메뉴 건너뛰기




Volumn 33, Issue 10, 2012, Pages 475-487

Autophagy in the regulation of pathogen replication and adaptive immunity

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE IMMUNITY; ANTIGEN PRESENTATION; AUTOPHAGY; CYTOKINE PRODUCTION; CYTOSOL; DEFENSE MECHANISM; HUMAN; INNATE IMMUNITY; LYMPHOCYTE; MAJOR HISTOCOMPATIBILITY COMPLEX; MOLECULAR MECHANICS; NONHUMAN; PATHOGENESIS; PHAGOSOME; REVIEW; VIRUS REPLICATION;

EID: 84866767594     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2012.06.003     Document Type: Review
Times cited : (96)

References (136)
  • 1
    • 80054025654 scopus 로고    scopus 로고
    • The role of atg proteins in autophagosome formation
    • Mizushima N., et al. The role of atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011, 27:107-132.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 107-132
    • Mizushima, N.1
  • 2
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: renovation of cells and tissues
    • Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011, 147:728-741.
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 3
    • 79960804104 scopus 로고    scopus 로고
    • Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
    • Wild P., et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011, 333:228-233.
    • (2011) Science , vol.333 , pp. 228-233
    • Wild, P.1
  • 4
    • 82555187810 scopus 로고    scopus 로고
    • Image-based genome-wide siRNA screen identifies selective autophagy factors
    • Orvedahl A., et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 2011, 480:113-117.
    • (2011) Nature , vol.480 , pp. 113-117
    • Orvedahl, A.1
  • 5
    • 84857071710 scopus 로고    scopus 로고
    • Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
    • Thurston T.L., et al. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 2012, 482:414-418.
    • (2012) Nature , vol.482 , pp. 414-418
    • Thurston, T.L.1
  • 6
    • 80655124407 scopus 로고    scopus 로고
    • A comprehensive glossary of autophagy-related molecules and processes (2nd edition)
    • Klionsky D.J., et al. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 2011, 7:1273-1294.
    • (2011) Autophagy , vol.7 , pp. 1273-1294
    • Klionsky, D.J.1
  • 7
    • 34447099450 scopus 로고    scopus 로고
    • Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
    • Nakatogawa H., et al. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 2007, 130:165-178.
    • (2007) Cell , vol.130 , pp. 165-178
    • Nakatogawa, H.1
  • 8
    • 77953122645 scopus 로고    scopus 로고
    • LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
    • Weidberg H., et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010, 29:1792-1802.
    • (2010) EMBO J. , vol.29 , pp. 1792-1802
    • Weidberg, H.1
  • 9
    • 79954544250 scopus 로고    scopus 로고
    • LC3 and GATE-16N termini mediate membrane fusion processes required for autophagosome biogenesis
    • Weidberg H., et al. LC3 and GATE-16N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 2011, 20:444-454.
    • (2011) Dev. Cell , vol.20 , pp. 444-454
    • Weidberg, H.1
  • 10
    • 71649087199 scopus 로고    scopus 로고
    • A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
    • Hayashi-Nishino M., et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 2009, 11:1433-1437.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1433-1437
    • Hayashi-Nishino, M.1
  • 11
    • 71649112895 scopus 로고    scopus 로고
    • 3D tomography reveals connections between the phagophore and endoplasmic reticulum
    • Yla-Anttila P., et al. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009, 5:1180-1185.
    • (2009) Autophagy , vol.5 , pp. 1180-1185
    • Yla-Anttila, P.1
  • 12
    • 77956414236 scopus 로고    scopus 로고
    • The origin of the autophagosomal membrane
    • Tooze S.A., Yoshimori T. The origin of the autophagosomal membrane. Nat. Cell Biol. 2010, 12:831-835.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 831-835
    • Tooze, S.A.1    Yoshimori, T.2
  • 13
    • 8344247016 scopus 로고    scopus 로고
    • Autophagy defends cells against invading group A Streptococcus
    • Nakagawa I., et al. Autophagy defends cells against invading group A Streptococcus. Science 2004, 306:1037-1040.
    • (2004) Science , vol.306 , pp. 1037-1040
    • Nakagawa, I.1
  • 14
    • 38349110486 scopus 로고    scopus 로고
    • Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles
    • Birmingham C.L., et al. Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 2008, 451:350-354.
    • (2008) Nature , vol.451 , pp. 350-354
    • Birmingham, C.L.1
  • 15
    • 79959874238 scopus 로고    scopus 로고
    • The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella
    • Kageyama S., et al. The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol. Biol. Cell 2011, 22:2290-2300.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 2290-2300
    • Kageyama, S.1
  • 16
    • 73549102459 scopus 로고    scopus 로고
    • An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7
    • Yamaguchi H., et al. An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7. PLoS Pathog. 2009, 5:e1000670.
    • (2009) PLoS Pathog. , vol.5
    • Yamaguchi, H.1
  • 17
    • 34548077575 scopus 로고    scopus 로고
    • Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
    • Kimura S., et al. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007, 3:452-460.
    • (2007) Autophagy , vol.3 , pp. 452-460
    • Kimura, S.1
  • 18
    • 74049126112 scopus 로고    scopus 로고
    • The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
    • Zheng Y.T., et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 2009, 183:5909-5916.
    • (2009) J. Immunol. , vol.183 , pp. 5909-5916
    • Zheng, Y.T.1
  • 19
    • 13244256806 scopus 로고    scopus 로고
    • Escape of intracellular Shigella from autophagy
    • Ogawa M., et al. Escape of intracellular Shigella from autophagy. Science 2005, 307:727-731.
    • (2005) Science , vol.307 , pp. 727-731
    • Ogawa, M.1
  • 20
    • 2342464290 scopus 로고    scopus 로고
    • Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system
    • Perrin A.J., et al. Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr. Biol. 2004, 14:806-811.
    • (2004) Curr. Biol. , vol.14 , pp. 806-811
    • Perrin, A.J.1
  • 21
    • 79952742148 scopus 로고    scopus 로고
    • Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity
    • Ng A.C., et al. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc. Natl. Acad. Sci. U.S.A. 2011, 108(Suppl. 1):4631-4638.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , Issue.SUPPL. 1 , pp. 4631-4638
    • Ng, A.C.1
  • 22
    • 47849094901 scopus 로고    scopus 로고
    • Autophagic control of listeria through intracellular innate immune recognition in drosophila
    • Yano T., et al. Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat. Immunol. 2008, 9:908-916.
    • (2008) Nat. Immunol. , vol.9 , pp. 908-916
    • Yano, T.1
  • 23
    • 77953707119 scopus 로고    scopus 로고
    • Nod proteins link bacterial sensing and autophagy
    • Travassos L.H., et al. Nod proteins link bacterial sensing and autophagy. Autophagy 2010, 6:409-411.
    • (2010) Autophagy , vol.6 , pp. 409-411
    • Travassos, L.H.1
  • 24
    • 73849151394 scopus 로고    scopus 로고
    • NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
    • Cooney R., et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 2010, 16:90-97.
    • (2010) Nat. Med. , vol.16 , pp. 90-97
    • Cooney, R.1
  • 25
    • 77649194674 scopus 로고    scopus 로고
    • Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly
    • Lapaquette P., et al. Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell. Microbiol. 2010, 12:99-113.
    • (2010) Cell. Microbiol. , vol.12 , pp. 99-113
    • Lapaquette, P.1
  • 26
    • 67349258025 scopus 로고    scopus 로고
    • Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation
    • Rabinovich G.A., Toscano M.A. Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 2009, 9:338-352.
    • (2009) Nat. Rev. Immunol. , vol.9 , pp. 338-352
    • Rabinovich, G.A.1    Toscano, M.A.2
  • 27
    • 65649109738 scopus 로고    scopus 로고
    • Roles of galectins in infection
    • Vasta G.R. Roles of galectins in infection. Nat. Rev. Microbiol. 2009, 7:424-438.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 424-438
    • Vasta, G.R.1
  • 28
    • 68349143052 scopus 로고    scopus 로고
    • Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy
    • Dupont N., et al. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 2009, 6:137-149.
    • (2009) Cell Host Microbe , vol.6 , pp. 137-149
    • Dupont, N.1
  • 29
    • 77954271859 scopus 로고    scopus 로고
    • Galectin-3, a marker for vacuole lysis by invasive pathogens
    • Paz I., et al. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell. Microbiol. 2010, 12:530-544.
    • (2010) Cell. Microbiol. , vol.12 , pp. 530-544
    • Paz, I.1
  • 30
    • 79952355107 scopus 로고    scopus 로고
    • Selective autophagy mediated by autophagic adapter proteins
    • Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7:279-296.
    • (2011) Autophagy , vol.7 , pp. 279-296
    • Johansen, T.1    Lamark, T.2
  • 31
    • 79960670161 scopus 로고    scopus 로고
    • P62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways
    • Mostowy S., et al. p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J. Biol. Chem. 2011, 286:26987-26995.
    • (2011) J. Biol. Chem. , vol.286 , pp. 26987-26995
    • Mostowy, S.1
  • 32
    • 70350450808 scopus 로고    scopus 로고
    • The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
    • Thurston T.L., et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 2009, 10:1215-1221.
    • (2009) Nat. Immunol. , vol.10 , pp. 1215-1221
    • Thurston, T.L.1
  • 33
    • 34047222189 scopus 로고    scopus 로고
    • TBK1 protects vacuolar integrity during intracellular bacterial infection
    • Radtke A.L., et al. TBK1 protects vacuolar integrity during intracellular bacterial infection. PLoS Pathog. 2007, 3:e29.
    • (2007) PLoS Pathog. , vol.3
    • Radtke, A.L.1
  • 34
    • 10744221904 scopus 로고    scopus 로고
    • Identification of NAP1, a regulatory subunit of IkappaB kinase-related kinases that potentiates NF-kappaB signaling
    • Fujita F., et al. Identification of NAP1, a regulatory subunit of IkappaB kinase-related kinases that potentiates NF-kappaB signaling. Mol. Cell. Biol. 2003, 23:7780-7793.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 7780-7793
    • Fujita, F.1
  • 35
    • 34447342317 scopus 로고    scopus 로고
    • SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK
    • Ryzhakov G., Randow F. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J. 2007, 26:3180-3190.
    • (2007) EMBO J. , vol.26 , pp. 3180-3190
    • Ryzhakov, G.1    Randow, F.2
  • 36
    • 79952348751 scopus 로고    scopus 로고
    • The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway
    • Cemma M., et al. The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy 2011, 7:341-345.
    • (2011) Autophagy , vol.7 , pp. 341-345
    • Cemma, M.1
  • 37
    • 40149097099 scopus 로고    scopus 로고
    • Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma
    • Morton S., et al. Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma. FEBS Lett. 2008, 582:997-1002.
    • (2008) FEBS Lett. , vol.582 , pp. 997-1002
    • Morton, S.1
  • 38
    • 34250802980 scopus 로고    scopus 로고
    • Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy
    • Alonso S., et al. Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:6031-6036.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 6031-6036
    • Alonso, S.1
  • 39
    • 77949997805 scopus 로고    scopus 로고
    • Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties
    • Ponpuak M., et al. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 2010, 32:329-341.
    • (2010) Immunity , vol.32 , pp. 329-341
    • Ponpuak, M.1
  • 40
    • 77950903972 scopus 로고    scopus 로고
    • The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy
    • Filimonenko M., et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol. Cell 2010, 38:265-279.
    • (2010) Mol. Cell , vol.38 , pp. 265-279
    • Filimonenko, M.1
  • 41
    • 67549132527 scopus 로고    scopus 로고
    • The late stages of autophagy: how does the end begin?
    • Noda T., et al. The late stages of autophagy: how does the end begin?. Cell Death Differ. 2009, 16:984-990.
    • (2009) Cell Death Differ. , vol.16 , pp. 984-990
    • Noda, T.1
  • 42
    • 37549043217 scopus 로고    scopus 로고
    • Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
    • Sanjuan M.A., et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007, 450:1253-1257.
    • (2007) Nature , vol.450 , pp. 1253-1257
    • Sanjuan, M.A.1
  • 43
    • 80054825045 scopus 로고    scopus 로고
    • Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells
    • Martinez J., et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:17396-17401.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 17396-17401
    • Martinez, J.1
  • 44
    • 10944253145 scopus 로고    scopus 로고
    • Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
    • Gutierrez M.G., et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004, 119:753-766.
    • (2004) Cell , vol.119 , pp. 753-766
    • Gutierrez, M.G.1
  • 45
    • 79952613917 scopus 로고    scopus 로고
    • The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis
    • Gong L., et al. The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis. PLoS ONE 2011, 6:e17852.
    • (2011) PLoS ONE , vol.6
    • Gong, L.1
  • 46
    • 50249111985 scopus 로고    scopus 로고
    • Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines
    • Cullinane M., et al. Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines. Autophagy 2008, 4:744-753.
    • (2008) Autophagy , vol.4 , pp. 744-753
    • Cullinane, M.1
  • 47
    • 80052311756 scopus 로고    scopus 로고
    • Role for the Burkholderia pseudomallei type three secretion system cluster 1 bpscN gene in virulence
    • D'Cruze T., et al. Role for the Burkholderia pseudomallei type three secretion system cluster 1 bpscN gene in virulence. Infect. Immun. 2011, 79:3659-3664.
    • (2011) Infect. Immun. , vol.79 , pp. 3659-3664
    • D'Cruze, T.1
  • 48
    • 65549094988 scopus 로고    scopus 로고
    • Activation of antibacterial autophagy by NADPH oxidases
    • Huang J., et al. Activation of antibacterial autophagy by NADPH oxidases. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:6226-6231.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 6226-6231
    • Huang, J.1
  • 49
    • 77956310643 scopus 로고    scopus 로고
    • A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy
    • Shahnazari S., et al. A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe 2010, 8:137-146.
    • (2010) Cell Host Microbe , vol.8 , pp. 137-146
    • Shahnazari, S.1
  • 50
    • 55249109400 scopus 로고    scopus 로고
    • Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
    • Zhao Z., et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 2008, 4:458-469.
    • (2008) Cell Host Microbe , vol.4 , pp. 458-469
    • Zhao, Z.1
  • 51
    • 34548067415 scopus 로고    scopus 로고
    • Listeria monocytogenes evades killing by autophagy during colonization of host cells
    • Birmingham C.L., et al. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 2007, 3:442-451.
    • (2007) Autophagy , vol.3 , pp. 442-451
    • Birmingham, C.L.1
  • 52
    • 33947416152 scopus 로고    scopus 로고
    • Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection
    • Py B.F., et al. Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 2007, 3:117-125.
    • (2007) Autophagy , vol.3 , pp. 117-125
    • Py, B.F.1
  • 53
    • 70349652310 scopus 로고    scopus 로고
    • Listeria monocytogenes ActA-mediated escape from autophagic recognition
    • Yoshikawa Y., et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat. Cell Biol. 2009, 11:1233-1240.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1233-1240
    • Yoshikawa, Y.1
  • 54
    • 80052337539 scopus 로고    scopus 로고
    • Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy
    • Dortet L., et al. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog. 2011, 7:e1002168.
    • (2011) PLoS Pathog. , vol.7
    • Dortet, L.1
  • 55
    • 73849121209 scopus 로고    scopus 로고
    • Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
    • Travassos L.H., et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 2010, 11:55-62.
    • (2010) Nat. Immunol. , vol.11 , pp. 55-62
    • Travassos, L.H.1
  • 56
    • 78349239252 scopus 로고    scopus 로고
    • Entrapment of intracytosolic bacteria by septin cage-like structures
    • Mostowy S., et al. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 2010, 8:433-444.
    • (2010) Cell Host Microbe , vol.8 , pp. 433-444
    • Mostowy, S.1
  • 57
    • 75149167986 scopus 로고    scopus 로고
    • Alpha-hemolysin is required for the activation of the autophagic pathway in Staphylococcus aureus-infected cells
    • Mestre M.B., et al. Alpha-hemolysin is required for the activation of the autophagic pathway in Staphylococcus aureus-infected cells. Autophagy 2010, 6:110-125.
    • (2010) Autophagy , vol.6 , pp. 110-125
    • Mestre, M.B.1
  • 58
    • 34047271297 scopus 로고    scopus 로고
    • Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death
    • Schnaith A., et al. Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J. Biol. Chem. 2007, 282:2695-2706.
    • (2007) J. Biol. Chem. , vol.282 , pp. 2695-2706
    • Schnaith, A.1
  • 59
    • 77953019211 scopus 로고    scopus 로고
    • Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages
    • Moreau K., et al. Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. Cell. Microbiol. 2010, 12:1108-1123.
    • (2010) Cell. Microbiol. , vol.12 , pp. 1108-1123
    • Moreau, K.1
  • 60
    • 66549126665 scopus 로고    scopus 로고
    • Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification
    • Pujol C., et al. Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect. Immun. 2009, 77:2251-2261.
    • (2009) Infect. Immun. , vol.77 , pp. 2251-2261
    • Pujol, C.1
  • 61
    • 38849200959 scopus 로고    scopus 로고
    • Subversion of cellular autophagy by Anaplasma phagocytophilum
    • Niu H., et al. Subversion of cellular autophagy by Anaplasma phagocytophilum. Cell. Microbiol. 2008, 10:593-605.
    • (2008) Cell. Microbiol. , vol.10 , pp. 593-605
    • Niu, H.1
  • 62
    • 84856010816 scopus 로고    scopus 로고
    • Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle
    • Starr T., et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 2012, 11:33-45.
    • (2012) Cell Host Microbe , vol.11 , pp. 33-45
    • Starr, T.1
  • 63
    • 67249156625 scopus 로고    scopus 로고
    • Atg5-independent sequestration of ubiquitinated mycobacteria
    • Collins C.A., et al. Atg5-independent sequestration of ubiquitinated mycobacteria. PLoS Pathog. 2009, 5:e1000430.
    • (2009) PLoS Pathog. , vol.5
    • Collins, C.A.1
  • 64
    • 70349687405 scopus 로고    scopus 로고
    • Discovery of Atg5/Atg7-independent alternative macroautophagy
    • Nishida Y., et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009, 461:654-658.
    • (2009) Nature , vol.461 , pp. 654-658
    • Nishida, Y.1
  • 65
    • 33749264796 scopus 로고    scopus 로고
    • Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication
    • Checroun C., et al. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:14578-14583.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 14578-14583
    • Checroun, C.1
  • 66
    • 0000730374 scopus 로고
    • Cytoplasmic components in hepatic cell lysosomes
    • Ashford T.P., Porter K.R. Cytoplasmic components in hepatic cell lysosomes. J. Cell Biol. 1962, 12:198-202.
    • (1962) J. Cell Biol. , vol.12 , pp. 198-202
    • Ashford, T.P.1    Porter, K.R.2
  • 67
    • 0000115806 scopus 로고
    • Electron microscopic study of the formation of poliovirus
    • Dales S., et al. Electron microscopic study of the formation of poliovirus. Virology 1965, 26:379-389.
    • (1965) Virology , vol.26 , pp. 379-389
    • Dales, S.1
  • 68
    • 36049014444 scopus 로고    scopus 로고
    • Modification of cellular autophagy protein LC3 by poliovirus
    • Taylor M.P., Kirkegaard K. Modification of cellular autophagy protein LC3 by poliovirus. J. Virol. 2007, 81:12543-12553.
    • (2007) J. Virol. , vol.81 , pp. 12543-12553
    • Taylor, M.P.1    Kirkegaard, K.2
  • 69
    • 21344452171 scopus 로고    scopus 로고
    • Subversion of cellular autophagosomal machinery by RNA viruses
    • Jackson W.T., et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 2005, 3:e156.
    • (2005) PLoS Biol. , vol.3
    • Jackson, W.T.1
  • 70
    • 77952557130 scopus 로고    scopus 로고
    • Viral interactions with macroautophagy: a double-edged sword
    • Lin L.T., et al. Viral interactions with macroautophagy: a double-edged sword. Virology 2010, 402:1-10.
    • (2010) Virology , vol.402 , pp. 1-10
    • Lin, L.T.1
  • 71
    • 1642280930 scopus 로고    scopus 로고
    • Coronavirus replication complex formation utilizes components of cellular autophagy
    • Prentice E., et al. Coronavirus replication complex formation utilizes components of cellular autophagy. J. Biol. Chem. 2004, 279:10136-10141.
    • (2004) J. Biol. Chem. , vol.279 , pp. 10136-10141
    • Prentice, E.1
  • 72
    • 35848954083 scopus 로고    scopus 로고
    • Coronavirus replication does not require the autophagy gene ATG5
    • Zhao Z., et al. Coronavirus replication does not require the autophagy gene ATG5. Autophagy 2007, 3:581-585.
    • (2007) Autophagy , vol.3 , pp. 581-585
    • Zhao, Z.1
  • 73
    • 39749116856 scopus 로고    scopus 로고
    • Hepatitis C virus genotype 1a growth and induction of autophagy
    • Ait-Goughoulte M., et al. Hepatitis C virus genotype 1a growth and induction of autophagy. J. Virol. 2008, 82:2241-2249.
    • (2008) J. Virol. , vol.82 , pp. 2241-2249
    • Ait-Goughoulte, M.1
  • 74
    • 54449101892 scopus 로고    scopus 로고
    • Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response
    • Sir D., et al. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 2008, 48:1054-1061.
    • (2008) Hepatology , vol.48 , pp. 1054-1061
    • Sir, D.1
  • 75
    • 33845480131 scopus 로고    scopus 로고
    • Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response
    • Bernales S., et al. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 2006, 4:e423.
    • (2006) PLoS Biol. , vol.4
    • Bernales, S.1
  • 76
    • 84855293818 scopus 로고    scopus 로고
    • IRGM is a common target of RNA viruses that subvert the autophagy network
    • Gregoire I.P., et al. IRGM is a common target of RNA viruses that subvert the autophagy network. PLoS Pathog. 2011, 7:e1002422.
    • (2011) PLoS Pathog. , vol.7
    • Gregoire, I.P.1
  • 77
    • 69549135689 scopus 로고    scopus 로고
    • The autophagy machinery is required to initiate hepatitis C virus replication
    • Dreux M., et al. The autophagy machinery is required to initiate hepatitis C virus replication. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:14046-14051.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 14046-14051
    • Dreux, M.1
  • 78
    • 78349237370 scopus 로고    scopus 로고
    • Dengue virus-induced autophagy regulates lipid metabolism
    • Heaton N.S., Randall G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 2010, 8:422-432.
    • (2010) Cell Host Microbe , vol.8 , pp. 422-432
    • Heaton, N.S.1    Randall, G.2
  • 79
    • 67449097826 scopus 로고    scopus 로고
    • Role of microtubules in extracellular release of poliovirus
    • Taylor M.P., et al. Role of microtubules in extracellular release of poliovirus. J. Virol. 2009, 83:6599-6609.
    • (2009) J. Virol. , vol.83 , pp. 6599-6609
    • Taylor, M.P.1
  • 80
    • 67649585835 scopus 로고    scopus 로고
    • Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages
    • Kyei G.B., et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J. Cell Biol. 2009, 186:255-268.
    • (2009) J. Cell Biol. , vol.186 , pp. 255-268
    • Kyei, G.B.1
  • 81
    • 72649105081 scopus 로고    scopus 로고
    • Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes
    • Gannage M., et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 2009, 6:367-380.
    • (2009) Cell Host Microbe , vol.6 , pp. 367-380
    • Gannage, M.1
  • 82
    • 77953272740 scopus 로고    scopus 로고
    • Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses
    • Blanchet F.P., et al. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 2010, 32:654-669.
    • (2010) Immunity , vol.32 , pp. 654-669
    • Blanchet, F.P.1
  • 83
    • 77955375856 scopus 로고    scopus 로고
    • HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3
    • Van Grol J., et al. HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3. PLoS ONE 2010, 5:e11733.
    • (2010) PLoS ONE , vol.5
    • Van Grol, J.1
  • 84
    • 65249090334 scopus 로고    scopus 로고
    • Autophagy is involved in influenza A virus replication
    • Zhou Z., et al. Autophagy is involved in influenza A virus replication. Autophagy 2009, 5:321-328.
    • (2009) Autophagy , vol.5 , pp. 321-328
    • Zhou, Z.1
  • 85
    • 84872594738 scopus 로고    scopus 로고
    • Functional macroautophagy induction by influenza A virus without a contribution to MHC-class II restricted presentation
    • Comber J.D., et al. Functional macroautophagy induction by influenza A virus without a contribution to MHC-class II restricted presentation. J. Virol. 2011, 482:414-418.
    • (2011) J. Virol. , vol.482 , pp. 414-418
    • Comber, J.D.1
  • 86
    • 64049114864 scopus 로고    scopus 로고
    • Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus
    • Shelly S., et al. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 2009, 30:588-598.
    • (2009) Immunity , vol.30 , pp. 588-598
    • Shelly, S.1
  • 87
    • 76249112828 scopus 로고    scopus 로고
    • Autophagy protects against Sindbis virus infection of the central nervous system
    • Orvedahl A., et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 2010, 7:115-127.
    • (2010) Cell Host Microbe , vol.7 , pp. 115-127
    • Orvedahl, A.1
  • 88
    • 33947715151 scopus 로고    scopus 로고
    • HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein
    • Orvedahl A., et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 2007, 1:23-35.
    • (2007) Cell Host Microbe , vol.1 , pp. 23-35
    • Orvedahl, A.1
  • 89
    • 73649092138 scopus 로고    scopus 로고
    • Viral Bcl-2-mediated evasion of autophagy aids chronic infection of gammaherpesvirus 68
    • E X., et al. Viral Bcl-2-mediated evasion of autophagy aids chronic infection of gammaherpesvirus 68. PLoS Pathog. 2009, 5:e1000609.
    • (2009) PLoS Pathog. , vol.5
    • E, X.1
  • 90
    • 70449529788 scopus 로고    scopus 로고
    • FLIP-mediated autophagy regulation in cell death control
    • Lee J.S., et al. FLIP-mediated autophagy regulation in cell death control. Nat. Cell Biol. 2009, 11:1355-1362.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1355-1362
    • Lee, J.S.1
  • 91
    • 33947134377 scopus 로고    scopus 로고
    • Autophagy-dependent viral recognition by plasmacytoid dendritic cells
    • Lee H.K., et al. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 2007, 315:1398-1401.
    • (2007) Science , vol.315 , pp. 1398-1401
    • Lee, H.K.1
  • 92
    • 62449110463 scopus 로고    scopus 로고
    • Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling
    • Tal M.C., et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:2770-2775.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 2770-2775
    • Tal, M.C.1
  • 93
    • 35348921764 scopus 로고    scopus 로고
    • The Atg5 Atg12 conjugate associates with innate antiviral immune responses
    • Jounai N., et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:14050-14055.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 14050-14055
    • Jounai, N.1
  • 94
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
    • Saitoh T., et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008, 456:264-268.
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1
  • 95
    • 78651393239 scopus 로고    scopus 로고
    • A role for mitochondria in NLRP3 inflammasome activation
    • Zhou R., et al. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469:221-225.
    • (2011) Nature , vol.469 , pp. 221-225
    • Zhou, R.1
  • 96
    • 84857195479 scopus 로고    scopus 로고
    • Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction
    • Shi C.S., et al. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 2012, 13:255-263.
    • (2012) Nat. Immunol. , vol.13 , pp. 255-263
    • Shi, C.S.1
  • 97
    • 20344361954 scopus 로고    scopus 로고
    • Autophagy promotes MHC class II presentation of peptides from intracellular source proteins
    • Dengjel J., et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:7922-7927.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 7922-7927
    • Dengjel, J.1
  • 98
    • 44849130871 scopus 로고    scopus 로고
    • First signature of islet {beta}-cell-derived naturally processed peptides selected by diabetogenic class II MHC molecules
    • Suri A., et al. First signature of islet {beta}-cell-derived naturally processed peptides selected by diabetogenic class II MHC molecules. J. Immunol. 2008, 180:3849-3856.
    • (2008) J. Immunol. , vol.180 , pp. 3849-3856
    • Suri, A.1
  • 99
    • 33846224369 scopus 로고    scopus 로고
    • MHC class II antigen loading compartments continuously receive input from autophagosomes
    • Schmid D., et al. MHC class II antigen loading compartments continuously receive input from autophagosomes. Immunity 2007, 26:79-92.
    • (2007) Immunity , vol.26 , pp. 79-92
    • Schmid, D.1
  • 100
    • 79955995581 scopus 로고    scopus 로고
    • Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy
    • van den Boorn J.G., et al. Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy. J. Invest. Dermatol. 2011, 131:1240-1251.
    • (2011) J. Invest. Dermatol. , vol.131 , pp. 1240-1251
    • van den Boorn, J.G.1
  • 101
    • 0029003999 scopus 로고
    • Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1
    • Levitskaya J., et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 1995, 375:685-688.
    • (1995) Nature , vol.375 , pp. 685-688
    • Levitskaya, J.1
  • 102
    • 0030775380 scopus 로고    scopus 로고
    • Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1
    • Levitskaya J., et al. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:12616-12621.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 12616-12621
    • Levitskaya, J.1
  • 103
    • 12844275079 scopus 로고    scopus 로고
    • Endogenous MHC class II processing of a viral nuclear antigen after autophagy
    • Paludan C., et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 2005, 307:593-596.
    • (2005) Science , vol.307 , pp. 593-596
    • Paludan, C.1
  • 104
    • 0037546559 scopus 로고    scopus 로고
    • + T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1
    • + T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. J. Exp. Med. 2000, 191:1649-1660.
    • (2000) J. Exp. Med. , vol.191 , pp. 1649-1660
    • Münz, C.1
  • 105
    • 76649105133 scopus 로고    scopus 로고
    • Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macroautophagy and the range of CD4 epitope display
    • Leung C.S., et al. Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macroautophagy and the range of CD4 epitope display. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:2165-2170.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 2165-2170
    • Leung, C.S.1
  • 106
    • 0037960005 scopus 로고    scopus 로고
    • Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy
    • Nimmerjahn F., et al. Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur. J. Immunol. 2003, 33:1250-1259.
    • (2003) Eur. J. Immunol. , vol.33 , pp. 1250-1259
    • Nimmerjahn, F.1
  • 107
    • 51149098813 scopus 로고    scopus 로고
    • Endogenous presentation of a nuclear antigen on MHC class II by autophagy in the absence of CRM1-mediated nuclear export
    • Riedel A., et al. Endogenous presentation of a nuclear antigen on MHC class II by autophagy in the absence of CRM1-mediated nuclear export. Eur. J. Immunol. 2008, 38:2090-2095.
    • (2008) Eur. J. Immunol. , vol.38 , pp. 2090-2095
    • Riedel, A.1
  • 108
    • 76949091325 scopus 로고    scopus 로고
    • In vivo requirement for Atg5 in antigen presentation by dendritic cells
    • Lee H.K., et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 2010, 32:227-239.
    • (2010) Immunity , vol.32 , pp. 227-239
    • Lee, H.K.1
  • 109
    • 80455122654 scopus 로고    scopus 로고
    • Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes
    • Florey O., et al. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat. Cell Biol. 2011, 13:1335-1343.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1335-1343
    • Florey, O.1
  • 110
    • 84855516226 scopus 로고    scopus 로고
    • Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells
    • Ireland J.M., Unanue E.R. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J. Exp. Med. 2011, 208:2625-2632.
    • (2011) J. Exp. Med. , vol.208 , pp. 2625-2632
    • Ireland, J.M.1    Unanue, E.R.2
  • 111
    • 33646165128 scopus 로고    scopus 로고
    • A central role for central tolerance
    • Kyewski B., Klein L. A central role for central tolerance. Annu. Rev. Immunol. 2006, 24:571-606.
    • (2006) Annu. Rev. Immunol. , vol.24 , pp. 571-606
    • Kyewski, B.1    Klein, L.2
  • 112
    • 0037112047 scopus 로고    scopus 로고
    • Projection of an immunological self shadow within the thymus by the aire protein
    • Anderson M.S., et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002, 298:1395-1401.
    • (2002) Science , vol.298 , pp. 1395-1401
    • Anderson, M.S.1
  • 113
    • 0034055693 scopus 로고    scopus 로고
    • Self-antigen presentation by thymic stromal cells: a subtle division of labor
    • Klein L., Kyewski B. Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr. Opin. Immunol. 2000, 12:179-186.
    • (2000) Curr. Opin. Immunol. , vol.12 , pp. 179-186
    • Klein, L.1    Kyewski, B.2
  • 114
    • 52149099867 scopus 로고    scopus 로고
    • Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance
    • Nedjic J., et al. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 2008, 455:396-400.
    • (2008) Nature , vol.455 , pp. 396-400
    • Nedjic, J.1
  • 115
    • 73349138896 scopus 로고    scopus 로고
    • Autophagic compartments gain access to the MHC class II compartments in thymic epithelium
    • Kasai M., et al. Autophagic compartments gain access to the MHC class II compartments in thymic epithelium. J. Immunol. 2009, 183:7278-7285.
    • (2009) J. Immunol. , vol.183 , pp. 7278-7285
    • Kasai, M.1
  • 116
    • 33846627302 scopus 로고    scopus 로고
    • A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1
    • Hampe J., et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 2007, 39:207-211.
    • (2007) Nat. Genet. , vol.39 , pp. 207-211
    • Hampe, J.1
  • 117
    • 34247554965 scopus 로고    scopus 로고
    • Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis
    • Rioux J.D., et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 2007, 39:596-604.
    • (2007) Nat. Genet. , vol.39 , pp. 596-604
    • Rioux, J.D.1
  • 118
    • 34347338690 scopus 로고    scopus 로고
    • Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility
    • Parkes M., et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Genet. 2007, 39:830-832.
    • (2007) Nat. Genet. , vol.39 , pp. 830-832
    • Parkes, M.1
  • 119
    • 50449091647 scopus 로고    scopus 로고
    • Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease
    • McCarroll S.A., et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat. Genet. 2008, 40:1107-1112.
    • (2008) Nat. Genet. , vol.40 , pp. 1107-1112
    • McCarroll, S.A.1
  • 120
    • 0035978651 scopus 로고    scopus 로고
    • Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease
    • Hugot J.P., et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001, 411:599-603.
    • (2001) Nature , vol.411 , pp. 599-603
    • Hugot, J.P.1
  • 121
    • 0035978533 scopus 로고    scopus 로고
    • A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease
    • Ogura Y., et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001, 411:603-606.
    • (2001) Nature , vol.411 , pp. 603-606
    • Ogura, Y.1
  • 122
    • 79952728102 scopus 로고    scopus 로고
    • The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance
    • Mortensen M., et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 2011, 208:455-467.
    • (2011) J. Exp. Med. , vol.208 , pp. 455-467
    • Mortensen, M.1
  • 123
    • 84856618999 scopus 로고    scopus 로고
    • Autophagy is required for self-renewal and differentiation of adult human stem cells
    • Salemi S., et al. Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res. 2012, 22:432-435.
    • (2012) Cell Res. , vol.22 , pp. 432-435
    • Salemi, S.1
  • 124
    • 33846461678 scopus 로고    scopus 로고
    • A critical role for the autophagy gene Atg5 in T cell survival and proliferation
    • Pua H.H., et al. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 2007, 204:25-31.
    • (2007) J. Exp. Med. , vol.204 , pp. 25-31
    • Pua, H.H.1
  • 125
    • 64249123646 scopus 로고    scopus 로고
    • Autophagy is essential for mitochondrial clearance in mature T lymphocytes
    • Pua H.H., et al. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 2009, 182:4046-4055.
    • (2009) J. Immunol. , vol.182 , pp. 4046-4055
    • Pua, H.H.1
  • 126
    • 79251534395 scopus 로고    scopus 로고
    • Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes
    • Jia W., et al. Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J. Immunol. 2011, 186:1564-1574.
    • (2011) J. Immunol. , vol.186 , pp. 1564-1574
    • Jia, W.1
  • 127
    • 41449106674 scopus 로고    scopus 로고
    • The autophagy gene ATG5 plays an essential role in B lymphocyte development
    • Miller B.C., et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 2008, 4:309-314.
    • (2008) Autophagy , vol.4 , pp. 309-314
    • Miller, B.C.1
  • 128
    • 79951821254 scopus 로고    scopus 로고
    • A role for autophagic protein Beclin 1 early in lymphocyte development
    • Arsov I., et al. A role for autophagic protein Beclin 1 early in lymphocyte development. J. Immunol. 2011, 186:2201-2209.
    • (2011) J. Immunol. , vol.186 , pp. 2201-2209
    • Arsov, I.1
  • 129
    • 77149152566 scopus 로고    scopus 로고
    • Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation
    • Manjithaya R., et al. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 2010, 188:537-546.
    • (2010) J. Cell Biol. , vol.188 , pp. 537-546
    • Manjithaya, R.1
  • 130
    • 77149155386 scopus 로고    scopus 로고
    • Unconventional secretion of Acb1 is mediated by autophagosomes
    • Duran J.M., et al. Unconventional secretion of Acb1 is mediated by autophagosomes. J. Cell Biol. 2010, 188:527-536.
    • (2010) J. Cell Biol. , vol.188 , pp. 527-536
    • Duran, J.M.1
  • 131
    • 82455210868 scopus 로고    scopus 로고
    • Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta
    • Dupont N., et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J. 2011, 30:4701-4711.
    • (2011) EMBO J. , vol.30 , pp. 4701-4711
    • Dupont, N.1
  • 132
  • 133
    • 52049102433 scopus 로고    scopus 로고
    • Efficient cross-presentation depends on autophagy in tumor cells
    • Li Y., et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 2008, 68:6889-6895.
    • (2008) Cancer Res. , vol.68 , pp. 6889-6895
    • Li, Y.1
  • 134
    • 67349269904 scopus 로고    scopus 로고
    • Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection
    • English L., et al. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat. Immunol. 2009, 10:480-487.
    • (2009) Nat. Immunol. , vol.10 , pp. 480-487
    • English, L.1
  • 135
    • 84859119158 scopus 로고    scopus 로고
    • Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation
    • Wenger T., et al. Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation. Autophagy 2012, 8:350-363.
    • (2012) Autophagy , vol.8 , pp. 350-363
    • Wenger, T.1
  • 136
    • 84860544922 scopus 로고    scopus 로고
    • + T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease
    • + T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. J. Clin. Invest. 2012, 122:1816-1831.
    • (2012) J. Clin. Invest. , vol.122 , pp. 1816-1831
    • Luca, A.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.