메뉴 건너뛰기




Volumn 42, Issue 1, 2017, Pages 28-41

Emerging Mechanisms in Initiating and Terminating Autophagy

Author keywords

AMBRA1; BECLIN 1; CULLIN; Exocyst; IRGM.; TRAF6; TRIM; ULK1

Indexed keywords

ADENYLATE KINASE; BECLIN 1; CULLIN; DEUBIQUITINASE; GUANOSINE TRIPHOSPHATASE; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; PEPTIDES AND PROTEINS; PROTEIN BCL 2; PROTEIN IRGM; PROTEIN TRIM; PROTEIN ULK1; TRIPARTITE MOTIF PROTEIN; UBIQUITIN PROTEIN LIGASE E3; UNCLASSIFIED DRUG; UBIQUITIN PROTEIN LIGASE;

EID: 85005769276     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2016.09.008     Document Type: Review
Times cited : (219)

References (105)
  • 1
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: renovation of cells and tissues
    • 1 Mizushima, N., Komatsu, M., Autophagy: renovation of cells and tissues. Cell 147 (2011), 728–741.
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 2
    • 84873660610 scopus 로고    scopus 로고
    • Autophagy in human health and disease
    • 2 Choi, A.M., et al. Autophagy in human health and disease. N. Engl. J. Med. 368 (2013), 1845–1846.
    • (2013) N. Engl. J. Med. , vol.368 , pp. 1845-1846
    • Choi, A.M.1
  • 3
    • 84923562561 scopus 로고    scopus 로고
    • Metabolic control of autophagy
    • 3 Galluzzi, L., et al. Metabolic control of autophagy. Cell 159 (2014), 1263–1276.
    • (2014) Cell , vol.159 , pp. 1263-1276
    • Galluzzi, L.1
  • 4
    • 84886797274 scopus 로고    scopus 로고
    • Autophagy in infection, inflammation and immunity
    • 4 Deretic, V., et al. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13 (2013), 722–737.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 722-737
    • Deretic, V.1
  • 5
    • 84926331325 scopus 로고    scopus 로고
    • The divergent roles of autophagy in ischemia and preconditioning
    • 5 Sheng, R., Qin, Z.H., The divergent roles of autophagy in ischemia and preconditioning. Acta Pharmacol. Sin. 36 (2015), 411–420.
    • (2015) Acta Pharmacol. Sin. , vol.36 , pp. 411-420
    • Sheng, R.1    Qin, Z.H.2
  • 6
    • 84923351636 scopus 로고    scopus 로고
    • Posttranslational modification of autophagy-related proteins in macroautophagy
    • 6 Xie, Y., et al. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 11 (2015), 28–45.
    • (2015) Autophagy , vol.11 , pp. 28-45
    • Xie, Y.1
  • 7
    • 84888380983 scopus 로고    scopus 로고
    • The autophagosome: origins unknown, biogenesis complex
    • 7 Lamb, C.A., et al. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14 (2013), 759–774.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 759-774
    • Lamb, C.A.1
  • 8
    • 84958958214 scopus 로고    scopus 로고
    • Structure and function of the ULK1 complex in autophagy
    • 8 Lin, M.G., Hurley, J.H., Structure and function of the ULK1 complex in autophagy. Curr. Opin. Cell Biol. 39 (2016), 61–68.
    • (2016) Curr. Opin. Cell Biol. , vol.39 , pp. 61-68
    • Lin, M.G.1    Hurley, J.H.2
  • 9
    • 77951221542 scopus 로고    scopus 로고
    • The role of the Atg1/ULK1 complex in autophagy regulation
    • 9 Mizushima, N., The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22 (2010), 132–139.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 132-139
    • Mizushima, N.1
  • 10
    • 84940467196 scopus 로고    scopus 로고
    • Beclin orthologs: integrative hubs of cell signaling, membrane trafficking, and physiology
    • 10 Levine, B., et al. Beclin orthologs: integrative hubs of cell signaling, membrane trafficking, and physiology. Trends Cell Biol. 25 (2015), 533–544.
    • (2015) Trends Cell Biol. , vol.25 , pp. 533-544
    • Levine, B.1
  • 11
    • 84943665694 scopus 로고    scopus 로고
    • Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex
    • 11 Baskaran, S., et al. Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex. Elife, 3, 2014, e05115.
    • (2014) Elife , vol.3 , pp. e05115
    • Baskaran, S.1
  • 12
    • 84961944001 scopus 로고    scopus 로고
    • Digesting the expanding mechanisms of autophagy
    • 12 Ktistakis, N.T., Tooze, S.A., Digesting the expanding mechanisms of autophagy. Trends Cell Biol. 26 (2016), 624–635.
    • (2016) Trends Cell Biol. , vol.26 , pp. 624-635
    • Ktistakis, N.T.1    Tooze, S.A.2
  • 13
    • 84875365804 scopus 로고    scopus 로고
    • Autophagosomes form at ER–mitochondria contact sites
    • 13 Hamasaki, M., et al. Autophagosomes form at ER–mitochondria contact sites. Nature 495 (2013), 389–393.
    • (2013) Nature , vol.495 , pp. 389-393
    • Hamasaki, M.1
  • 14
    • 84927720203 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER–Golgi intermediate compartment
    • 14 Ge, L., et al. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER–Golgi intermediate compartment. Elife, 3, 2014, e04135.
    • (2014) Elife , vol.3 , pp. e04135
    • Ge, L.1
  • 15
    • 84864991509 scopus 로고    scopus 로고
    • Atg9 vesicles are an important membrane source during early steps of autophagosome formation
    • 15 Yamamoto, H., et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198 (2012), 219–233.
    • (2012) J. Cell Biol. , vol.198 , pp. 219-233
    • Yamamoto, H.1
  • 16
    • 80054025654 scopus 로고    scopus 로고
    • The role of Atg proteins in autophagosome formation
    • 16 Mizushima, N., et al. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27 (2011), 107–132.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 107-132
    • Mizushima, N.1
  • 17
    • 84904575441 scopus 로고    scopus 로고
    • WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1
    • 17 Dooley, H.C., et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55 (2014), 238–252.
    • (2014) Mol. Cell , vol.55 , pp. 238-252
    • Dooley, H.C.1
  • 18
    • 34447099450 scopus 로고    scopus 로고
    • Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
    • 18 Nakatogawa, H., et al. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130 (2007), 165–178.
    • (2007) Cell , vol.130 , pp. 165-178
    • Nakatogawa, H.1
  • 19
    • 84892859905 scopus 로고    scopus 로고
    • Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
    • 19 Rogov, V., et al. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 53 (2014), 167–178.
    • (2014) Mol. Cell , vol.53 , pp. 167-178
    • Rogov, V.1
  • 20
    • 84946234468 scopus 로고    scopus 로고
    • Autophagy and proteins involved in vesicular trafficking
    • 20 Amaya, C., et al. Autophagy and proteins involved in vesicular trafficking. FEBS Lett. 589 (2015), 3343–3353.
    • (2015) FEBS Lett. , vol.589 , pp. 3343-3353
    • Amaya, C.1
  • 21
    • 84920984853 scopus 로고    scopus 로고
    • PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection
    • 21 McEwan, D.G., et al. PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection. Cell. Host Microbe 17 (2015), 58–71.
    • (2015) Cell. Host Microbe , vol.17 , pp. 58-71
    • McEwan, D.G.1
  • 22
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • 22 Itakura, E., et al. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151 (2012), 1256–1269.
    • (2012) Cell , vol.151 , pp. 1256-1269
    • Itakura, E.1
  • 23
    • 46449120732 scopus 로고    scopus 로고
    • Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking
    • 23 Liang, C., et al. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat. Cell Biol. 10 (2008), 776–787.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 776-787
    • Liang, C.1
  • 24
    • 84921443304 scopus 로고    scopus 로고
    • mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation
    • 24 Kim, Y.M., et al. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol. Cell 57 (2015), 207–218.
    • (2015) Mol. Cell , vol.57 , pp. 207-218
    • Kim, Y.M.1
  • 25
    • 84873675067 scopus 로고    scopus 로고
    • The ULK1 complex: sensing nutrient signals for autophagy activation
    • 25 Wong, P.M., et al. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 9 (2013), 124–137.
    • (2013) Autophagy , vol.9 , pp. 124-137
    • Wong, P.M.1
  • 26
    • 84959008003 scopus 로고    scopus 로고
    • Nutrient-regulated phosphorylation of ATG13 inhibits starvation-induced autophagy
    • 26 Puente, C., et al. Nutrient-regulated phosphorylation of ATG13 inhibits starvation-induced autophagy. J. Biol. Chem. 291 (2016), 6026–6035.
    • (2016) J. Biol. Chem. , vol.291 , pp. 6026-6035
    • Puente, C.1
  • 27
    • 84928586627 scopus 로고    scopus 로고
    • Central role of ULK1 in type I interferon signaling
    • 27 Saleiro, D., et al. Central role of ULK1 in type I interferon signaling. Cell. Rep. 11 (2015), 605–617.
    • (2015) Cell. Rep. , vol.11 , pp. 605-617
    • Saleiro, D.1
  • 28
    • 84880331368 scopus 로고    scopus 로고
    • ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
    • 28 Russell, R.C., et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15 (2013), 741–750.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 741-750
    • Russell, R.C.1
  • 29
    • 84937523899 scopus 로고    scopus 로고
    • Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates
    • 29 Egan, D.F., et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 59 (2015), 285–297.
    • (2015) Mol. Cell , vol.59 , pp. 285-297
    • Egan, D.F.1
  • 30
    • 84962675891 scopus 로고    scopus 로고
    • The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14
    • 30 Park, J.M., et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 12 (2016), 547–564.
    • (2016) Autophagy , vol.12 , pp. 547-564
    • Park, J.M.1
  • 31
    • 77957728513 scopus 로고    scopus 로고
    • The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy
    • 31 Di Bartolomeo, S., et al. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J. Cell Biol. 191 (2010), 155–168.
    • (2010) J. Cell Biol. , vol.191 , pp. 155-168
    • Di Bartolomeo, S.1
  • 32
    • 84919497292 scopus 로고    scopus 로고
    • AMBRA1 interplay with cullin E3 ubiquitin ligases regulates autophagy dynamics
    • 32 Antonioli, M., et al. AMBRA1 interplay with cullin E3 ubiquitin ligases regulates autophagy dynamics. Dev. Cell. 31 (2014), 734–746.
    • (2014) Dev. Cell. , vol.31 , pp. 734-746
    • Antonioli, M.1
  • 33
    • 84876488191 scopus 로고    scopus 로고
    • mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
    • 33 Nazio, F., et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15 (2013), 406–416.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 406-416
    • Nazio, F.1
  • 34
    • 84869147050 scopus 로고    scopus 로고
    • Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
    • 34 Wang, R.C., et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338 (2012), 956–959.
    • (2012) Science , vol.338 , pp. 956-959
    • Wang, R.C.1
  • 35
    • 84884262668 scopus 로고    scopus 로고
    • EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance
    • 35 Wei, Y., et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 154 (2013), 1269–1284.
    • (2013) Cell , vol.154 , pp. 1269-1284
    • Wei, Y.1
  • 36
    • 84920945138 scopus 로고    scopus 로고
    • A kinase-independent role for EGF receptor in autophagy initiation
    • 36 Tan, X., et al. A kinase-independent role for EGF receptor in autophagy initiation. Cell 160 (2015), 145–160.
    • (2015) Cell , vol.160 , pp. 145-160
    • Tan, X.1
  • 37
    • 84919621076 scopus 로고    scopus 로고
    • AMPK—sensing energy while talking to other signaling pathways
    • 37 Hardie, D.G., AMPK—sensing energy while talking to other signaling pathways. Cell. Metab. 20 (2014), 939–952.
    • (2014) Cell. Metab. , vol.20 , pp. 939-952
    • Hardie, D.G.1
  • 38
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • 38 Egan, D.F., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331 (2011), 456–461.
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1
  • 39
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • 39 Kim, J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13 (2011), 132–141.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 132-141
    • Kim, J.1
  • 40
    • 84947333774 scopus 로고    scopus 로고
    • RACK1 promotes autophagy by enhancing the Atg14L–Beclin 1–Vps34–Vps15 complex formation upon phosphorylation by AMPK
    • 40 Zhao, Y., et al. RACK1 promotes autophagy by enhancing the Atg14L–Beclin 1–Vps34–Vps15 complex formation upon phosphorylation by AMPK. Cell. Rep. 13 (2015), 1407–1417.
    • (2015) Cell. Rep. , vol.13 , pp. 1407-1417
    • Zhao, Y.1
  • 41
    • 84872586081 scopus 로고    scopus 로고
    • Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
    • 41 Kim, J., et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152 (2013), 290–303.
    • (2013) Cell , vol.152 , pp. 290-303
    • Kim, J.1
  • 42
    • 84928340082 scopus 로고    scopus 로고
    • Physical exercise increases autophagic signaling through ULK1 in human skeletal muscle
    • 42 Moller, A.B., et al. Physical exercise increases autophagic signaling through ULK1 in human skeletal muscle. J. Appl. Physiol. 118 (2015), 971–979.
    • (2015) J. Appl. Physiol. , vol.118 , pp. 971-979
    • Moller, A.B.1
  • 43
    • 33846189759 scopus 로고    scopus 로고
    • Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2
    • 43 Hoyer-Hansen, M., et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol. Cell 25 (2007), 193–205.
    • (2007) Mol. Cell , vol.25 , pp. 193-205
    • Hoyer-Hansen, M.1
  • 44
    • 48249092267 scopus 로고    scopus 로고
    • Bcl-2 family members: dual regulators of apoptosis and autophagy
    • 44 Levine, B., et al. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4 (2008), 600–606.
    • (2008) Autophagy , vol.4 , pp. 600-606
    • Levine, B.1
  • 45
    • 84864942148 scopus 로고    scopus 로고
    • Bim inhibits autophagy by recruiting Beclin 1 to microtubules
    • 45 Luo, S., et al. Bim inhibits autophagy by recruiting Beclin 1 to microtubules. Mol. Cell 47 (2012), 359–370.
    • (2012) Mol. Cell , vol.47 , pp. 359-370
    • Luo, S.1
  • 46
    • 44949237240 scopus 로고    scopus 로고
    • JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
    • 46 Wei, Y., et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30 (2008), 678–688.
    • (2008) Mol. Cell , vol.30 , pp. 678-688
    • Wei, Y.1
  • 47
    • 77954935925 scopus 로고    scopus 로고
    • Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation
    • 47 Geeraert, C., et al. Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation. J. Biol. Chem. 285 (2010), 24184–24194.
    • (2010) J. Biol. Chem. , vol.285 , pp. 24184-24194
    • Geeraert, C.1
  • 48
    • 84880777164 scopus 로고    scopus 로고
    • Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress
    • 48 Gurkar, A.U., et al. Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress. Nat. Commun., 4, 2013, 2189.
    • (2013) Nat. Commun. , vol.4 , pp. 2189
    • Gurkar, A.U.1
  • 49
    • 84964260843 scopus 로고    scopus 로고
    • ER stress: autophagy induction, inhibition and selection
    • 49 Rashid, H.O., et al. ER stress: autophagy induction, inhibition and selection. Autophagy 11 (2015), 1956–1977.
    • (2015) Autophagy , vol.11 , pp. 1956-1977
    • Rashid, H.O.1
  • 50
    • 84949883374 scopus 로고    scopus 로고
    • FGF signalling regulates bone growth through autophagy
    • 50 Cinque, L., et al. FGF signalling regulates bone growth through autophagy. Nature 528 (2015), 272–275.
    • (2015) Nature , vol.528 , pp. 272-275
    • Cinque, L.1
  • 51
    • 84942514110 scopus 로고    scopus 로고
    • Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves
    • 51 Gomez-Sanchez, J.A., et al. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J. Cell Biol. 210 (2015), 153–168.
    • (2015) J. Cell Biol. , vol.210 , pp. 153-168
    • Gomez-Sanchez, J.A.1
  • 52
    • 61849102389 scopus 로고    scopus 로고
    • DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy
    • 52 Zalckvar, E., et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10 (2009), 285–292.
    • (2009) EMBO Rep. , vol.10 , pp. 285-292
    • Zalckvar, E.1
  • 53
    • 84859573948 scopus 로고    scopus 로고
    • PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk
    • 53 Eisenberg-Lerner, A., Kimchi, A., PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk. Cell Death Differ. 19 (2012), 788–797.
    • (2012) Cell Death Differ. , vol.19 , pp. 788-797
    • Eisenberg-Lerner, A.1    Kimchi, A.2
  • 54
    • 84887495190 scopus 로고    scopus 로고
    • Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2
    • 54 Maejima, Y., et al. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat. Med. 19 (2013), 1478–1488.
    • (2013) Nat. Med. , vol.19 , pp. 1478-1488
    • Maejima, Y.1
  • 55
    • 85003048223 scopus 로고    scopus 로고
    • The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation
    • 55 Wei, Y., et al. The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. Elife, 4, 2015, e05289.
    • (2015) Elife , vol.4 , pp. e05289
    • Wei, Y.1
  • 56
    • 83555168258 scopus 로고    scopus 로고
    • Inhibition of autophagy by TAB2 and TAB3
    • 56 Criollo, A., et al. Inhibition of autophagy by TAB2 and TAB3. EMBO J. 30 (2011), 4908–4920.
    • (2011) EMBO J. , vol.30 , pp. 4908-4920
    • Criollo, A.1
  • 57
    • 84893912159 scopus 로고    scopus 로고
    • Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses
    • 57 Liang, Q., et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell. Host Microbe 15 (2014), 228–238.
    • (2014) Cell. Host Microbe , vol.15 , pp. 228-238
    • Liang, Q.1
  • 58
    • 84886789626 scopus 로고    scopus 로고
    • Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling
    • 58 Konno, H., et al. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155 (2013), 688–698.
    • (2013) Cell , vol.155 , pp. 688-698
    • Konno, H.1
  • 59
    • 84866731086 scopus 로고    scopus 로고
    • Targeting of TAK1 in inflammatory disorders and cancer
    • 59 Sakurai, H., Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol. Sci. 33 (2012), 522–530.
    • (2012) Trends Pharmacol. Sci. , vol.33 , pp. 522-530
    • Sakurai, H.1
  • 60
    • 84905472344 scopus 로고    scopus 로고
    • TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis
    • 60 Inokuchi-Shimizu, S., et al. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J. Clin. Invest. 124 (2014), 3566–3578.
    • (2014) J. Clin. Invest. , vol.124 , pp. 3566-3578
    • Inokuchi-Shimizu, S.1
  • 61
    • 84948670572 scopus 로고    scopus 로고
    • STING: infection, inflammation and cancer
    • 61 Barber, G.N., STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15 (2015), 760–770.
    • (2015) Nat. Rev. Immunol. , vol.15 , pp. 760-770
    • Barber, G.N.1
  • 62
    • 79955484976 scopus 로고    scopus 로고
    • The spatial and temporal organization of ubiquitin networks
    • 62 Grabbe, C., et al. The spatial and temporal organization of ubiquitin networks. Nat. Rev. Mol. Cell Biol. 12 (2011), 295–307.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 295-307
    • Grabbe, C.1
  • 63
    • 80051987703 scopus 로고    scopus 로고
    • Crosstalk in NF-kappaB signaling pathways
    • 63 Oeckinghaus, A., et al. Crosstalk in NF-kappaB signaling pathways. Nat. Immunol. 12 (2011), 695–708.
    • (2011) Nat. Immunol. , vol.12 , pp. 695-708
    • Oeckinghaus, A.1
  • 64
    • 77953858790 scopus 로고    scopus 로고
    • TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy
    • 64 Shi, C.S., Kehrl, J.H., TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal., 3, 2010, ra42.
    • (2010) Sci. Signal. , vol.3 , pp. ra42
    • Shi, C.S.1    Kehrl, J.H.2
  • 65
    • 84885869476 scopus 로고    scopus 로고
    • WASH inhibits autophagy through suppression of Beclin 1 ubiquitination
    • 65 Xia, P., et al. WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J. 32 (2013), 2685–2696.
    • (2013) EMBO J. , vol.32 , pp. 2685-2696
    • Xia, P.1
  • 66
    • 84055219407 scopus 로고    scopus 로고
    • Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1
    • 66 Platta, H.W., et al. Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1. Biochem. J. 441 (2012), 399–406.
    • (2012) Biochem. J. , vol.441 , pp. 399-406
    • Platta, H.W.1
  • 67
    • 84922360479 scopus 로고    scopus 로고
    • Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination
    • 67 Xu, C., et al. Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination. Autophagy 10 (2014), 2239–2250.
    • (2014) Autophagy , vol.10 , pp. 2239-2250
    • Xu, C.1
  • 68
    • 84961289997 scopus 로고    scopus 로고
    • G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L
    • 68 Zhang, T., et al. G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. Elife, 4, 2015, e06734.
    • (2015) Elife , vol.4 , pp. e06734
    • Zhang, T.1
  • 69
    • 80053501671 scopus 로고    scopus 로고
    • Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13
    • 69 Liu, J., et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147 (2011), 223–234.
    • (2011) Cell , vol.147 , pp. 223-234
    • Liu, J.1
  • 70
    • 84961219291 scopus 로고    scopus 로고
    • USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1
    • 70 Jin, S., et al. USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1. EMBO J. 35 (2016), 866–880.
    • (2016) EMBO J. , vol.35 , pp. 866-880
    • Jin, S.1
  • 71
    • 84923378545 scopus 로고    scopus 로고
    • Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner
    • 71 Elgendy, M., et al. Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner. Nat. Commun., 5, 2014, 5637.
    • (2014) Nat. Commun. , vol.5 , pp. 5637
    • Elgendy, M.1
  • 72
    • 84939543428 scopus 로고    scopus 로고
    • The exocyst at a glance
    • 72 Wu, B., Guo, W., The exocyst at a glance. J. Cell. Sci. 128 (2015), 2957–2964.
    • (2015) J. Cell. Sci. , vol.128 , pp. 2957-2964
    • Wu, B.1    Guo, W.2
  • 73
    • 78651488777 scopus 로고    scopus 로고
    • RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly
    • 73 Bodemann, B.O., et al. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 144 (2011), 253–267.
    • (2011) Cell , vol.144 , pp. 253-267
    • Bodemann, B.O.1
  • 74
    • 84885183894 scopus 로고    scopus 로고
    • The deubiquitylase USP33 discriminates between RALB functions in autophagy and innate immune response
    • 74 Simicek, M., et al. The deubiquitylase USP33 discriminates between RALB functions in autophagy and innate immune response. Nat. Cell Biol. 15 (2013), 1220–1230.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1220-1230
    • Simicek, M.1
  • 75
    • 84943456021 scopus 로고    scopus 로고
    • The pro-apoptotic STK38 kinase is a new Beclin1 partner positively regulating autophagy
    • 75 Joffre, C., et al. The pro-apoptotic STK38 kinase is a new Beclin1 partner positively regulating autophagy. Curr. Biol. 25 (2015), 2479–2492.
    • (2015) Curr. Biol. , vol.25 , pp. 2479-2492
    • Joffre, C.1
  • 76
    • 84907599058 scopus 로고    scopus 로고
    • TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition
    • 76 Mandell, M.A., et al. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev. Cell. 30 (2014), 394–409.
    • (2014) Dev. Cell. , vol.30 , pp. 394-409
    • Mandell, M.A.1
  • 77
    • 84960432718 scopus 로고    scopus 로고
    • TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity
    • 77 Kimura, T., et al. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J. Cell Biol. 210 (2015), 973–989.
    • (2015) J. Cell Biol. , vol.210 , pp. 973-989
    • Kimura, T.1
  • 78
    • 84997830946 scopus 로고    scopus 로고
    • TRIM11 suppresses AIM2 inflammasome by degrading AIM2 via p62-dependent selective autophagy
    • 78 Liu, T., et al. TRIM11 suppresses AIM2 inflammasome by degrading AIM2 via p62-dependent selective autophagy. Cell. Rep. 16 (2016), 1988–2002.
    • (2016) Cell. Rep. , vol.16 , pp. 1988-2002
    • Liu, T.1
  • 79
    • 84969983820 scopus 로고    scopus 로고
    • TRIM31 promotes Atg5/Atg7-independent autophagy in intestinal cells
    • 79 Ra, E.A., et al. TRIM31 promotes Atg5/Atg7-independent autophagy in intestinal cells. Nat. Commun., 7, 2016, 11726.
    • (2016) Nat. Commun. , vol.7 , pp. 11726
    • Ra, E.A.1
  • 80
    • 84867658917 scopus 로고    scopus 로고
    • IFN-inducible GTPases in host cell defense
    • 80 Kim, B.H., et al. IFN-inducible GTPases in host cell defense. Cell. Host Microbe 12 (2012), 432–444.
    • (2012) Cell. Host Microbe , vol.12 , pp. 432-444
    • Kim, B.H.1
  • 81
    • 84928926952 scopus 로고    scopus 로고
    • IRGM governs the core autophagy machinery to conduct antimicrobial defense
    • 81 Chauhan, S., et al. IRGM governs the core autophagy machinery to conduct antimicrobial defense. Mol. Cell 58 (2015), 507–521.
    • (2015) Mol. Cell , vol.58 , pp. 507-521
    • Chauhan, S.1
  • 82
    • 78649833818 scopus 로고    scopus 로고
    • Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria
    • 82 Singh, S.B., et al. Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat. Cell Biol. 12 (2010), 1154–1165.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 1154-1165
    • Singh, S.B.1
  • 83
    • 84873665112 scopus 로고    scopus 로고
    • Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival
    • 83 Efeyan, A., et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493 (2013), 679–683.
    • (2013) Nature , vol.493 , pp. 679-683
    • Efeyan, A.1
  • 84
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • 84 Yu, L., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465 (2010), 942–946.
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1
  • 85
    • 84905582805 scopus 로고    scopus 로고
    • RNF2 is recruited by WASH to ubiquitinate AMBRA1 leading to downregulation of autophagy
    • 85 Xia, P., et al. RNF2 is recruited by WASH to ubiquitinate AMBRA1 leading to downregulation of autophagy. Cell Res. 24 (2014), 943–958.
    • (2014) Cell Res. , vol.24 , pp. 943-958
    • Xia, P.1
  • 86
    • 84953637768 scopus 로고    scopus 로고
    • Cul3–KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination
    • 86 Liu, C.C., et al. Cul3–KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination. Mol. Cell 61 (2016), 84–97.
    • (2016) Mol. Cell , vol.61 , pp. 84-97
    • Liu, C.C.1
  • 87
    • 77952580741 scopus 로고    scopus 로고
    • The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses
    • 87 Lee, Y.R., et al. The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses. EMBO J. 29 (2010), 1748–1761.
    • (2010) EMBO J. , vol.29 , pp. 1748-1761
    • Lee, Y.R.1
  • 88
    • 84921451081 scopus 로고    scopus 로고
    • FBXL20-mediated Vps34 ubiquitination as a p53 controlled checkpoint in regulating autophagy and receptor degradation
    • 88 Xiao, J., et al. FBXL20-mediated Vps34 ubiquitination as a p53 controlled checkpoint in regulating autophagy and receptor degradation. Genes Dev. 29 (2015), 184–196.
    • (2015) Genes Dev. , vol.29 , pp. 184-196
    • Xiao, J.1
  • 89
    • 84929502727 scopus 로고    scopus 로고
    • How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy
    • 89 Feng, Y., et al. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 25 (2015), 354–363.
    • (2015) Trends Cell Biol. , vol.25 , pp. 354-363
    • Feng, Y.1
  • 90
    • 84898639632 scopus 로고    scopus 로고
    • Atomistic autophagy: the structures of cellular self-digestion
    • 90 Hurley, J.H., Schulman, B.A., Atomistic autophagy: the structures of cellular self-digestion. Cell 157 (2014), 300–311.
    • (2014) Cell , vol.157 , pp. 300-311
    • Hurley, J.H.1    Schulman, B.A.2
  • 91
    • 84889581765 scopus 로고    scopus 로고
    • Structural biology of the Bcl-2 family and its mimicry by viral proteins
    • 91 Kvansakul, M., Hinds, M.G., Structural biology of the Bcl-2 family and its mimicry by viral proteins. Cell. Death Dis., 4, 2013, e909.
    • (2013) Cell. Death Dis. , vol.4 , pp. e909
    • Kvansakul, M.1    Hinds, M.G.2
  • 92
    • 84894565195 scopus 로고    scopus 로고
    • Self-consumption: the interplay of autophagy and apoptosis
    • 92 Marino, G., et al. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15 (2014), 81–94.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 81-94
    • Marino, G.1
  • 93
    • 84922506220 scopus 로고    scopus 로고
    • AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1
    • 93 Strappazzon, F., et al. AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ. 22 (2015), 419–432.
    • (2015) Cell Death Differ. , vol.22 , pp. 419-432
    • Strappazzon, F.1
  • 94
    • 84880302335 scopus 로고    scopus 로고
    • Ambra1 at the crossroad between autophagy and cell death
    • 94 Fimia, G.M., et al. Ambra1 at the crossroad between autophagy and cell death. Oncogene 32 (2013), 3311–3318.
    • (2013) Oncogene , vol.32 , pp. 3311-3318
    • Fimia, G.M.1
  • 95
    • 84872799206 scopus 로고    scopus 로고
    • The VMP1–Beclin 1 interaction regulates autophagy induction
    • 95 Molejon, M.I., et al. The VMP1–Beclin 1 interaction regulates autophagy induction. Sci. Rep., 3, 2013, 1055.
    • (2013) Sci. Rep. , vol.3 , pp. 1055
    • Molejon, M.I.1
  • 96
    • 77956386515 scopus 로고    scopus 로고
    • Endogenous HMGB1 regulates autophagy
    • 96 Tang, D., et al. Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190 (2010), 881–892.
    • (2010) J. Cell Biol. , vol.190 , pp. 881-892
    • Tang, D.1
  • 97
    • 84896730900 scopus 로고    scopus 로고
    • A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3
    • 97 Murthy, A., et al. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 506 (2014), 456–462.
    • (2014) Nature , vol.506 , pp. 456-462
    • Murthy, A.1
  • 98
    • 84973926481 scopus 로고    scopus 로고
    • Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis
    • 98 Strappazzon, F., et al. Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy 12 (2016), 963–975.
    • (2016) Autophagy , vol.12 , pp. 963-975
    • Strappazzon, F.1
  • 99
    • 84924034907 scopus 로고    scopus 로고
    • Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation
    • 99 Zhu, X., et al. Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation. J. Clin. Invest. 125 (2015), 1098–1110.
    • (2015) J. Clin. Invest. , vol.125 , pp. 1098-1110
    • Zhu, X.1
  • 100
    • 84880867651 scopus 로고    scopus 로고
    • The emerging role of acetylation in the regulation of autophagy
    • 100 Banreti, A., et al. The emerging role of acetylation in the regulation of autophagy. Autophagy 9 (2013), 819–829.
    • (2013) Autophagy , vol.9 , pp. 819-829
    • Banreti, A.1
  • 101
    • 84860172051 scopus 로고    scopus 로고
    • GSK3–TIP60–ULK1 signaling pathway links growth factor deprivation to autophagy
    • 101 Lin, S.Y., et al. GSK3–TIP60–ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336 (2012), 477–481.
    • (2012) Science , vol.336 , pp. 477-481
    • Lin, S.Y.1
  • 102
    • 84930226935 scopus 로고    scopus 로고
    • Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth
    • 102 Sun, T., et al. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat. Commun., 6, 2015, 7215.
    • (2015) Nat. Commun. , vol.6 , pp. 7215
    • Sun, T.1
  • 103
    • 84924809439 scopus 로고    scopus 로고
    • Deacetylation of nuclear LC3 drives autophagy initiation under starvation
    • 103 Huang, R., et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57 (2015), 456–466.
    • (2015) Mol. Cell , vol.57 , pp. 456-466
    • Huang, R.1
  • 104
    • 84953638824 scopus 로고    scopus 로고
    • AMPK-dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation
    • 104 Chang, C., et al. AMPK-dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation. Mol. Cell 60 (2015), 930–940.
    • (2015) Mol. Cell , vol.60 , pp. 930-940
    • Chang, C.1
  • 105
    • 84896507745 scopus 로고    scopus 로고
    • BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy
    • 105 Sebti, S., et al. BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 4115–4120.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 4115-4120
    • Sebti, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.