016/j.febslet.2009.10.07419879267
    • (2009) FEBS Lett , vol.583 , Issue.24 , pp. 3923-3930
    • Kaltenbach, H.M.1    Dimopoulos, S.2    Stelling, J.3
  • 10
    • 58849118519 scopus 로고    scopus 로고
    • Nested uncertainties in biochemical models
    • 9154080
    • Schaber J, Liebermeister W, Klipp E, Nested uncertainties in biochemical models. IET Syst Biol. 2009;3(1):1–9. doi: 10.1049/iet-syb:2007004219154080
    • (2009) IET Syst Biol , vol.3 , Issue.1 , pp. 1-9
    • Schaber, J.1    Liebermeister, W.2    Klipp, E.3
  • 11
    • 78650218972 scopus 로고    scopus 로고
    • Modeling of uncertainties in biochemical reactions
    • 0830674
    • Mišković L, Hatzimanikatis V, Modeling of uncertainties in biochemical reactions. Biotechnol Bioeng. 2011;108(2):413–423. doi: 10.1002/bit.2293220830674
    • (2011) Biotechnol Bioeng , vol.108 , Issue.2 , pp. 413-423
    • Mišković, L.1    Hatzimanikatis, V.2
  • 14
    • 78951491903 scopus 로고    scopus 로고
    • A Review of Ensemble Methods in Bioinformatics
    • Yang P, Yang YH, Zhou BB, Zomaya AY, A Review of Ensemble Methods in Bioinformatics. Curr Bioinform. 2010;5(4):296–308. doi: 10.2174/157489310794072508
    • (2010) Curr Bioinform , vol.5 , Issue.4 , pp. 296-308
    • Yang, P.1    Yang, Y.H.2    Zhou, B.B.3    Zomaya, A.Y.4
  • 15
    • 4444311806 scopus 로고    scopus 로고
    • A proposal for using the ensemble approach to understand genetic regulatory networks
    • 5363677
    • Kauffman S, A proposal for using the ensemble approach to understand genetic regulatory networks. J Theor Biol. 2004;230(4):581–590. doi: 10.1016/j.jtbi.2003.12.01715363677
    • (2004) J Theor Biol , vol.230 , Issue.4 , pp. 581-590
    • Kauffman, S.1
  • 16
    • 84905640975 scopus 로고    scopus 로고
    • Ensemble Inference and Inferability of Gene Regulatory Networks
    • 5093509,.; ():
    • Ud-Dean SMM, Gunawan R, Ensemble Inference and Inferability of Gene Regulatory Networks. PLoS ONE. 2014;9(8):e103812. doi: 10.1371/journal.pone.010381225093509
    • (2014) PLoS ONE , vol.9 , Issue.8 , pp. e103812
    • Ud-Dean, S.M.M.1    Gunawan, R.2
  • 17
    • 84857702241 scopus 로고    scopus 로고
    • Metabolic ensemble modeling for strain engineers
    • 2021171
    • Tan Y, Liao JC, Metabolic ensemble modeling for strain engineers. Biotechnol J. 2012;7(3, SI):343–353. doi: 10.1002/biot.20110018622021171
    • (2012) Biotechnol J , vol.7 , Issue.3, SI , pp. 343-353
    • Tan, Y.1    Liao, J.C.2
  • 18
    • 84875090763 scopus 로고    scopus 로고
    • Ensemble kinetic modeling of metabolic networks from dynamic metabolic profiles
    • 4957767
    • Jia G, Stephanopoulos G, Gunawan R, Ensemble kinetic modeling of metabolic networks from dynamic metabolic profiles. Metabolites. 2012;2(4):891–912. doi: 10.3390/metabo204089124957767
    • (2012) Metabolites , vol.2 , Issue.4 , pp. 891-912
    • Jia, G.1    Stephanopoulos, G.2    Gunawan, R.3
  • 19
    • 34948840834 scopus 로고    scopus 로고
    • Ensemble modeling for analysis of cell signaling dynamics
    • 7846631
    • Kuepfer L, Peter M, Sauer U, Stelling J, Ensemble modeling for analysis of cell signaling dynamics. Nat Biotechnol. 2007;25(9):1001–1006. doi: 10.1038/nbt133017846631
    • (2007) Nat Biotechnol , vol.25 , Issue.9 , pp. 1001-1006
    • Kuepfer, L.1    Peter, M.2    Sauer, U.3    Stelling, J.4
  • 21
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L, Bagging predictors. Mach Learn. 1996;24(2):123–140. doi: 10.1007/BF00058655
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 22
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire R, Freund Y, Bartlett P, Lee W, Boosting the margin: A new explanation for the effectiveness of voting methods. Ann Stat. 1998;26(5):1651–1686. doi: 10.1214/aos/1024691352
    • (1998) Ann Stat , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Bartlett, P.3    Lee, W.4
  • 23
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L, Arcing classifiers. Ann Stat. 1998;26(3):801–824.
    • (1998) Ann Stat , vol.26 , Issue.3 , pp. 801-824
    • Breiman, L.1
  • 24
    • 77958570788 scopus 로고    scopus 로고
    • Inferring Regulatory Networks from Expression Data Using Tree-Based Methods
    • 0927193
    • Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P, Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE. 2010;5(9):1–10. doi: 10.1371/journal.pone.001277620927193
    • (2010) PLoS ONE , vol.5 , Issue.9 , pp. 1-10
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 25
    • 84929612020 scopus 로고    scopus 로고
    • Combining tree-based and dynamical systems for the inference of gene regulatory networks
    • 5573916
    • Huynh-Thu VA, Sanguinetti G, Combining tree-based and dynamical systems for the inference of gene regulatory networks. Bioinformatics. 2015;31(10):1614–1622. doi: 10.1093/bioinformatics/btu86325573916
    • (2015) Bioinformatics , vol.31 , Issue.10 , pp. 1614-1622
    • Huynh-Thu, V.A.1    Sanguinetti, G.2
  • 26
    • 79953670434 scopus 로고    scopus 로고
    • Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis
    • 1423713,..; ():
    • Xing H, McDonagh PD, Bienkowska J, Cashorali T, Runge K, Miller RE, et al. Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis. PLoS Comput Biol. 2011;7(3):e1001105. doi: 10.1371/journal.pcbi.100110521423713
    • (2011) PLoS Comput Biol , vol.7 , Issue.3 , pp. e1001105
    • Xing, H.1    McDonagh, P.D.2    Bienkowska, J.3    Cashorali, T.4    Runge, K.5    Miller, R.E.6
  • 27
    • 34547177691 scopus 로고    scopus 로고
    • The use of the multi-model ensemble in probabilistic climate projections
    • 7569654
    • Tebaldi C, Knutti R, The use of the multi-model ensemble in probabilistic climate projections. Phil Trans R Soc A. 2007;365(1857):2053–2075. doi: 10.1098/rsta.2007.207617569654
    • (2007) Phil Trans R Soc A , vol.365 , Issue.1857 , pp. 2053-2075
    • Tebaldi, C.1    Knutti, R.2
  • 28
    • 18544371178 scopus 로고    scopus 로고
    • The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept
    • Hagedorn R, Doblas-Reyes F, Palmer T, The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A. 2005;57(3):219–233.
    • (2005) Tellus A , vol.57 , Issue.3 , pp. 219-233
    • Hagedorn, R.1    Doblas-Reyes, F.2    Palmer, T.3
  • 29
    • 84904296838 scopus 로고    scopus 로고
    • Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways
    • 4972370,.;: –
    • Lee Y, Rivera JGL, Liao JC, Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways. Metab Eng. 2014;25:63–71. doi: 10.1016/j.ymben.2014.06.00624972370
    • (2014) Metab Eng , vol.25 , pp. 63-71
    • Lee, Y.1    Rivera, J.G.L.2    Liao, J.C.3
  • 30
    • 84883476230 scopus 로고    scopus 로고
    • Exhaustively characterizing feasible logic models of a signaling network using Answer Set Programming
    • 3853063
    • Guziolowski C, Videla S, Eduati F, Thiele S, Cokelaer T, Siegel A, et al. Exhaustively characterizing feasible logic models of a signaling network using Answer Set Programming. Bioinformatics. 2013;29(18):2320–2326. doi: 10.1093/bioinformatics/btt39323853063
    • (2013) Bioinformatics , vol.29 , Issue.18 , pp. 2320-2326
    • Guziolowski, C.1    Videla, S.2    Eduati, F.3    Thiele, S.4    Cokelaer, T.5    Siegel, A.6
  • 31
    • 84892376552 scopus 로고    scopus 로고
    • Supervised, semi-supervised and unsupervised inference of gene regulatory networks
    • 3698722,.;p
    • Maetschke SR, Madhamshettiwar PB, Davis MJ, Ragan MA, Supervised, semi-supervised and unsupervised inference of gene regulatory networks. Briefings in bioinformatics. 2013;p. bbt034. doi: 10.1093/bib/bbt03423698722
    • (2013) Briefings in bioinformatics , pp. bbt034
    • Maetschke, S.R.1    Madhamshettiwar, P.B.2    Davis, M.J.3    Ragan, M.A.4
  • 32
    • 85001129911 scopus 로고    scopus 로고
    • Computational inference of gene regulatory networks: Approaches, limitations and opportunities
    • 7641093,.;
    • Banf M, Rhee SY, Computational inference of gene regulatory networks: Approaches, limitations and opportunities. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2016;. doi: 10.1016/j.bbagrm.2016.09.00327641093
    • (2016) Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms
    • Banf, M.1    Rhee, S.Y.2
  • 33
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • 5845847
    • Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP, Causal protein-signaling networks derived from multiparameter single-cell data. Science. 2005;308(5721):523–529. doi: 10.1126/science.110580915845847
    • (2005) Science , vol.308 , Issue.5721 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe’er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 34
    • 84940644968 scopus 로고
    • A Mathematical Theory of Communication
    • Shannon CE, A Mathematical Theory of Communication. Bell Syst Tech J. 1948;27(3):379–423. doi: 10.1002/j.1538-7305.1948.tb00917.x
    • (1948) Bell Syst Tech J , vol.27 , Issue.3 , pp. 379-423
    • Shannon, C.E.1
  • 35
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • 1911796
    • De Jong H, Modeling and simulation of genetic regulatory systems: A literature review. J Comp Biol. 2002;9(1):67–103. doi: 10.1089/1066527025283320811911796
    • (2002) J Comp Biol , vol.9 , Issue.1 , pp. 67-103
    • De Jong, H.1
  • 36
    • 85047688512 scopus 로고    scopus 로고
    • Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models
    • 3422247
    • Faria JP, Overbeek R, Xia F, Rocha M, Rocha I, Henry CS, Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models. Brief Bioinform. 2014;15(4):592–611. doi: 10.1093/bib/bbs07123422247
    • (2014) Brief Bioinform , vol.15 , Issue.4 , pp. 592-611
    • Faria, J.P.1    Overbeek, R.2    Xia, F.3    Rocha, M.4    Rocha, I.5    Henry, C.S.6
  • 37
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks—a review
    • 7903286
    • Markowetz F, Spang R, Inferring cellular networks—a review. BMC Bioinform. 2007;8(6):1–17. doi: 10.1186/1471-2105-8-S6-S517903286
    • (2007) BMC Bioinform , vol.8 , Issue.6 , pp. 1-17
    • Markowetz, F.1    Spang, R.2
  • 38
    • 34547844096 scopus 로고    scopus 로고
    • Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: Synthetic versus real data
    • 7485431
    • Soranzo N, Bianconi G, Altafini C, Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: Synthetic versus real data. Bioinformatics. 2007;23(13):1640–1647. doi: 10.1093/bioinformatics/btm16317485431
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 1640-1647
    • Soranzo, N.1    Bianconi, G.2    Altafini, C.3
  • 39
    • 77954484005 scopus 로고    scopus 로고
    • Revealing differences in gene network inference algorithms on the network level by ensemble methods
    • 0501553
    • Altay G, Emmert-Streib F, Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics. 2010;26(14):1738–1744. doi: 10.1093/bioinformatics/btq25920501553
    • (2010) Bioinformatics , vol.26 , Issue.14 , pp. 1738-1744
    • Altay, G.1    Emmert-Streib, F.2
  • 40
    • 84859371992 scopus 로고    scopus 로고
    • Gene network inference and visualization tools for biologists: application to new human transcriptome datasets
    • 2121215
    • Hurley D, Araki H, Tamada Y, Dunmore B, Sanders D, Humphreys S, et al. Gene network inference and visualization tools for biologists: application to new human transcriptome datasets. Nucleic Acids Res. 2012;40(6):2377–2398. doi: 10.1093/nar/gkr90222121215
    • (2012) Nucleic Acids Res , vol.40 , Issue.6 , pp. 2377-2398
    • Hurley, D.1    Araki, H.2    Tamada, Y.3    Dunmore, B.4    Sanders, D.5    Humphreys, S.6
  • 41
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • 6723010
    • Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, et al. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2006;7(1):1–15. doi: 10.1186/1471-2105-7-S1-S716723010
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 1-15
    • Margolin, A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5    Dalla Favera, R.6
  • 42
    • 77952663448 scopus 로고    scopus 로고
    • TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
    • 0338053
    • Zoppoli P, Morganella S, Ceccarelli M, TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics. 2010;11(1):1–15. doi: 10.1186/1471-2105-11-15420338053
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 1-15
    • Zoppoli, P.1    Morganella, S.2    Ceccarelli, M.3
  • 43
    • 84879435511 scopus 로고    scopus 로고
    • hARACNe: improving the accuracy of regulatory model reverse engineering via higher-order data processing inequality tests
    • 4511376,.; ():
    • Jang IS, Margolin A, Califano A, hARACNe: improving the accuracy of regulatory model reverse engineering via higher-order data processing inequality tests. Interface Focus. 2013;3(4):20130011. doi: 10.1098/rsfs.2013.001124511376
    • (2013) Interface Focus , vol.3 , Issue.4 , pp. 20130011
    • Jang, I.S.1    Margolin, A.2    Califano, A.3
  • 44
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • 7214507
    • Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 2007;5(1):54–66. doi: 10.1371/journal.pbio.005000817214507
    • (2007) PLoS Biol , vol.5 , Issue.1 , pp. 54-66
    • Faith, J.J.1    Hayete, B.2    Thaden, J.T.3    Mogno, I.4    Wierzbowski, J.5    Cottarel, G.6
  • 45
    • 36248999573 scopus 로고    scopus 로고
    • Information-theoretic inference of large transcriptional regulatory networks
    • 8354736
    • Meyer PE, Kontos K, Lafitte F, Bontempi G, Information-theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinform Syst Biol. 2007;2007(1):1–9. doi: 10.1155/2007/7987918354736
    • (2007) EURASIP J Bioinform Syst Biol , vol.2007 , Issue.1 , pp. 1-9
    • Meyer, P.E.1    Kontos, K.2    Lafitte, F.3    Bontempi, G.4
  • 46
    • 58149349958 scopus 로고    scopus 로고
    • Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information
    • 8980677,.; ():
    • Luo W, Hankenson KD, Woolf PJ, Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information. BMC Bioinform. 2008;9(1):467. doi: 10.1186/1471-2105-9-46718980677
    • (2008) BMC Bioinform , vol.9 , Issue.1 , pp. 467
    • Luo, W.1    Hankenson, K.D.2    Woolf, P.J.3
  • 47
    • 84900566215 scopus 로고    scopus 로고
    • MIDER: Network Inference with Mutual Information Distance and Entropy Reduction
    • 4806471,.; ():
    • Villaverde AF, Ross J, Moran F, Banga JR, MIDER: Network Inference with Mutual Information Distance and Entropy Reduction. PLoS ONE. 2014;9(5):e96732. doi: 10.1371/journal.pone.009673224806471
    • (2014) PLoS ONE , vol.9 , Issue.5 , pp. e96732
    • Villaverde, A.F.1    Ross, J.2    Moran, F.3    Banga, J.R.4
  • 48
    • 80052592949 scopus 로고    scopus 로고
    • Crowdsourcing Network Inference: The DREAM Predictive Signaling Network Challenge
    • 1900204,.; ():
    • Prill RJ, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, Stolovitzky G, Crowdsourcing Network Inference: The DREAM Predictive Signaling Network Challenge. Sci Signal. 2011;4(189):mr7. doi: 10.1126/scisignal.200221221900204
    • (2011) Sci Signal , vol.4 , Issue.189 , pp. mr7
    • Prill, R.J.1    Saez-Rodriguez, J.2    Alexopoulos, L.G.3    Sorger, P.K.4    Stolovitzky, G.5
  • 50
    • 84923647642 scopus 로고    scopus 로고
    • NAIL, a software toolset for inferring, analyzing and visualizing regulatory networks
    • 5246431
    • Hurley DG, Cursons J, Wang YK, Budden DM, Print CG, Crampin EJ, NAIL, a software toolset for inferring, analyzing and visualizing regulatory networks. Bioinformatics. 2015;31(2):277–278. doi: 10.1093/bioinformatics/btu61225246431
    • (2015) Bioinformatics , vol.31 , Issue.2 , pp. 277-278
    • Hurley, D.G.1    Cursons, J.2    Wang, Y.K.3    Budden, D.M.4    Print, C.G.5    Crampin, E.J.6
  • 51
    • 40749128970 scopus 로고    scopus 로고
    • Flexible informatics for linking experimental data to mathematical models via DataRail
    • 8218655
    • Saez-Rodriguez J, Goldsipe A, Muhlich J, Alexopoulos LG, Millard B, Lauffenburger DA, et al. Flexible informatics for linking experimental data to mathematical models via DataRail. Bioinformatics. 2008;24(6):840–847. doi: 10.1093/bioinformatics/btn01818218655
    • (2008) Bioinformatics , vol.24 , Issue.6 , pp. 840-847
    • Saez-Rodriguez, J.1    Goldsipe, A.2    Muhlich, J.3    Alexopoulos, L.G.4    Millard, B.5    Lauffenburger, D.A.6
  • 52
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: Detecting and evaluating dependencies between variables
    • 2386007
    • Steuer R, Kurths J, Daub C, Weise J, Selbig J, The mutual information: Detecting and evaluating dependencies between variables. Bioinformatics. 2002;18(suppl 2):S231–S240. 12386007
    • (2002) Bioinformatics , vol.18 , pp. S231-S240
    • Steuer, R.1    Kurths, J.2    Daub, C.3    Weise, J.4    Selbig, J.5
  • 53
    • 59949086432 scopus 로고    scopus 로고
    • minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information
    • 8959772,.; ():
    • Meyer PE, Lafitte F, Bontempi G, minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information. BMC Bioinform. 2008;9(1):461. doi: 10.1186/1471-2105-9-46118959772
    • (2008) BMC Bioinform , vol.9 , Issue.1 , pp. 461
    • Meyer, P.E.1    Lafitte, F.2    Bontempi, G.3
  • 54
    • 70449481350 scopus 로고    scopus 로고
    • Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling
    • 9785753,.;
    • Wittmann DM, Krumsiek J, Saez-Rodriguez J, Lauffenburger DA, Klamt S, Theis FJ, Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol. 2009;3. doi: 10.1186/1752-0509-3-9819785753
    • (2009) BMC Syst Biol , vol.3
    • Wittmann, D.M.1    Krumsiek, J.2    Saez-Rodriguez, J.3    Lauffenburger, D.A.4    Klamt, S.5    Theis, F.J.6
  • 56
    • 84941769665 scopus 로고    scopus 로고
    • Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach
    • 6002881
    • Henriques D, Rocha M, Saez-Rodriguez J, Banga JR, Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach. Bioinformatics. 2015;31(18):2999–3007. doi: 10.1093/bioinformatics/btv31426002881
    • (2015) Bioinformatics , vol.31 , Issue.18 , pp. 2999-3007
    • Henriques, D.1    Rocha, M.2    Saez-Rodriguez, J.3    Banga, J.R.4
  • 57
    • 69549124230 scopus 로고    scopus 로고
    • An evolutionary method for complex-process optimization
    • Egea JA, Marti R, Banga JR, An evolutionary method for complex-process optimization. Computers & Operations Research. 2010;37(2):315–324.
    • (2010) Computers & Operations Research , vol.37 , Issue.2 , pp. 315-324
    • Egea, J.A.1    Marti, R.2    Banga, J.R.3
  • 58
    • 84900846604 scopus 로고    scopus 로고
    • MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics
    • 4885957
    • Egea JA, Henriques D, Cokelaer T, Villaverde AF, MacNamara A, Danciu DP, et al. MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics. BMC Bioinform. 2014;15(1):1–9. doi: 10.1186/1471-2105-15-13624885957
    • (2014) BMC Bioinform , vol.15 , Issue.1 , pp. 1-9
    • Egea, J.A.1    Henriques, D.2    Cokelaer, T.3    Villaverde, A.F.4    MacNamara, A.5    Danciu, D.P.6
  • 59
    • 33745217791 scopus 로고    scopus 로고
    • SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers
    • Hindmarsh A, Brown P, Grant K, Lee S, Serban R, Shumaker D, et al. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Software. 2005;31(3):363–396. doi: 10.1145/1089014.1089020
    • (2005) ACM Trans Math Software , vol.31 , Issue.3 , pp. 363-396
    • Hindmarsh, A.1    Brown, P.2    Grant, K.3    Lee, S.4    Serban, R.5    Shumaker, D.6
  • 60
    • 22844456607 scopus 로고    scopus 로고
    • The role of occam’s razor in knowledge discovery
    • Domingos P, The role of occam’s razor in knowledge discovery. Data Min Knowl Discov. 1999;3(4):409–425.
    • (1999) Data Min Knowl Discov , vol.3 , Issue.4 , pp. 409-425
    • Domingos, P.1
  • 61
    • 84878742739 scopus 로고    scopus 로고
    • Automatic Generation of Predictive Dynamic Models Reveals Nuclear Phosphorylation as the Key Msn2 Control Mechanism
    • 3716718,..; ():
    • Sunnaker M, Zamora-Sillero E, Dechant R, Ludwig C, Busetto AG, Wagner A, et al. Automatic Generation of Predictive Dynamic Models Reveals Nuclear Phosphorylation as the Key Msn2 Control Mechanism. Sci Signal. 2013;6(277):ra41. doi: 10.1126/scisignal.200362123716718
    • (2013) Sci Signal , vol.6 , Issue.277 , pp. ra41
    • Sunnaker, M.1    Zamora-Sillero, E.2    Dechant, R.3    Ludwig, C.4    Busetto, A.G.5    Wagner, A.6
  • 62
  • 64
    • 26844438590 scopus 로고    scopus 로고
    • Weather forecasting with ensemble methods
    • 6224011
    • Gneiting T, Raftery AE, Weather forecasting with ensemble methods. Science. 2005;310(5746):248–249. doi: 10.1126/science.111525516224011
    • (2005) Science , vol.310 , Issue.5746 , pp. 248-249
    • Gneiting, T.1    Raftery, A.E.2
  • 65
    • 0002806690 scopus 로고    scopus 로고
    • OpenMP: An industry standard API for shared-memory programming
    • Dagum L, Menon R, OpenMP: An industry standard API for shared-memory programming. IEEE Comput Sci Eng. 1998;5(1):46–55. doi: 10.1109/99.660313
    • (1998) IEEE Comput Sci Eng , vol.5 , Issue.1 , pp. 46-55
    • Dagum, L.1    Menon, R.2
  • 66
    • 84867537553 scopus 로고    scopus 로고
    • CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms
    • 3079107
    • Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris MK, et al. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst Biol. 2012;6(1):1–14. doi: 10.1186/1752-0509-6-13323079107
    • (2012) BMC Syst Biol , vol.6 , Issue.1 , pp. 1-14
    • Terfve, C.1    Cokelaer, T.2    Henriques, D.3    MacNamara, A.4    Goncalves, E.5    Morris, M.K.6
  • 67
    • 0029790351 scopus 로고    scopus 로고
    • Ultrasensitivity in the mitogen-activated protein kinase cascade
    • 816754
    • Huang C, Ferrell J, Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA. 1996;93(19):10078–10083. doi: 10.1073/pnas.93.19.100788816754
    • (1996) Proc Natl Acad Sci USA , vol.93 , Issue.19 , pp. 10078-10083
    • Huang, C.1    Ferrell, J.2
  • 68
    • 84883260760 scopus 로고    scopus 로고
    • Modeling signaling networks with different formalisms: A preview
    • 3715981,.;: –
    • MacNamara A, Henriques D, Saez-Rodriguez J, Modeling signaling networks with different formalisms: A preview. Methods Mol Biol. 2013;1021:89–105. doi: 10.1007/978-1-62703-450-0_523715981
    • (2013) Methods Mol Biol , vol.1021 , pp. 89-105
    • MacNamara, A.1    Henriques, D.2    Saez-Rodriguez, J.3
  • 69
    • 58549083142 scopus 로고    scopus 로고
    • Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data
    • 9156131,..; ():
    • Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, et al. Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol. 2009;5(1):239. doi: 10.1038/msb.2008.7419156131
    • (2009) Mol Syst Biol , vol.5 , Issue.1 , pp. 239
    • Chen, W.W.1    Schoeberl, B.2    Jasper, P.J.3    Niepel, M.4    Nielsen, U.B.5    Lauffenburger, D.A.6
  • 70
    • 84978621488 scopus 로고    scopus 로고
    • Inferring causal molecular networks: empirical assessment through a community-based effort
    • 6901648,..;
    • Hill SM, Heiser LM, Cokelaer T, Unger M, Nesser NK, Carlin DE, et al. Inferring causal molecular networks: empirical assessment through a community-based effort. Nat Methods. 2016;. doi: 10.1038/nmeth.377326901648
    • (2016) Nat Methods
    • Hill, S.M.1    Heiser, L.M.2    Cokelaer, T.3    Unger, M.4    Nesser, N.K.5    Carlin, D.E.6
  • 71
    • 0037032817 scopus 로고    scopus 로고
    • Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases
    • 2471242
    • Johnson G, Lapadat R, Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911–1912. doi: 10.1126/science.107268212471242
    • (2002) Science , vol.298 , Issue.5600 , pp. 1911-1912
    • Johnson, G.1    Lapadat, R.2
  • 75
    • 84999106855 scopus 로고    scopus 로고
    • OmniPath: guidelines and gateway for literature-curated signaling pathway resources
    • 7898060
    • Türei D, Korcsmáros T, Saez-Rodriguez J, OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nature methods. 2016;13(12):966–967. doi: 10.1038/nmeth.407727898060
    • (2016) Nature methods , vol.13 , Issue.12 , pp. 966-967
    • Türei, D.1    Korcsmáros, T.2    Saez-Rodriguez, J.3
  • 76
    • 73449142148 scopus 로고    scopus 로고
    • Optimal experimental design for parameter estimation of a cell signaling model
    • 9911077,.; ():
    • Bandara S, Schlöder JP, Eils R, Bock HG, Meyer T, Optimal experimental design for parameter estimation of a cell signaling model. PLoS Comput Biol. 2009;5(11):e1000558. doi: 10.1371/journal.pcbi.100055819911077
    • (2009) PLoS Comput Biol , vol.5 , Issue.11 , pp. e1000558
    • Bandara, S.1    Schlöder, J.P.2    Eils, R.3    Bock, H.G.4    Meyer, T.5
  • 77
    • 58149232578 scopus 로고    scopus 로고
    • Parameter estimation and optimal experimental design
    • 8793133,.;: –
    • Banga JR, Balsa-Canto E, Parameter estimation and optimal experimental design. Essays in biochemistry. 2008;45:195–210. doi: 10.1042/BSE045019518793133
    • (2008) Essays in biochemistry , vol.45 , pp. 195-210
    • Banga, J.R.1    Balsa-Canto, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.