-
1
-
-
80054025654
-
The role of atg proteins in autophagosome formation
-
Mizushima N., et al. The role of atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011, 27:107-132.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
-
2
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
Mizushima N., Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011, 147:728-741.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
3
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
Wild P., et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011, 333:228-233.
-
(2011)
Science
, vol.333
, pp. 228-233
-
-
Wild, P.1
-
4
-
-
82555187810
-
Image-based genome-wide siRNA screen identifies selective autophagy factors
-
Orvedahl A., et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 2011, 480:113-117.
-
(2011)
Nature
, vol.480
, pp. 113-117
-
-
Orvedahl, A.1
-
5
-
-
84857071710
-
Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
-
Thurston T.L., et al. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 2012, 482:414-418.
-
(2012)
Nature
, vol.482
, pp. 414-418
-
-
Thurston, T.L.1
-
6
-
-
80655124407
-
A comprehensive glossary of autophagy-related molecules and processes (2nd edition)
-
Klionsky D.J., et al. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 2011, 7:1273-1294.
-
(2011)
Autophagy
, vol.7
, pp. 1273-1294
-
-
Klionsky, D.J.1
-
7
-
-
34447099450
-
Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
-
Nakatogawa H., et al. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 2007, 130:165-178.
-
(2007)
Cell
, vol.130
, pp. 165-178
-
-
Nakatogawa, H.1
-
8
-
-
77953122645
-
LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
-
Weidberg H., et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010, 29:1792-1802.
-
(2010)
EMBO J.
, vol.29
, pp. 1792-1802
-
-
Weidberg, H.1
-
9
-
-
79954544250
-
LC3 and GATE-16N termini mediate membrane fusion processes required for autophagosome biogenesis
-
Weidberg H., et al. LC3 and GATE-16N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 2011, 20:444-454.
-
(2011)
Dev. Cell
, vol.20
, pp. 444-454
-
-
Weidberg, H.1
-
10
-
-
71649087199
-
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
Hayashi-Nishino M., et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 2009, 11:1433-1437.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
-
11
-
-
71649112895
-
3D tomography reveals connections between the phagophore and endoplasmic reticulum
-
Yla-Anttila P., et al. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009, 5:1180-1185.
-
(2009)
Autophagy
, vol.5
, pp. 1180-1185
-
-
Yla-Anttila, P.1
-
12
-
-
77956414236
-
The origin of the autophagosomal membrane
-
Tooze S.A., Yoshimori T. The origin of the autophagosomal membrane. Nat. Cell Biol. 2010, 12:831-835.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 831-835
-
-
Tooze, S.A.1
Yoshimori, T.2
-
13
-
-
8344247016
-
Autophagy defends cells against invading group A Streptococcus
-
Nakagawa I., et al. Autophagy defends cells against invading group A Streptococcus. Science 2004, 306:1037-1040.
-
(2004)
Science
, vol.306
, pp. 1037-1040
-
-
Nakagawa, I.1
-
14
-
-
38349110486
-
Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles
-
Birmingham C.L., et al. Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 2008, 451:350-354.
-
(2008)
Nature
, vol.451
, pp. 350-354
-
-
Birmingham, C.L.1
-
15
-
-
79959874238
-
The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella
-
Kageyama S., et al. The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol. Biol. Cell 2011, 22:2290-2300.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 2290-2300
-
-
Kageyama, S.1
-
16
-
-
73549102459
-
An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7
-
Yamaguchi H., et al. An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7. PLoS Pathog. 2009, 5:e1000670.
-
(2009)
PLoS Pathog.
, vol.5
-
-
Yamaguchi, H.1
-
17
-
-
34548077575
-
Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
-
Kimura S., et al. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007, 3:452-460.
-
(2007)
Autophagy
, vol.3
, pp. 452-460
-
-
Kimura, S.1
-
18
-
-
74049126112
-
The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
-
Zheng Y.T., et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 2009, 183:5909-5916.
-
(2009)
J. Immunol.
, vol.183
, pp. 5909-5916
-
-
Zheng, Y.T.1
-
19
-
-
13244256806
-
Escape of intracellular Shigella from autophagy
-
Ogawa M., et al. Escape of intracellular Shigella from autophagy. Science 2005, 307:727-731.
-
(2005)
Science
, vol.307
, pp. 727-731
-
-
Ogawa, M.1
-
20
-
-
2342464290
-
Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system
-
Perrin A.J., et al. Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr. Biol. 2004, 14:806-811.
-
(2004)
Curr. Biol.
, vol.14
, pp. 806-811
-
-
Perrin, A.J.1
-
21
-
-
79952742148
-
Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity
-
Ng A.C., et al. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc. Natl. Acad. Sci. U.S.A. 2011, 108(Suppl. 1):4631-4638.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, Issue.SUPPL. 1
, pp. 4631-4638
-
-
Ng, A.C.1
-
22
-
-
47849094901
-
Autophagic control of listeria through intracellular innate immune recognition in drosophila
-
Yano T., et al. Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nat. Immunol. 2008, 9:908-916.
-
(2008)
Nat. Immunol.
, vol.9
, pp. 908-916
-
-
Yano, T.1
-
23
-
-
77953707119
-
Nod proteins link bacterial sensing and autophagy
-
Travassos L.H., et al. Nod proteins link bacterial sensing and autophagy. Autophagy 2010, 6:409-411.
-
(2010)
Autophagy
, vol.6
, pp. 409-411
-
-
Travassos, L.H.1
-
24
-
-
73849151394
-
NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
-
Cooney R., et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 2010, 16:90-97.
-
(2010)
Nat. Med.
, vol.16
, pp. 90-97
-
-
Cooney, R.1
-
25
-
-
77649194674
-
Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly
-
Lapaquette P., et al. Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell. Microbiol. 2010, 12:99-113.
-
(2010)
Cell. Microbiol.
, vol.12
, pp. 99-113
-
-
Lapaquette, P.1
-
26
-
-
67349258025
-
Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation
-
Rabinovich G.A., Toscano M.A. Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 2009, 9:338-352.
-
(2009)
Nat. Rev. Immunol.
, vol.9
, pp. 338-352
-
-
Rabinovich, G.A.1
Toscano, M.A.2
-
27
-
-
65649109738
-
Roles of galectins in infection
-
Vasta G.R. Roles of galectins in infection. Nat. Rev. Microbiol. 2009, 7:424-438.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 424-438
-
-
Vasta, G.R.1
-
28
-
-
68349143052
-
Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy
-
Dupont N., et al. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 2009, 6:137-149.
-
(2009)
Cell Host Microbe
, vol.6
, pp. 137-149
-
-
Dupont, N.1
-
29
-
-
77954271859
-
Galectin-3, a marker for vacuole lysis by invasive pathogens
-
Paz I., et al. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell. Microbiol. 2010, 12:530-544.
-
(2010)
Cell. Microbiol.
, vol.12
, pp. 530-544
-
-
Paz, I.1
-
30
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7:279-296.
-
(2011)
Autophagy
, vol.7
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
31
-
-
79960670161
-
P62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways
-
Mostowy S., et al. p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J. Biol. Chem. 2011, 286:26987-26995.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 26987-26995
-
-
Mostowy, S.1
-
32
-
-
70350450808
-
The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
-
Thurston T.L., et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 2009, 10:1215-1221.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1215-1221
-
-
Thurston, T.L.1
-
33
-
-
34047222189
-
TBK1 protects vacuolar integrity during intracellular bacterial infection
-
Radtke A.L., et al. TBK1 protects vacuolar integrity during intracellular bacterial infection. PLoS Pathog. 2007, 3:e29.
-
(2007)
PLoS Pathog.
, vol.3
-
-
Radtke, A.L.1
-
34
-
-
10744221904
-
Identification of NAP1, a regulatory subunit of IkappaB kinase-related kinases that potentiates NF-kappaB signaling
-
Fujita F., et al. Identification of NAP1, a regulatory subunit of IkappaB kinase-related kinases that potentiates NF-kappaB signaling. Mol. Cell. Biol. 2003, 23:7780-7793.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 7780-7793
-
-
Fujita, F.1
-
35
-
-
34447342317
-
SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK
-
Ryzhakov G., Randow F. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J. 2007, 26:3180-3190.
-
(2007)
EMBO J.
, vol.26
, pp. 3180-3190
-
-
Ryzhakov, G.1
Randow, F.2
-
36
-
-
79952348751
-
The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway
-
Cemma M., et al. The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy 2011, 7:341-345.
-
(2011)
Autophagy
, vol.7
, pp. 341-345
-
-
Cemma, M.1
-
37
-
-
40149097099
-
Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma
-
Morton S., et al. Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma. FEBS Lett. 2008, 582:997-1002.
-
(2008)
FEBS Lett.
, vol.582
, pp. 997-1002
-
-
Morton, S.1
-
38
-
-
34250802980
-
Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy
-
Alonso S., et al. Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:6031-6036.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 6031-6036
-
-
Alonso, S.1
-
39
-
-
77949997805
-
Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties
-
Ponpuak M., et al. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 2010, 32:329-341.
-
(2010)
Immunity
, vol.32
, pp. 329-341
-
-
Ponpuak, M.1
-
40
-
-
77950903972
-
The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy
-
Filimonenko M., et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol. Cell 2010, 38:265-279.
-
(2010)
Mol. Cell
, vol.38
, pp. 265-279
-
-
Filimonenko, M.1
-
41
-
-
67549132527
-
The late stages of autophagy: how does the end begin?
-
Noda T., et al. The late stages of autophagy: how does the end begin?. Cell Death Differ. 2009, 16:984-990.
-
(2009)
Cell Death Differ.
, vol.16
, pp. 984-990
-
-
Noda, T.1
-
42
-
-
37549043217
-
Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
-
Sanjuan M.A., et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007, 450:1253-1257.
-
(2007)
Nature
, vol.450
, pp. 1253-1257
-
-
Sanjuan, M.A.1
-
43
-
-
80054825045
-
Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells
-
Martinez J., et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:17396-17401.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 17396-17401
-
-
Martinez, J.1
-
44
-
-
10944253145
-
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
-
Gutierrez M.G., et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004, 119:753-766.
-
(2004)
Cell
, vol.119
, pp. 753-766
-
-
Gutierrez, M.G.1
-
45
-
-
79952613917
-
The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis
-
Gong L., et al. The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis. PLoS ONE 2011, 6:e17852.
-
(2011)
PLoS ONE
, vol.6
-
-
Gong, L.1
-
46
-
-
50249111985
-
Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines
-
Cullinane M., et al. Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines. Autophagy 2008, 4:744-753.
-
(2008)
Autophagy
, vol.4
, pp. 744-753
-
-
Cullinane, M.1
-
47
-
-
80052311756
-
Role for the Burkholderia pseudomallei type three secretion system cluster 1 bpscN gene in virulence
-
D'Cruze T., et al. Role for the Burkholderia pseudomallei type three secretion system cluster 1 bpscN gene in virulence. Infect. Immun. 2011, 79:3659-3664.
-
(2011)
Infect. Immun.
, vol.79
, pp. 3659-3664
-
-
D'Cruze, T.1
-
48
-
-
65549094988
-
Activation of antibacterial autophagy by NADPH oxidases
-
Huang J., et al. Activation of antibacterial autophagy by NADPH oxidases. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:6226-6231.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 6226-6231
-
-
Huang, J.1
-
49
-
-
77956310643
-
A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy
-
Shahnazari S., et al. A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe 2010, 8:137-146.
-
(2010)
Cell Host Microbe
, vol.8
, pp. 137-146
-
-
Shahnazari, S.1
-
50
-
-
55249109400
-
Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
-
Zhao Z., et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 2008, 4:458-469.
-
(2008)
Cell Host Microbe
, vol.4
, pp. 458-469
-
-
Zhao, Z.1
-
51
-
-
34548067415
-
Listeria monocytogenes evades killing by autophagy during colonization of host cells
-
Birmingham C.L., et al. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 2007, 3:442-451.
-
(2007)
Autophagy
, vol.3
, pp. 442-451
-
-
Birmingham, C.L.1
-
52
-
-
33947416152
-
Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection
-
Py B.F., et al. Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 2007, 3:117-125.
-
(2007)
Autophagy
, vol.3
, pp. 117-125
-
-
Py, B.F.1
-
53
-
-
70349652310
-
Listeria monocytogenes ActA-mediated escape from autophagic recognition
-
Yoshikawa Y., et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat. Cell Biol. 2009, 11:1233-1240.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1233-1240
-
-
Yoshikawa, Y.1
-
54
-
-
80052337539
-
Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy
-
Dortet L., et al. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog. 2011, 7:e1002168.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Dortet, L.1
-
55
-
-
73849121209
-
Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
-
Travassos L.H., et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 2010, 11:55-62.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 55-62
-
-
Travassos, L.H.1
-
56
-
-
78349239252
-
Entrapment of intracytosolic bacteria by septin cage-like structures
-
Mostowy S., et al. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 2010, 8:433-444.
-
(2010)
Cell Host Microbe
, vol.8
, pp. 433-444
-
-
Mostowy, S.1
-
57
-
-
75149167986
-
Alpha-hemolysin is required for the activation of the autophagic pathway in Staphylococcus aureus-infected cells
-
Mestre M.B., et al. Alpha-hemolysin is required for the activation of the autophagic pathway in Staphylococcus aureus-infected cells. Autophagy 2010, 6:110-125.
-
(2010)
Autophagy
, vol.6
, pp. 110-125
-
-
Mestre, M.B.1
-
58
-
-
34047271297
-
Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death
-
Schnaith A., et al. Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J. Biol. Chem. 2007, 282:2695-2706.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 2695-2706
-
-
Schnaith, A.1
-
59
-
-
77953019211
-
Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages
-
Moreau K., et al. Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. Cell. Microbiol. 2010, 12:1108-1123.
-
(2010)
Cell. Microbiol.
, vol.12
, pp. 1108-1123
-
-
Moreau, K.1
-
60
-
-
66549126665
-
Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification
-
Pujol C., et al. Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect. Immun. 2009, 77:2251-2261.
-
(2009)
Infect. Immun.
, vol.77
, pp. 2251-2261
-
-
Pujol, C.1
-
61
-
-
38849200959
-
Subversion of cellular autophagy by Anaplasma phagocytophilum
-
Niu H., et al. Subversion of cellular autophagy by Anaplasma phagocytophilum. Cell. Microbiol. 2008, 10:593-605.
-
(2008)
Cell. Microbiol.
, vol.10
, pp. 593-605
-
-
Niu, H.1
-
62
-
-
84856010816
-
Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle
-
Starr T., et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 2012, 11:33-45.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 33-45
-
-
Starr, T.1
-
63
-
-
67249156625
-
Atg5-independent sequestration of ubiquitinated mycobacteria
-
Collins C.A., et al. Atg5-independent sequestration of ubiquitinated mycobacteria. PLoS Pathog. 2009, 5:e1000430.
-
(2009)
PLoS Pathog.
, vol.5
-
-
Collins, C.A.1
-
64
-
-
70349687405
-
Discovery of Atg5/Atg7-independent alternative macroautophagy
-
Nishida Y., et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009, 461:654-658.
-
(2009)
Nature
, vol.461
, pp. 654-658
-
-
Nishida, Y.1
-
65
-
-
33749264796
-
Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication
-
Checroun C., et al. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:14578-14583.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 14578-14583
-
-
Checroun, C.1
-
66
-
-
0000730374
-
Cytoplasmic components in hepatic cell lysosomes
-
Ashford T.P., Porter K.R. Cytoplasmic components in hepatic cell lysosomes. J. Cell Biol. 1962, 12:198-202.
-
(1962)
J. Cell Biol.
, vol.12
, pp. 198-202
-
-
Ashford, T.P.1
Porter, K.R.2
-
67
-
-
0000115806
-
Electron microscopic study of the formation of poliovirus
-
Dales S., et al. Electron microscopic study of the formation of poliovirus. Virology 1965, 26:379-389.
-
(1965)
Virology
, vol.26
, pp. 379-389
-
-
Dales, S.1
-
68
-
-
36049014444
-
Modification of cellular autophagy protein LC3 by poliovirus
-
Taylor M.P., Kirkegaard K. Modification of cellular autophagy protein LC3 by poliovirus. J. Virol. 2007, 81:12543-12553.
-
(2007)
J. Virol.
, vol.81
, pp. 12543-12553
-
-
Taylor, M.P.1
Kirkegaard, K.2
-
69
-
-
21344452171
-
Subversion of cellular autophagosomal machinery by RNA viruses
-
Jackson W.T., et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 2005, 3:e156.
-
(2005)
PLoS Biol.
, vol.3
-
-
Jackson, W.T.1
-
70
-
-
77952557130
-
Viral interactions with macroautophagy: a double-edged sword
-
Lin L.T., et al. Viral interactions with macroautophagy: a double-edged sword. Virology 2010, 402:1-10.
-
(2010)
Virology
, vol.402
, pp. 1-10
-
-
Lin, L.T.1
-
71
-
-
1642280930
-
Coronavirus replication complex formation utilizes components of cellular autophagy
-
Prentice E., et al. Coronavirus replication complex formation utilizes components of cellular autophagy. J. Biol. Chem. 2004, 279:10136-10141.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 10136-10141
-
-
Prentice, E.1
-
72
-
-
35848954083
-
Coronavirus replication does not require the autophagy gene ATG5
-
Zhao Z., et al. Coronavirus replication does not require the autophagy gene ATG5. Autophagy 2007, 3:581-585.
-
(2007)
Autophagy
, vol.3
, pp. 581-585
-
-
Zhao, Z.1
-
73
-
-
39749116856
-
Hepatitis C virus genotype 1a growth and induction of autophagy
-
Ait-Goughoulte M., et al. Hepatitis C virus genotype 1a growth and induction of autophagy. J. Virol. 2008, 82:2241-2249.
-
(2008)
J. Virol.
, vol.82
, pp. 2241-2249
-
-
Ait-Goughoulte, M.1
-
74
-
-
54449101892
-
Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response
-
Sir D., et al. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 2008, 48:1054-1061.
-
(2008)
Hepatology
, vol.48
, pp. 1054-1061
-
-
Sir, D.1
-
75
-
-
33845480131
-
Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response
-
Bernales S., et al. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 2006, 4:e423.
-
(2006)
PLoS Biol.
, vol.4
-
-
Bernales, S.1
-
76
-
-
84855293818
-
IRGM is a common target of RNA viruses that subvert the autophagy network
-
Gregoire I.P., et al. IRGM is a common target of RNA viruses that subvert the autophagy network. PLoS Pathog. 2011, 7:e1002422.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Gregoire, I.P.1
-
77
-
-
69549135689
-
The autophagy machinery is required to initiate hepatitis C virus replication
-
Dreux M., et al. The autophagy machinery is required to initiate hepatitis C virus replication. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:14046-14051.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 14046-14051
-
-
Dreux, M.1
-
78
-
-
78349237370
-
Dengue virus-induced autophagy regulates lipid metabolism
-
Heaton N.S., Randall G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 2010, 8:422-432.
-
(2010)
Cell Host Microbe
, vol.8
, pp. 422-432
-
-
Heaton, N.S.1
Randall, G.2
-
79
-
-
67449097826
-
Role of microtubules in extracellular release of poliovirus
-
Taylor M.P., et al. Role of microtubules in extracellular release of poliovirus. J. Virol. 2009, 83:6599-6609.
-
(2009)
J. Virol.
, vol.83
, pp. 6599-6609
-
-
Taylor, M.P.1
-
80
-
-
67649585835
-
Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages
-
Kyei G.B., et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J. Cell Biol. 2009, 186:255-268.
-
(2009)
J. Cell Biol.
, vol.186
, pp. 255-268
-
-
Kyei, G.B.1
-
81
-
-
72649105081
-
Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes
-
Gannage M., et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 2009, 6:367-380.
-
(2009)
Cell Host Microbe
, vol.6
, pp. 367-380
-
-
Gannage, M.1
-
82
-
-
77953272740
-
Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses
-
Blanchet F.P., et al. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 2010, 32:654-669.
-
(2010)
Immunity
, vol.32
, pp. 654-669
-
-
Blanchet, F.P.1
-
83
-
-
77955375856
-
HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3
-
Van Grol J., et al. HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3. PLoS ONE 2010, 5:e11733.
-
(2010)
PLoS ONE
, vol.5
-
-
Van Grol, J.1
-
84
-
-
65249090334
-
Autophagy is involved in influenza A virus replication
-
Zhou Z., et al. Autophagy is involved in influenza A virus replication. Autophagy 2009, 5:321-328.
-
(2009)
Autophagy
, vol.5
, pp. 321-328
-
-
Zhou, Z.1
-
85
-
-
84872594738
-
Functional macroautophagy induction by influenza A virus without a contribution to MHC-class II restricted presentation
-
Comber J.D., et al. Functional macroautophagy induction by influenza A virus without a contribution to MHC-class II restricted presentation. J. Virol. 2011, 482:414-418.
-
(2011)
J. Virol.
, vol.482
, pp. 414-418
-
-
Comber, J.D.1
-
86
-
-
64049114864
-
Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus
-
Shelly S., et al. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 2009, 30:588-598.
-
(2009)
Immunity
, vol.30
, pp. 588-598
-
-
Shelly, S.1
-
87
-
-
76249112828
-
Autophagy protects against Sindbis virus infection of the central nervous system
-
Orvedahl A., et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 2010, 7:115-127.
-
(2010)
Cell Host Microbe
, vol.7
, pp. 115-127
-
-
Orvedahl, A.1
-
88
-
-
33947715151
-
HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein
-
Orvedahl A., et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 2007, 1:23-35.
-
(2007)
Cell Host Microbe
, vol.1
, pp. 23-35
-
-
Orvedahl, A.1
-
89
-
-
73649092138
-
Viral Bcl-2-mediated evasion of autophagy aids chronic infection of gammaherpesvirus 68
-
E X., et al. Viral Bcl-2-mediated evasion of autophagy aids chronic infection of gammaherpesvirus 68. PLoS Pathog. 2009, 5:e1000609.
-
(2009)
PLoS Pathog.
, vol.5
-
-
E, X.1
-
90
-
-
70449529788
-
FLIP-mediated autophagy regulation in cell death control
-
Lee J.S., et al. FLIP-mediated autophagy regulation in cell death control. Nat. Cell Biol. 2009, 11:1355-1362.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1355-1362
-
-
Lee, J.S.1
-
91
-
-
33947134377
-
Autophagy-dependent viral recognition by plasmacytoid dendritic cells
-
Lee H.K., et al. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 2007, 315:1398-1401.
-
(2007)
Science
, vol.315
, pp. 1398-1401
-
-
Lee, H.K.1
-
92
-
-
62449110463
-
Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling
-
Tal M.C., et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:2770-2775.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 2770-2775
-
-
Tal, M.C.1
-
93
-
-
35348921764
-
The Atg5 Atg12 conjugate associates with innate antiviral immune responses
-
Jounai N., et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:14050-14055.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 14050-14055
-
-
Jounai, N.1
-
94
-
-
56249090667
-
Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
-
Saitoh T., et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008, 456:264-268.
-
(2008)
Nature
, vol.456
, pp. 264-268
-
-
Saitoh, T.1
-
95
-
-
78651393239
-
A role for mitochondria in NLRP3 inflammasome activation
-
Zhou R., et al. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469:221-225.
-
(2011)
Nature
, vol.469
, pp. 221-225
-
-
Zhou, R.1
-
96
-
-
84857195479
-
Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction
-
Shi C.S., et al. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 2012, 13:255-263.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 255-263
-
-
Shi, C.S.1
-
97
-
-
20344361954
-
Autophagy promotes MHC class II presentation of peptides from intracellular source proteins
-
Dengjel J., et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:7922-7927.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 7922-7927
-
-
Dengjel, J.1
-
98
-
-
44849130871
-
First signature of islet {beta}-cell-derived naturally processed peptides selected by diabetogenic class II MHC molecules
-
Suri A., et al. First signature of islet {beta}-cell-derived naturally processed peptides selected by diabetogenic class II MHC molecules. J. Immunol. 2008, 180:3849-3856.
-
(2008)
J. Immunol.
, vol.180
, pp. 3849-3856
-
-
Suri, A.1
-
99
-
-
33846224369
-
MHC class II antigen loading compartments continuously receive input from autophagosomes
-
Schmid D., et al. MHC class II antigen loading compartments continuously receive input from autophagosomes. Immunity 2007, 26:79-92.
-
(2007)
Immunity
, vol.26
, pp. 79-92
-
-
Schmid, D.1
-
100
-
-
79955995581
-
Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy
-
van den Boorn J.G., et al. Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy. J. Invest. Dermatol. 2011, 131:1240-1251.
-
(2011)
J. Invest. Dermatol.
, vol.131
, pp. 1240-1251
-
-
van den Boorn, J.G.1
-
101
-
-
0029003999
-
Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1
-
Levitskaya J., et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 1995, 375:685-688.
-
(1995)
Nature
, vol.375
, pp. 685-688
-
-
Levitskaya, J.1
-
102
-
-
0030775380
-
Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1
-
Levitskaya J., et al. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:12616-12621.
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 12616-12621
-
-
Levitskaya, J.1
-
103
-
-
12844275079
-
Endogenous MHC class II processing of a viral nuclear antigen after autophagy
-
Paludan C., et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 2005, 307:593-596.
-
(2005)
Science
, vol.307
, pp. 593-596
-
-
Paludan, C.1
-
104
-
-
0037546559
-
+ T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1
-
+ T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. J. Exp. Med. 2000, 191:1649-1660.
-
(2000)
J. Exp. Med.
, vol.191
, pp. 1649-1660
-
-
Münz, C.1
-
105
-
-
76649105133
-
Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macroautophagy and the range of CD4 epitope display
-
Leung C.S., et al. Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macroautophagy and the range of CD4 epitope display. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:2165-2170.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 2165-2170
-
-
Leung, C.S.1
-
106
-
-
0037960005
-
Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy
-
Nimmerjahn F., et al. Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur. J. Immunol. 2003, 33:1250-1259.
-
(2003)
Eur. J. Immunol.
, vol.33
, pp. 1250-1259
-
-
Nimmerjahn, F.1
-
107
-
-
51149098813
-
Endogenous presentation of a nuclear antigen on MHC class II by autophagy in the absence of CRM1-mediated nuclear export
-
Riedel A., et al. Endogenous presentation of a nuclear antigen on MHC class II by autophagy in the absence of CRM1-mediated nuclear export. Eur. J. Immunol. 2008, 38:2090-2095.
-
(2008)
Eur. J. Immunol.
, vol.38
, pp. 2090-2095
-
-
Riedel, A.1
-
108
-
-
76949091325
-
In vivo requirement for Atg5 in antigen presentation by dendritic cells
-
Lee H.K., et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 2010, 32:227-239.
-
(2010)
Immunity
, vol.32
, pp. 227-239
-
-
Lee, H.K.1
-
109
-
-
80455122654
-
Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes
-
Florey O., et al. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat. Cell Biol. 2011, 13:1335-1343.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1335-1343
-
-
Florey, O.1
-
110
-
-
84855516226
-
Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells
-
Ireland J.M., Unanue E.R. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J. Exp. Med. 2011, 208:2625-2632.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 2625-2632
-
-
Ireland, J.M.1
Unanue, E.R.2
-
111
-
-
33646165128
-
A central role for central tolerance
-
Kyewski B., Klein L. A central role for central tolerance. Annu. Rev. Immunol. 2006, 24:571-606.
-
(2006)
Annu. Rev. Immunol.
, vol.24
, pp. 571-606
-
-
Kyewski, B.1
Klein, L.2
-
112
-
-
0037112047
-
Projection of an immunological self shadow within the thymus by the aire protein
-
Anderson M.S., et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002, 298:1395-1401.
-
(2002)
Science
, vol.298
, pp. 1395-1401
-
-
Anderson, M.S.1
-
113
-
-
0034055693
-
Self-antigen presentation by thymic stromal cells: a subtle division of labor
-
Klein L., Kyewski B. Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr. Opin. Immunol. 2000, 12:179-186.
-
(2000)
Curr. Opin. Immunol.
, vol.12
, pp. 179-186
-
-
Klein, L.1
Kyewski, B.2
-
114
-
-
52149099867
-
Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance
-
Nedjic J., et al. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 2008, 455:396-400.
-
(2008)
Nature
, vol.455
, pp. 396-400
-
-
Nedjic, J.1
-
115
-
-
73349138896
-
Autophagic compartments gain access to the MHC class II compartments in thymic epithelium
-
Kasai M., et al. Autophagic compartments gain access to the MHC class II compartments in thymic epithelium. J. Immunol. 2009, 183:7278-7285.
-
(2009)
J. Immunol.
, vol.183
, pp. 7278-7285
-
-
Kasai, M.1
-
116
-
-
33846627302
-
A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1
-
Hampe J., et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 2007, 39:207-211.
-
(2007)
Nat. Genet.
, vol.39
, pp. 207-211
-
-
Hampe, J.1
-
117
-
-
34247554965
-
Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis
-
Rioux J.D., et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 2007, 39:596-604.
-
(2007)
Nat. Genet.
, vol.39
, pp. 596-604
-
-
Rioux, J.D.1
-
118
-
-
34347338690
-
Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility
-
Parkes M., et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Genet. 2007, 39:830-832.
-
(2007)
Nat. Genet.
, vol.39
, pp. 830-832
-
-
Parkes, M.1
-
119
-
-
50449091647
-
Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease
-
McCarroll S.A., et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat. Genet. 2008, 40:1107-1112.
-
(2008)
Nat. Genet.
, vol.40
, pp. 1107-1112
-
-
McCarroll, S.A.1
-
120
-
-
0035978651
-
Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease
-
Hugot J.P., et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001, 411:599-603.
-
(2001)
Nature
, vol.411
, pp. 599-603
-
-
Hugot, J.P.1
-
121
-
-
0035978533
-
A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease
-
Ogura Y., et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001, 411:603-606.
-
(2001)
Nature
, vol.411
, pp. 603-606
-
-
Ogura, Y.1
-
122
-
-
79952728102
-
The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance
-
Mortensen M., et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 2011, 208:455-467.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 455-467
-
-
Mortensen, M.1
-
123
-
-
84856618999
-
Autophagy is required for self-renewal and differentiation of adult human stem cells
-
Salemi S., et al. Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res. 2012, 22:432-435.
-
(2012)
Cell Res.
, vol.22
, pp. 432-435
-
-
Salemi, S.1
-
124
-
-
33846461678
-
A critical role for the autophagy gene Atg5 in T cell survival and proliferation
-
Pua H.H., et al. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 2007, 204:25-31.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 25-31
-
-
Pua, H.H.1
-
125
-
-
64249123646
-
Autophagy is essential for mitochondrial clearance in mature T lymphocytes
-
Pua H.H., et al. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 2009, 182:4046-4055.
-
(2009)
J. Immunol.
, vol.182
, pp. 4046-4055
-
-
Pua, H.H.1
-
126
-
-
79251534395
-
Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes
-
Jia W., et al. Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J. Immunol. 2011, 186:1564-1574.
-
(2011)
J. Immunol.
, vol.186
, pp. 1564-1574
-
-
Jia, W.1
-
127
-
-
41449106674
-
The autophagy gene ATG5 plays an essential role in B lymphocyte development
-
Miller B.C., et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 2008, 4:309-314.
-
(2008)
Autophagy
, vol.4
, pp. 309-314
-
-
Miller, B.C.1
-
128
-
-
79951821254
-
A role for autophagic protein Beclin 1 early in lymphocyte development
-
Arsov I., et al. A role for autophagic protein Beclin 1 early in lymphocyte development. J. Immunol. 2011, 186:2201-2209.
-
(2011)
J. Immunol.
, vol.186
, pp. 2201-2209
-
-
Arsov, I.1
-
129
-
-
77149152566
-
Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation
-
Manjithaya R., et al. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 2010, 188:537-546.
-
(2010)
J. Cell Biol.
, vol.188
, pp. 537-546
-
-
Manjithaya, R.1
-
130
-
-
77149155386
-
Unconventional secretion of Acb1 is mediated by autophagosomes
-
Duran J.M., et al. Unconventional secretion of Acb1 is mediated by autophagosomes. J. Cell Biol. 2010, 188:527-536.
-
(2010)
J. Cell Biol.
, vol.188
, pp. 527-536
-
-
Duran, J.M.1
-
131
-
-
82455210868
-
Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta
-
Dupont N., et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J. 2011, 30:4701-4711.
-
(2011)
EMBO J.
, vol.30
, pp. 4701-4711
-
-
Dupont, N.1
-
133
-
-
52049102433
-
Efficient cross-presentation depends on autophagy in tumor cells
-
Li Y., et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 2008, 68:6889-6895.
-
(2008)
Cancer Res.
, vol.68
, pp. 6889-6895
-
-
Li, Y.1
-
134
-
-
67349269904
-
Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection
-
English L., et al. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat. Immunol. 2009, 10:480-487.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 480-487
-
-
English, L.1
-
135
-
-
84859119158
-
Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation
-
Wenger T., et al. Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation. Autophagy 2012, 8:350-363.
-
(2012)
Autophagy
, vol.8
, pp. 350-363
-
-
Wenger, T.1
-
136
-
-
84860544922
-
+ T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease
-
+ T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. J. Clin. Invest. 2012, 122:1816-1831.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 1816-1831
-
-
Luca, A.D.1
|