메뉴 건너뛰기




Volumn 281, Issue 5, 2017, Pages 422-432

Role of autophagy in HIV infection and pathogenesis

Author keywords

autophagy; cell death; HIV; inflammation

Indexed keywords

BECLIN 1; MAMMALIAN TARGET OF RAPAMYCIN; NEF PROTEIN; TRANSACTIVATOR PROTEIN; VIRUS ENVELOPE PROTEIN; AUTOPHAGY RELATED PROTEIN;

EID: 85013335412     PISSN: 09546820     EISSN: 13652796     Source Type: Journal    
DOI: 10.1111/joim.12596     Document Type: Conference Paper
Times cited : (56)

References (93)
  • 1
    • 84866244791 scopus 로고    scopus 로고
    • Autophagy in protein and organelle turnover
    • Mizushima N. Autophagy in protein and organelle turnover. Cold Spring Harb Symp Quant Biol 2011; 76: 397–402.
    • (2011) Cold Spring Harb Symp Quant Biol , vol.76 , pp. 397-402
    • Mizushima, N.1
  • 2
    • 84873660610 scopus 로고    scopus 로고
    • Autophagy in human health and disease
    • Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med 2013; 368: 651–62.
    • (2013) N Engl J Med , vol.368 , pp. 651-662
    • Choi, A.M.1    Ryter, S.W.2    Levine, B.3
  • 3
    • 78651423598 scopus 로고    scopus 로고
    • Microautophagy of cytosolic proteins by late endosomes
    • Sahu R, Kaushik S, Clement CC et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell 2011; 20: 131–9.
    • (2011) Dev Cell , vol.20 , pp. 131-139
    • Sahu, R.1    Kaushik, S.2    Clement, C.C.3
  • 4
    • 84891741302 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy: roles in disease and aging
    • Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res 2014; 24: 92–104.
    • (2014) Cell Res , vol.24 , pp. 92-104
    • Cuervo, A.M.1    Wong, E.2
  • 7
    • 84886797274 scopus 로고    scopus 로고
    • Autophagy in infection, inflammation and immunity
    • Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol 2013; 13: 722–37.
    • (2013) Nat Rev Immunol , vol.13 , pp. 722-737
    • Deretic, V.1    Saitoh, T.2    Akira, S.3
  • 8
    • 84866767594 scopus 로고    scopus 로고
    • Autophagy in the regulation of pathogen replication and adaptive immunity
    • Randow F, Munz C. Autophagy in the regulation of pathogen replication and adaptive immunity. Trends Immunol 2012; 33: 475–87.
    • (2012) Trends Immunol , vol.33 , pp. 475-487
    • Randow, F.1    Munz, C.2
  • 9
    • 33947134377 scopus 로고    scopus 로고
    • Autophagy-dependent viral recognition by plasmacytoid dendritic cells
    • Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 2007; 315: 1398–401.
    • (2007) Science , vol.315 , pp. 1398-1401
    • Lee, H.K.1    Lund, J.M.2    Ramanathan, B.3    Mizushima, N.4    Iwasaki, A.5
  • 11
    • 84997830946 scopus 로고    scopus 로고
    • TRIM11 suppresses AIM2 inflammasome by degrading AIM2 via p62-dependent selective autophagy
    • Liu T, Tang Q, Liu K et al. TRIM11 suppresses AIM2 inflammasome by degrading AIM2 via p62-dependent selective autophagy. Cell Rep 2016; 16: 1988–2002.
    • (2016) Cell Rep , vol.16 , pp. 1988-2002
    • Liu, T.1    Tang, Q.2    Liu, K.3
  • 12
    • 84960432718 scopus 로고    scopus 로고
    • TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity
    • Kimura T, Jain A, Choi SW et al. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J Cell Biol 2015; 210: 973–89.
    • (2015) J Cell Biol , vol.210 , pp. 973-989
    • Kimura, T.1    Jain, A.2    Choi, S.W.3
  • 13
    • 84893912159 scopus 로고    scopus 로고
    • Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses
    • Liang Q, Seo GJ, Choi YJ et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 2014; 15: 228–38.
    • (2014) Cell Host Microbe , vol.15 , pp. 228-238
    • Liang, Q.1    Seo, G.J.2    Choi, Y.J.3
  • 14
    • 84886789626 scopus 로고    scopus 로고
    • Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling
    • Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 2013; 155: 688–98.
    • (2013) Cell , vol.155 , pp. 688-698
    • Konno, H.1    Konno, K.2    Barber, G.N.3
  • 15
    • 33846627302 scopus 로고    scopus 로고
    • A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1
    • Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007; 39: 207–11.
    • (2007) Nat Genet , vol.39 , pp. 207-211
    • Hampe, J.1    Franke, A.2    Rosenstiel, P.3
  • 16
    • 34247554965 scopus 로고    scopus 로고
    • Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis
    • Rioux JD, Xavier RJ, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007; 39: 596–604.
    • (2007) Nat Genet , vol.39 , pp. 596-604
    • Rioux, J.D.1    Xavier, R.J.2    Taylor, K.D.3
  • 17
    • 77953543312 scopus 로고    scopus 로고
    • T cell intrinsic roles of autophagy in promoting adaptive immunity
    • Walsh CM, Bell BD. T cell intrinsic roles of autophagy in promoting adaptive immunity. Curr Opin Immunol 2010; 22: 321–5.
    • (2010) Curr Opin Immunol , vol.22 , pp. 321-325
    • Walsh, C.M.1    Bell, B.D.2
  • 18
    • 84992740234 scopus 로고    scopus 로고
    • Autophagy beyond intracellular MHC class II antigen presentation
    • Munz C. Autophagy beyond intracellular MHC class II antigen presentation. Trends Immunol 2016; 37: 755–63.
    • (2016) Trends Immunol , vol.37 , pp. 755-763
    • Munz, C.1
  • 19
    • 84877610008 scopus 로고    scopus 로고
    • Bacterial subversion of host innate immune pathways
    • Baxt LA, Garza-Mayers AC, Goldberg MB. Bacterial subversion of host innate immune pathways. Science 2013; 340: 697–701.
    • (2013) Science , vol.340 , pp. 697-701
    • Baxt, L.A.1    Garza-Mayers, A.C.2    Goldberg, M.B.3
  • 20
    • 75649122282 scopus 로고    scopus 로고
    • Subversion of the cellular autophagy pathway by viruses
    • Kirkegaard K. Subversion of the cellular autophagy pathway by viruses. Curr Top Microbiol Immunol 2009; 335: 323–33.
    • (2009) Curr Top Microbiol Immunol , vol.335 , pp. 323-333
    • Kirkegaard, K.1
  • 21
    • 84961944001 scopus 로고    scopus 로고
    • Digesting the expanding mechanisms of autophagy
    • Ktistakis NT, Tooze SA. Digesting the expanding mechanisms of autophagy. Trends Cell Biol 2016; 26: 624–35.
    • (2016) Trends Cell Biol , vol.26 , pp. 624-635
    • Ktistakis, N.T.1    Tooze, S.A.2
  • 22
    • 84940467196 scopus 로고    scopus 로고
    • Beclin orthologs: integrative hubs of cell signaling, membrane trafficking, and physiology
    • Levine B, Liu R, Dong X, Zhong Q. Beclin orthologs: integrative hubs of cell signaling, membrane trafficking, and physiology. Trends Cell Biol 2015; 25: 533–44.
    • (2015) Trends Cell Biol , vol.25 , pp. 533-544
    • Levine, B.1    Liu, R.2    Dong, X.3    Zhong, Q.4
  • 23
    • 84957440559 scopus 로고    scopus 로고
    • TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic
    • Lamb CA, Nuhlen S, Judith D et al. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic. EMBO J 2016; 35: 281–301.
    • (2016) EMBO J , vol.35 , pp. 281-301
    • Lamb, C.A.1    Nuhlen, S.2    Judith, D.3
  • 24
    • 48249092267 scopus 로고    scopus 로고
    • Bcl-2 family members: dual regulators of apoptosis and autophagy
    • Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 2008; 4: 600–6.
    • (2008) Autophagy , vol.4 , pp. 600-606
    • Levine, B.1    Sinha, S.2    Kroemer, G.3
  • 25
    • 34447099450 scopus 로고    scopus 로고
    • Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
    • Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 2007; 130: 165–78.
    • (2007) Cell , vol.130 , pp. 165-178
    • Nakatogawa, H.1    Ichimura, Y.2    Ohsumi, Y.3
  • 26
    • 84888380983 scopus 로고    scopus 로고
    • The autophagosome: origins unknown, biogenesis complex
    • Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 2013; 14: 759–74.
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 759-774
    • Lamb, C.A.1    Yoshimori, T.2    Tooze, S.A.3
  • 28
    • 84955242756 scopus 로고    scopus 로고
    • Ubiquitin-dependent and independent signals in selective autophagy
    • Khaminets A, Behl C, Dikic I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol 2016; 26: 6–16.
    • (2016) Trends Cell Biol , vol.26 , pp. 6-16
    • Khaminets, A.1    Behl, C.2    Dikic, I.3
  • 29
    • 84892875805 scopus 로고    scopus 로고
    • At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy
    • Shen HM, Mizushima N. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci 2014; 39: 61–71.
    • (2014) Trends Biochem Sci , vol.39 , pp. 61-71
    • Shen, H.M.1    Mizushima, N.2
  • 30
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13: 132–41.
    • (2011) Nat Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 31
    • 84876488191 scopus 로고    scopus 로고
    • mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
    • Nazio F, Strappazzon F, Antonioli M et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 2013; 15: 406–16.
    • (2013) Nat Cell Biol , vol.15 , pp. 406-416
    • Nazio, F.1    Strappazzon, F.2    Antonioli, M.3
  • 32
    • 44949237240 scopus 로고    scopus 로고
    • JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
    • Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30: 678–88.
    • (2008) Mol Cell , vol.30 , pp. 678-688
    • Wei, Y.1    Pattingre, S.2    Sinha, S.3    Bassik, M.4    Levine, B.5
  • 33
    • 61849102389 scopus 로고    scopus 로고
    • DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy
    • Zalckvar E, Berissi H, Mizrachy L et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 2009; 10: 285–92.
    • (2009) EMBO Rep , vol.10 , pp. 285-292
    • Zalckvar, E.1    Berissi, H.2    Mizrachy, L.3
  • 34
    • 84905669136 scopus 로고    scopus 로고
    • Pattern recognition receptors and autophagy
    • Oh JE, Lee HK. Pattern recognition receptors and autophagy. Front Immunol 2014; 5: 300.
    • (2014) Front Immunol , vol.5 , pp. 300
    • Oh, J.E.1    Lee, H.K.2
  • 35
    • 83555168258 scopus 로고    scopus 로고
    • Inhibition of autophagy by TAB 2 and TAB 3
    • Criollo A, Niso-Santano M, Malik SA et al. Inhibition of autophagy by TAB 2 and TAB 3. EMBO J 2011; 30: 4908–20.
    • (2011) EMBO J , vol.30 , pp. 4908-4920
    • Criollo, A.1    Niso-Santano, M.2    Malik, S.A.3
  • 36
    • 77953858790 scopus 로고    scopus 로고
    • TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy
    • Shi CS, Kehrl JH. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal 2010; 3: ra42.
    • (2010) Sci Signal , vol.3 , pp. 42
    • Shi, C.S.1    Kehrl, J.H.2
  • 38
    • 84904438190 scopus 로고    scopus 로고
    • HIV infection: epidemiology, pathogenesis, treatment, and prevention
    • Maartens G, Celum C, Lewin SR. HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet 2014; 384: 258–71.
    • (2014) Lancet , vol.384 , pp. 258-271
    • Maartens, G.1    Celum, C.2    Lewin, S.R.3
  • 39
    • 0031711593 scopus 로고    scopus 로고
    • HIV-1: fifteen proteins and an RNA
    • Frankel AD, Young JA. HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 1998; 67: 1–25.
    • (1998) Annu Rev Biochem , vol.67 , pp. 1-25
    • Frankel, A.D.1    Young, J.A.2
  • 40
    • 84937252674 scopus 로고    scopus 로고
    • HIV-1 assembly, release and maturation
    • Freed EO. HIV-1 assembly, release and maturation. Nat Rev Microbiol 2015; 13: 484–96.
    • (2015) Nat Rev Microbiol , vol.13 , pp. 484-496
    • Freed, E.O.1
  • 43
    • 84870324937 scopus 로고    scopus 로고
    • Retroviral integrase proteins and HIV-1 DNA integration
    • Krishnan L, Engelman A. Retroviral integrase proteins and HIV-1 DNA integration. J Biol Chem 2012; 287: 40858–66.
    • (2012) J Biol Chem , vol.287 , pp. 40858-40866
    • Krishnan, L.1    Engelman, A.2
  • 44
    • 84897965284 scopus 로고    scopus 로고
    • HIV-1 uncoating: connection to nuclear entry and regulation by host proteins
    • Ambrose Z, Aiken C. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins. Virology 2014; 454–455: 371–9.
    • (2014) Virology , vol.454-455 , pp. 371-379
    • Ambrose, Z.1    Aiken, C.2
  • 45
    • 84929907228 scopus 로고    scopus 로고
    • Intrinsic host restrictions to HIV-1 and mechanisms of viral escape
    • Simon V, Bloch N, Landau NR. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 2015; 16: 546–53.
    • (2015) Nat Immunol , vol.16 , pp. 546-553
    • Simon, V.1    Bloch, N.2    Landau, N.R.3
  • 46
    • 84960129732 scopus 로고    scopus 로고
    • Remodeling of the host cell plasma membrane by HIV-1 Nef and Vpu: a strategy to ensure viral fitness and persistence
    • Sugden SM, Bego MG, Pham TN, Cohen EA. Remodeling of the host cell plasma membrane by HIV-1 Nef and Vpu: a strategy to ensure viral fitness and persistence. Viruses 2016; 8: 67.
    • (2016) Viruses , vol.8 , pp. 67
    • Sugden, S.M.1    Bego, M.G.2    Pham, T.N.3    Cohen, E.A.4
  • 47
    • 39349097864 scopus 로고    scopus 로고
    • Identification of host proteins required for HIV infection through a functional genomic screen
    • Brass AL, Dykxhoorn DM, Benita Y et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008; 319: 921–6.
    • (2008) Science , vol.319 , pp. 921-926
    • Brass, A.L.1    Dykxhoorn, D.M.2    Benita, Y.3
  • 49
    • 67649585835 scopus 로고    scopus 로고
    • Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages
    • Kyei GB, Dinkins C, Davis AS et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 2009; 186: 255–68.
    • (2009) J Cell Biol , vol.186 , pp. 255-268
    • Kyei, G.B.1    Dinkins, C.2    Davis, A.S.3
  • 50
    • 84855293818 scopus 로고    scopus 로고
    • IRGM is a common target of RNA viruses that subvert the autophagy network
    • Gregoire IP, Richetta C, Meyniel-Schicklin L et al. IRGM is a common target of RNA viruses that subvert the autophagy network. PLoS Pathog 2011; 7: e1002422.
    • (2011) PLoS Pathog , vol.7
    • Gregoire, I.P.1    Richetta, C.2    Meyniel-Schicklin, L.3
  • 51
    • 84928926952 scopus 로고    scopus 로고
    • IRGM governs the core autophagy machinery to conduct antimicrobial defense
    • Chauhan S, Mandell MA, Deretic V. IRGM governs the core autophagy machinery to conduct antimicrobial defense. Mol Cell 2015; 58: 507–21.
    • (2015) Mol Cell , vol.58 , pp. 507-521
    • Chauhan, S.1    Mandell, M.A.2    Deretic, V.3
  • 52
    • 84870840400 scopus 로고    scopus 로고
    • Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1
    • Campbell GR, Spector SA. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1. PLoS Pathog 2012; 8: e1003017.
    • (2012) PLoS Pathog , vol.8
    • Campbell, G.R.1    Spector, S.A.2
  • 53
    • 84876327825 scopus 로고    scopus 로고
    • Detection of the HIV-1 minus-strand-encoded antisense protein and its association with autophagy
    • Torresilla C, Larocque E, Landry S et al. Detection of the HIV-1 minus-strand-encoded antisense protein and its association with autophagy. J Virol 2013; 87: 5089–105.
    • (2013) J Virol , vol.87 , pp. 5089-5105
    • Torresilla, C.1    Larocque, E.2    Landry, S.3
  • 54
    • 84873709314 scopus 로고    scopus 로고
    • Identification of a candidate therapeutic autophagy-inducing peptide
    • Shoji-Kawata S, Sumpter R, Leveno M et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 2013; 494: 201–6.
    • (2013) Nature , vol.494 , pp. 201-206
    • Shoji-Kawata, S.1    Sumpter, R.2    Leveno, M.3
  • 55
    • 84936742816 scopus 로고    scopus 로고
    • Human immunodeficiency virus type 1 nef inhibits autophagy through transcription factor EB sequestration
    • Campbell GR, Rawat P, Bruckman RS, Spector SA. Human immunodeficiency virus type 1 nef inhibits autophagy through transcription factor EB sequestration. PLoS Pathog 2015; 11: e1005018.
    • (2015) PLoS Pathog , vol.11
    • Campbell, G.R.1    Rawat, P.2    Bruckman, R.S.3    Spector, S.A.4
  • 56
    • 84927561935 scopus 로고    scopus 로고
    • HIV-1 viral infectivity factor interacts with microtubule-associated protein light chain 3 and inhibits autophagy
    • Borel S, Robert-Hebmann V, Alfaisal J et al. HIV-1 viral infectivity factor interacts with microtubule-associated protein light chain 3 and inhibits autophagy. AIDS 2015; 29: 275–86.
    • (2015) AIDS , vol.29 , pp. 275-286
    • Borel, S.1    Robert-Hebmann, V.2    Alfaisal, J.3
  • 57
    • 84855998457 scopus 로고    scopus 로고
    • Global landscape of HIV-human protein complexes
    • Jager S, Cimermancic P, Gulbahce N et al. Global landscape of HIV-human protein complexes. Nature 2011; 481: 365–70.
    • (2011) Nature , vol.481 , pp. 365-370
    • Jager, S.1    Cimermancic, P.2    Gulbahce, N.3
  • 58
    • 84907599058 scopus 로고    scopus 로고
    • TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition
    • Mandell MA, Jain A, Arko-Mensah J et al. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev Cell 2014; 30: 394–409.
    • (2014) Dev Cell , vol.30 , pp. 394-409
    • Mandell, M.A.1    Jain, A.2    Arko-Mensah, J.3
  • 59
    • 84935037656 scopus 로고    scopus 로고
    • The HDAC6/APOBEC3G complex regulates HIV-1 infectiveness by inducing Vif autophagic degradation
    • Valera MS, de Armas-Rillo L, Barroso-Gonzalez J et al. The HDAC6/APOBEC3G complex regulates HIV-1 infectiveness by inducing Vif autophagic degradation. Retrovirology 2015; 12: 53.
    • (2015) Retrovirology , vol.12 , pp. 53
    • Valera, M.S.1    de Armas-Rillo, L.2    Barroso-Gonzalez, J.3
  • 60
    • 84919414166 scopus 로고    scopus 로고
    • Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes
    • Sagnier S, Daussy CF, Borel S et al. Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes. J Virol 2015; 89: 615–25.
    • (2015) J Virol , vol.89 , pp. 615-625
    • Sagnier, S.1    Daussy, C.F.2    Borel, S.3
  • 61
    • 66749170589 scopus 로고    scopus 로고
    • Differential role of autophagy in CD4 T cells and macrophages during X4 and R5 HIV-1 infection
    • Espert L, Varbanov M, Robert-Hebmann V et al. Differential role of autophagy in CD4 T cells and macrophages during X4 and R5 HIV-1 infection. PLoS One 2009; 4: e5787.
    • (2009) PLoS One , vol.4
    • Espert, L.1    Varbanov, M.2    Robert-Hebmann, V.3
  • 62
    • 84867250039 scopus 로고    scopus 로고
    • Autophagy induction by vitamin D inhibits both Mycobacterium tuberculosis and human immunodeficiency virus type 1
    • Campbell GR, Spector SA. Autophagy induction by vitamin D inhibits both Mycobacterium tuberculosis and human immunodeficiency virus type 1. Autophagy 2012; 8: 1523–5.
    • (2012) Autophagy , vol.8 , pp. 1523-1525
    • Campbell, G.R.1    Spector, S.A.2
  • 63
    • 84863714328 scopus 로고    scopus 로고
    • Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy
    • Campbell GR, Spector SA. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog 2012; 8: e1002689.
    • (2012) PLoS Pathog , vol.8
    • Campbell, G.R.1    Spector, S.A.2
  • 64
    • 84903827389 scopus 로고    scopus 로고
    • Autophagy plays an important role in the containment of HIV-1 in nonprogressor-infected patients
    • Nardacci R, Amendola A, Ciccosanti F et al. Autophagy plays an important role in the containment of HIV-1 in nonprogressor-infected patients. Autophagy 2014; 10: 1167–78.
    • (2014) Autophagy , vol.10 , pp. 1167-1178
    • Nardacci, R.1    Amendola, A.2    Ciccosanti, F.3
  • 65
    • 13244260955 scopus 로고    scopus 로고
    • Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope
    • Perfettini JL, Castedo M, Nardacci R et al. Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. J Exp Med 2005; 201: 279–89.
    • (2005) J Exp Med , vol.201 , pp. 279-289
    • Perfettini, J.L.1    Castedo, M.2    Nardacci, R.3
  • 66
    • 22744435902 scopus 로고    scopus 로고
    • Mechanisms of apoptosis induction by the HIV-1 envelope
    • Perfettini JL, Castedo M, Roumier T et al. Mechanisms of apoptosis induction by the HIV-1 envelope. Cell Death Differ 2005; 12(Suppl 1): 916–23.
    • (2005) Cell Death Differ , vol.12 , pp. 916-923
    • Perfettini, J.L.1    Castedo, M.2    Roumier, T.3
  • 67
    • 33746691954 scopus 로고    scopus 로고
    • Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4
    • Espert L, Denizot M, Grimaldi M et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest 2006; 116: 2161–72.
    • (2006) J Clin Invest , vol.116 , pp. 2161-2172
    • Espert, L.1    Denizot, M.2    Grimaldi, M.3
  • 68
    • 58149083753 scopus 로고    scopus 로고
    • HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells
    • Denizot M, Varbanov M, Espert L et al. HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells. Autophagy 2008; 4: 998–1008.
    • (2008) Autophagy , vol.4 , pp. 998-1008
    • Denizot, M.1    Varbanov, M.2    Espert, L.3
  • 69
    • 84878487502 scopus 로고    scopus 로고
    • DRAM triggers lysosomal membrane permeabilization and cell death in CD4(+) T cells infected with HIV
    • Laforge M, Limou S, Harper F et al. DRAM triggers lysosomal membrane permeabilization and cell death in CD4(+) T cells infected with HIV. PLoS Pathog 2013; 9: e1003328.
    • (2013) PLoS Pathog , vol.9
    • Laforge, M.1    Limou, S.2    Harper, F.3
  • 70
    • 84892739389 scopus 로고    scopus 로고
    • Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection
    • Doitsh G, Galloway NL, Geng X et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014; 505: 509–14.
    • (2014) Nature , vol.505 , pp. 509-514
    • Doitsh, G.1    Galloway, N.L.2    Geng, X.3
  • 71
    • 84892946076 scopus 로고    scopus 로고
    • IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV
    • Monroe KM, Yang Z, Johnson JR et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 2014; 343: 428–32.
    • (2014) Science , vol.343 , pp. 428-432
    • Monroe, K.M.1    Yang, Z.2    Johnson, J.R.3
  • 72
    • 53849134844 scopus 로고    scopus 로고
    • Cellular reservoirs of HIV-1 and their role in viral persistence
    • Alexaki A, Liu Y, Wigdahl B. Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Res 2008; 6: 388–400.
    • (2008) Curr HIV Res , vol.6 , pp. 388-400
    • Alexaki, A.1    Liu, Y.2    Wigdahl, B.3
  • 74
    • 84894435407 scopus 로고    scopus 로고
    • Dendritic cells in progression and pathology of HIV infection
    • Manches O, Frleta D, Bhardwaj N. Dendritic cells in progression and pathology of HIV infection. Trends Immunol 2014; 35: 114–22.
    • (2014) Trends Immunol , vol.35 , pp. 114-122
    • Manches, O.1    Frleta, D.2    Bhardwaj, N.3
  • 75
    • 77953272740 scopus 로고    scopus 로고
    • Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses
    • Blanchet FP, Moris A, Nikolic DS et al. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 2010; 32: 654–69.
    • (2010) Immunity , vol.32 , pp. 654-669
    • Blanchet, F.P.1    Moris, A.2    Nikolic, D.S.3
  • 76
    • 67651065500 scopus 로고    scopus 로고
    • HIV-1-infected dendritic cells show 2 phases of gene expression changes, with lysosomal enzyme activity decreased during the second phase
    • Harman AN, Kraus M, Bye CR et al. HIV-1-infected dendritic cells show 2 phases of gene expression changes, with lysosomal enzyme activity decreased during the second phase. Blood 2009; 114: 85–94.
    • (2009) Blood , vol.114 , pp. 85-94
    • Harman, A.N.1    Kraus, M.2    Bye, C.R.3
  • 77
    • 84859061111 scopus 로고    scopus 로고
    • Production of interferon alpha by human immunodeficiency virus type 1 in human plasmacytoid dendritic cells is dependent on induction of autophagy
    • Zhou D, Kang KH, Spector SA. Production of interferon alpha by human immunodeficiency virus type 1 in human plasmacytoid dendritic cells is dependent on induction of autophagy. J Infect Dis 2012; 205: 1258–67.
    • (2012) J Infect Dis , vol.205 , pp. 1258-1267
    • Zhou, D.1    Kang, K.H.2    Spector, S.A.3
  • 78
    • 84960364100 scopus 로고    scopus 로고
    • HIV-associated neurocognitive disorder–pathogenesis and prospects for treatment
    • Saylor D, Dickens AM, Sacktor N et al. HIV-associated neurocognitive disorder–pathogenesis and prospects for treatment. Nat Rev Neurol 2016; 12: 234–48.
    • (2016) Nat Rev Neurol , vol.12 , pp. 234-248
    • Saylor, D.1    Dickens, A.M.2    Sacktor, N.3
  • 79
    • 79956204926 scopus 로고    scopus 로고
    • Autophagy is increased in postmortem brains of persons with HIV-1-associated encephalitis
    • Zhou D, Masliah E, Spector SA. Autophagy is increased in postmortem brains of persons with HIV-1-associated encephalitis. J Infect Dis 2011; 203: 1647–57.
    • (2011) J Infect Dis , vol.203 , pp. 1647-1657
    • Zhou, D.1    Masliah, E.2    Spector, S.A.3
  • 80
    • 84891373653 scopus 로고    scopus 로고
    • Alterations in the levels of vesicular trafficking proteins involved in HIV replication in the brains and CSF of patients with HIV-associated neurocognitive disorders
    • Fields J, Dumaop W, Adame A et al. Alterations in the levels of vesicular trafficking proteins involved in HIV replication in the brains and CSF of patients with HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 2013; 8: 1197–209.
    • (2013) J Neuroimmune Pharmacol , vol.8 , pp. 1197-1209
    • Fields, J.1    Dumaop, W.2    Adame, A.3
  • 81
    • 51449119611 scopus 로고    scopus 로고
    • Disruption of neuronal autophagy by infected microglia results in neurodegeneration
    • Alirezaei M, Kiosses WB, Flynn CT, Brady NR, Fox HS. Disruption of neuronal autophagy by infected microglia results in neurodegeneration. PLoS One 2008; 3: e2906.
    • (2008) PLoS One , vol.3
    • Alirezaei, M.1    Kiosses, W.B.2    Flynn, C.T.3    Brady, N.R.4    Fox, H.S.5
  • 82
    • 84890484713 scopus 로고    scopus 로고
    • Roles and functions of HIV-1 Tat protein in the CNS: an overview
    • Bagashev A, Sawaya BE. Roles and functions of HIV-1 Tat protein in the CNS: an overview. Virol J 2013; 10: 358.
    • (2013) Virol J , vol.10 , pp. 358
    • Bagashev, A.1    Sawaya, B.E.2
  • 84
    • 84867592757 scopus 로고    scopus 로고
    • Role of endolysosomes in HIV-1 Tat-induced neurotoxicity
    • Hui L, Chen X, Haughey NJ, Geiger JD. Role of endolysosomes in HIV-1 Tat-induced neurotoxicity. ASN Neuro 2012; 4: 243–52.
    • (2012) ASN Neuro , vol.4 , pp. 243-252
    • Hui, L.1    Chen, X.2    Haughey, N.J.3    Geiger, J.D.4
  • 85
    • 84881230027 scopus 로고    scopus 로고
    • HIV associated neurocognitive disorders
    • Zhou L, Saksena NK. HIV associated neurocognitive disorders. Infect Dis Rep 2013; 5: e8.
    • (2013) Infect Dis Rep , vol.5
    • Zhou, L.1    Saksena, N.K.2
  • 86
    • 84920618618 scopus 로고    scopus 로고
    • HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels
    • Bruno AP, De Simone FI, Iorio V et al. HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels. Cell Cycle 2014; 13: 3640–4.
    • (2014) Cell Cycle , vol.13 , pp. 3640-3644
    • Bruno, A.P.1    De Simone, F.I.2    Iorio, V.3
  • 87
    • 84953924222 scopus 로고    scopus 로고
    • Dysregulation of autophagy by HIV-1 Nef in human astrocytes
    • Saribas AS, Khalili K, Sariyer IK. Dysregulation of autophagy by HIV-1 Nef in human astrocytes. Cell Cycle 2015; 14: 2899–904.
    • (2015) Cell Cycle , vol.14 , pp. 2899-2904
    • Saribas, A.S.1    Khalili, K.2    Sariyer, I.K.3
  • 88
    • 77949908335 scopus 로고    scopus 로고
    • First report on a series of HIV patients undergoing rapamycin monotherapy after liver transplantation
    • Di Benedetto F, Di Sandro S, De Ruvo N et al. First report on a series of HIV patients undergoing rapamycin monotherapy after liver transplantation. Transplantation 2010; 89: 733–8.
    • (2010) Transplantation , vol.89 , pp. 733-738
    • Di Benedetto, F.1    Di Sandro, S.2    De Ruvo, N.3
  • 89
    • 84995897838 scopus 로고    scopus 로고
    • High 25-hydroxyvitamin D is associated with unexpectedly high plasma inflammatory markers in HIV patients on antiretroviral therapy
    • Gangcuangco LM, Kohorn LB, Chow DC et al. High 25-hydroxyvitamin D is associated with unexpectedly high plasma inflammatory markers in HIV patients on antiretroviral therapy. Medicine (Baltimore) 2016; 95: e5270.
    • (2016) Medicine (Baltimore) , vol.95
    • Gangcuangco, L.M.1    Kohorn, L.B.2    Chow, D.C.3
  • 90
    • 84929094317 scopus 로고    scopus 로고
    • Autophagy induction by histone deacetylase inhibitors inhibits HIV type 1
    • Campbell GR, Bruckman RS, Chu YL, Spector SA. Autophagy induction by histone deacetylase inhibitors inhibits HIV type 1. J Biol Chem 2015; 290: 5028–40.
    • (2015) J Biol Chem , vol.290 , pp. 5028-5040
    • Campbell, G.R.1    Bruckman, R.S.2    Chu, Y.L.3    Spector, S.A.4
  • 91
    • 4143089463 scopus 로고    scopus 로고
    • Administration of HDAC inhibitors to reactivate HIV-1 expression in latent cellular reservoirs: implications for the development of therapeutic strategies
    • Demonte D, Quivy V, Colette Y, Van Lint C. Administration of HDAC inhibitors to reactivate HIV-1 expression in latent cellular reservoirs: implications for the development of therapeutic strategies. Biochem Pharmacol 2004; 68: 1231–8.
    • (2004) Biochem Pharmacol , vol.68 , pp. 1231-1238
    • Demonte, D.1    Quivy, V.2    Colette, Y.3    Van Lint, C.4
  • 92
    • 84946043481 scopus 로고    scopus 로고
    • Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential
    • Chauhan S, Ahmed Z, Bradfute SB et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat Commun 2015; 6: 8620.
    • (2015) Nat Commun , vol.6 , pp. 8620
    • Chauhan, S.1    Ahmed, Z.2    Bradfute, S.B.3
  • 93
    • 0036952736 scopus 로고    scopus 로고
    • Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe
    • Castedo M, Perfettini JL, Roumier T, Kroemer G. Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ 2002; 9: 1287–93.
    • (2002) Cell Death Differ , vol.9 , pp. 1287-1293
    • Castedo, M.1    Perfettini, J.L.2    Roumier, T.3    Kroemer, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.