메뉴 건너뛰기




Volumn 15, Issue 2, 2014, Pages 195-211

Supervised, semi-supervised and unsupervised inference of gene regulatory networks

Author keywords

Gene expression data; Gene regulatory networks; Machine learning; Simulation

Indexed keywords

ALGORITHM; ARTIFICIAL INTELLIGENCE; BACTERIAL GENE; BIOLOGY; COMPUTER PROGRAM; COMPUTER SIMULATION; ESCHERICHIA COLI; EVALUATION STUDY; FUNGAL GENE; GENE EXPRESSION PROFILING; GENE REGULATORY NETWORK; GENETIC DATABASE; GENETICS; PROCEDURES; SACCHAROMYCES CEREVISIAE; STATISTICS AND NUMERICAL DATA; SUPPORT VECTOR MACHINE; SYSTEMS BIOLOGY;

EID: 84892376552     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbt034     Document Type: Article
Times cited : (133)

References (41)
  • 1
    • 79952635505 scopus 로고    scopus 로고
    • Principles and strategies for developing network models in cancer
    • Pe'er D, Hacohen N. Principles and strategies for developing network models in cancer. Cell 2011;144: 864-73.
    • (2011) Cell , vol.144 , pp. 864-873
    • Pe'er, D.1    Hacohen, N.2
  • 2
    • 33845341455 scopus 로고    scopus 로고
    • Locating mammalian transcription factor binding sites: a survey of computational and experimental techniques
    • Elnitski L, Jin V, Farnham P, et al. Locating mammalian transcription factor binding sites: a survey of computational and experimental techniques. Genome Res 2006;16(12): 1455-64.
    • (2006) Genome Res , vol.16 , Issue.12 , pp. 1455-1464
    • Elnitski, L.1    Jin, V.2    Farnham, P.3
  • 3
    • 84860280305 scopus 로고    scopus 로고
    • Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets
    • Madhamshettiwar P, Maetschke S, Davis M, et al. Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. GenomeMed 2012;4(5):41.
    • (2012) GenomeMed , vol.4 , Issue.5 , pp. 41
    • Madhamshettiwar, P.1    Maetschke, S.2    Davis, M.3
  • 4
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference
    • Stolovitzky G, Monroe D, Califano A. Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann N YAcad Sci 2007;1115:1-22.
    • (2007) Ann N YAcad Sci , vol.1115 , pp. 1-22
    • Stolovitzky, G.1    Monroe, D.2    Califano, A.3
  • 6
    • 77950910419 scopus 로고    scopus 로고
    • Revealing strengths and weaknesses of methods for gene network inference
    • Marbach D, Prill R, Schaffter T, et al. Revealing strengths and weaknesses of methods for gene network inference. ProcNatl Acad SciUSA 2010;107(14):6286-91.
    • (2010) ProcNatl Acad SciUSA , vol.107 , Issue.14 , pp. 6286-6291
    • Marbach, D.1    Prill, R.2    Schaffter, T.3
  • 7
    • 77949644952 scopus 로고    scopus 로고
    • Towards a rigorous assessment of systems biology models: The DREAM3 challenges
    • Prill RJ, Marbach D, Saez-Rodriguez J, et al. Towards a rigorous assessment of systems biology models: The DREAM3 challenges. PLoS One 2010;5(2):e9202.
    • (2010) PLoS One , vol.5 , Issue.2
    • Prill, R.J.1    Marbach, D.2    Saez-Rodriguez, J.3
  • 8
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • Marbach D, Costello J, Ku«ffner R, et al. Wisdom of crowds for robust gene network inference. NatMethods 2012;9(8): 796-804.
    • (2012) NatMethods , vol.9 , Issue.8 , pp. 796-804
    • Marbach, D.1    Costello, J.2    Kuffner, R.3
  • 9
    • 49549104230 scopus 로고    scopus 로고
    • SIRENE: supervised inference of regulatory networks
    • Mordelet F, Vert JP. SIRENE: supervised inference of regulatory networks. Bioinformatics 2008;24:i76-82.
    • (2008) Bioinformatics , vol.24
    • Mordelet, F.1    Vert, J.P.2
  • 10
    • 77951774810 scopus 로고    scopus 로고
    • Learning gene regulatory networks from only positive and unlabeled data
    • Cerulo L, Elkan C, Ceccarelli M. Learning gene regulatory networks from only positive and unlabeled data. BMC Bioinformatics 2010;11:228.
    • (2010) BMC Bioinformatics , vol.11 , pp. 228
    • Cerulo, L.1    Elkan, C.2    Ceccarelli, M.3
  • 11
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles
    • Faith JJ, Hayete B, Thaden JT, et al. Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 2007;5(1):e8.
    • (2007) PLoS Biol , vol.5 , Issue.1
    • Faith, J.J.1    Hayete, B.2    Thaden, J.T.3
  • 12
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods
    • Schaffter T, Marbach D, Floreano D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 2011;27(16): 2263-70.
    • (2011) Bioinformatics , vol.27 , Issue.16 , pp. 2263-2270
    • Schaffter, T.1    Marbach, D.2    Floreano, D.3
  • 13
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin A, Nemenman I, Basso K, et al. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006;7(Suppl 1):S7.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 1
    • Margolin, A.1    Nemenman, I.2    Basso, K.3
  • 15
    • 77954484005 scopus 로고    scopus 로고
    • Revealing differences in gene network inference algorithms on the network level by ensemble methods
    • Altay G, Emmert-Streib F. Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics 2010;26(14):1738-44.
    • (2010) Bioinformatics , vol.26 , Issue.14 , pp. 1738-1744
    • Altay, G.1    Emmert-Streib, F.2
  • 17
    • 62549091023 scopus 로고    scopus 로고
    • Benchmarking regulatory network reconstruction with GRENDEL
    • Haynes B, Brent M. Benchmarking regulatory network reconstruction with GRENDEL. Bioinformatics 2009;25(6): 801-7.
    • (2009) Bioinformatics , vol.25 , Issue.6 , pp. 801-807
    • Haynes, B.1    Brent, M.2
  • 18
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and Bayesian networks
    • Werhli A, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and Bayesian networks. Bioinformatics 2006;22(20): 2523-31.
    • (2006) Bioinformatics , vol.22 , Issue.20 , pp. 2523-2531
    • Werhli, A.1    Grzegorczyk, M.2    Husmeier, D.3
  • 19
    • 36248953897 scopus 로고    scopus 로고
    • Comparison of reverse-engineering methods using an in silico network
    • Camacho D, Vera Licona P, Mendes P, Laubenbacher R. Comparison of reverse-engineering methods using an in silico network. AnnNYAcad Sci 2007;1115:73-89.
    • (2007) AnnNYAcad Sci , vol.1115 , pp. 73-89
    • Camacho, D.1    Vera Licona, P.2    Mendes, P.3    Laubenbacher, R.4
  • 20
    • 63049128934 scopus 로고    scopus 로고
    • A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
    • Cantone I, Marucci L, Iorio F, et al. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 2009;137:172-81.
    • (2009) Cell , vol.137 , pp. 172-181
    • Cantone, I.1    Marucci, L.2    Iorio, F.3
  • 22
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003;19(17): 2271-82.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 23
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: an overview
    • Baldi P, Brunak S, Chauvin Y, et al. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 2000;16(5):412-24.
    • (2000) Bioinformatics , vol.16 , Issue.5 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3
  • 24
    • 59649110273 scopus 로고    scopus 로고
    • Generating realistic in silico gene networks for performance assessment of reverse engineering methods
    • Marbach D, Schaffter T, Mattiussi C, et al. Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J Comput Biol 2009;16(2): 229-39.
    • (2009) J Comput Biol , vol.16 , Issue.2 , pp. 229-239
    • Marbach, D.1    Schaffter, T.2    Mattiussi, C.3
  • 25
    • 33144486498 scopus 로고    scopus 로고
    • SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
    • Van den Bulcke T, Van Leemput K, Naudts B, et al. SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics 2006;7:43.
    • (2006) BMC Bioinformatics , vol.7 , pp. 43
    • Van den Bulcke, T.1    Van Leemput, K.2    Naudts, B.3
  • 26
    • 59949086432 scopus 로고    scopus 로고
    • Bontempi G. minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information
    • Meyer P, Lafitte F, Bontempi G. minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 2008;9:461.
    • (2008) BMC Bioinformatics , vol.9 , pp. 461
    • Meyer, P.1    Lafitte, F.2
  • 27
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • Huynh-Thu V, Irrthum A, Wehenkel L, et al. Inferring regulatory networks from expression data using tree-based methods. PLoS One 2010;5(9):e12776.
    • (2010) PLoS One , vol.5 , Issue.9
    • Huynh-Thu, V.1    Irrthum, A.2    Wehenkel, L.3
  • 28
    • 83755163018 scopus 로고    scopus 로고
    • Detecting novel associations in large data sets
    • Reshef DN. Detecting novel associations in large data sets. Science 2011;334:1518-24.
    • (2011) Science , vol.334 , pp. 1518-1524
    • Reshef, D.N.1
  • 29
    • 54949156075 scopus 로고    scopus 로고
    • Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks
    • Reverter A, Chan EK. Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 2008;24:2491-7.
    • (2008) Bioinformatics , vol.24 , pp. 2491-2497
    • Reverter, A.1    Chan, E.K.2
  • 30
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: an R package for weighted correlation network analysis
    • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008;9:559.
    • (2008) BMC Bioinformatics , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2
  • 31
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements
    • Butte AJ, Kohane IS. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 2000;1:418-29.
    • (2000) Pac Symp Biocomput , vol.1 , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 32
    • 84896471666 scopus 로고    scopus 로고
    • Informationtheoretic inference of gene networks using backward elimination
    • The 2010 International Conference on Bioinformatics and Computational Biology
    • Patrick M, Daniel M, Sushmita R, et al. Informationtheoretic inference of gene networks using backward elimination. In: The 2010 International Conference on Bioinformatics and Computational Biology 2010.
    • (2010)
    • Patrick, M.1    Daniel, M.2    Sushmita, R.3
  • 33
    • 33745601692 scopus 로고    scopus 로고
    • Effective similarity measures for expression profiles
    • Yona G, Dirks W, Rahman S, Lin DM. Effective similarity measures for expression profiles. Bioinformatics 2006;22(13): 1616-22.
    • (2006) Bioinformatics , vol.22 , Issue.13 , pp. 1616-1622
    • Yona, G.1    Dirks, W.2    Rahman, S.3    Lin, D.M.4
  • 34
    • 73249114746 scopus 로고    scopus 로고
    • Rank of correlation coefficient as a comparable measure for biological significance of gene expression
    • Obayashi T, Kinoshita K. Rank of correlation coefficient as a comparable measure for biological significance of gene expression. DNA Res 2009;16:249-60.
    • (2009) DNA Res , vol.16 , pp. 249-260
    • Obayashi, T.1    Kinoshita, K.2
  • 35
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Schölkopf B, Burges C, Smola A (eds). Cambridge, MA: MIT Press
    • Joachims T. Making large-scale SVM learning practical. In: Schölkopf B, Burges C, Smola A (eds). Advances in Kernel Methods - Support Vector Learning. Cambridge, MA: MIT Press, 1999;169-84.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 36
    • 33645784574 scopus 로고    scopus 로고
    • In search of functional association from time-series microarray data based on the change trend and level of gene expression
    • He F, Zeng AP. In search of functional association from time-series microarray data based on the change trend and level of gene expression. BMC Bioinformatics 2006;7:69.
    • (2006) BMC Bioinformatics , vol.7 , pp. 69
    • He, F.1    Zeng, A.P.2
  • 37
    • 84896441893 scopus 로고    scopus 로고
    • Retrospective on transductive inference for text classification using support vector machines
    • Montreal, Quebec
    • Joachims T. Retrospective on transductive inference for text classification using support vector machines. In: Proceedings of the International Conference on Machine Learning (ICML). Montreal, Quebec, 2009.
    • (2009) Proceedings of the International Conference on Machine Learning (ICML)
    • Joachims, T.1
  • 38
    • 38349055557 scopus 로고    scopus 로고
    • Indeterminacy of reverse engineering of gene regulatory networks: the curse of gene elasticity
    • Krishnan A, Giuliani A, Tomita M. Indeterminacy of reverse engineering of gene regulatory networks: the curse of gene elasticity. PloS One 2007;2(6):e562.
    • (2007) PloS One , vol.2 , Issue.6
    • Krishnan, A.1    Giuliani, A.2    Tomita, M.3
  • 39
    • 84870790944 scopus 로고    scopus 로고
    • PLAU inferred from a correlation network is critical for suppressor function of regulatory T cells
    • He F, Chen H, Probst-Kepper M, et al. PLAU inferred from a correlation network is critical for suppressor function of regulatory T cells. Mol Syst Biol 2012;8:624.
    • (2012) Mol Syst Biol , vol.8 , pp. 624
    • He, F.1    Chen, H.2    Probst-Kepper, M.3
  • 40
    • 0035861975 scopus 로고    scopus 로고
    • Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions
    • Qian J, Dolled-Filhart M, Lin J, et al. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. JMol Biol 2001;314(5):1053-66.
    • (2001) JMol Biol , vol.314 , Issue.5 , pp. 1053-1066
    • Qian, J.1    Dolled-Filhart, M.2    Lin, J.3
  • 41
    • 84862776920 scopus 로고    scopus 로고
    • Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL
    • Della Gatta G, Palomero T, Perez-Garcia A, et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. NatMed 2012;18(3):436-40.
    • (2012) NatMed , vol.18 , Issue.3 , pp. 436-440
    • Della Gatta, G.1    Palomero, T.2    Perez-Garcia, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.