-
1
-
-
10744225487
-
A unified nomenclature for yeast autophagy-related genes
-
1 Klionsky, D.J., et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5 (2003), 539–545.
-
(2003)
Dev. Cell
, vol.5
, pp. 539-545
-
-
Klionsky, D.J.1
-
2
-
-
77956404377
-
Eaten alive: a history of macroautophagy
-
2 Yang, Z., Klionsky, D.J., Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12 (2010), 814–822.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 814-822
-
-
Yang, Z.1
Klionsky, D.J.2
-
3
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
3 Mizushima, N., et al. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27 (2011), 107–132.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
-
4
-
-
0027424777
-
Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
-
4 Tsukada, M., Ohsumi, Y., Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333 (1993), 169–174.
-
(1993)
FEBS Lett.
, vol.333
, pp. 169-174
-
-
Tsukada, M.1
Ohsumi, Y.2
-
5
-
-
0027936092
-
Isolation of autophagocytosis mutants of Saccharomyces cerevisiae
-
5 Thumm, M., et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 349 (1994), 275–280.
-
(1994)
FEBS Lett.
, vol.349
, pp. 275-280
-
-
Thumm, M.1
-
6
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
6 Axe, E.L., et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182 (2008), 685–701.
-
(2008)
J. Cell Biol.
, vol.182
, pp. 685-701
-
-
Axe, E.L.1
-
7
-
-
84921366480
-
WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome
-
7 Proikas-Cezanne, T., et al. WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J. Cell Sci. 128 (2015), 207–217.
-
(2015)
J. Cell Sci.
, vol.128
, pp. 207-217
-
-
Proikas-Cezanne, T.1
-
8
-
-
84888380983
-
The autophagosome: origins unknown, biogenesis complex
-
8 Lamb, C.A., et al. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14 (2013), 759–774.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 759-774
-
-
Lamb, C.A.1
-
9
-
-
84861158462
-
Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, is required for autophagy
-
9 Orsi, A., et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, is required for autophagy. Mol. Biol. Cell 23 (2012), 1860–1873.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 1860-1873
-
-
Orsi, A.1
-
10
-
-
84988422403
-
ATG16L1 meets ATG9 in recycling endosomes: additional roles for the plasma membrane and endocytosis in autophagosome biogenesis
-
10 Puri, C., et al. ATG16L1 meets ATG9 in recycling endosomes: additional roles for the plasma membrane and endocytosis in autophagosome biogenesis. Autophagy 10 (2014), 182–184.
-
(2014)
Autophagy
, vol.10
, pp. 182-184
-
-
Puri, C.1
-
11
-
-
84904568128
-
The centrosome–Golgi apparatus nexus
-
Published online September 5, 2014
-
11 Rios, R.M., The centrosome–Golgi apparatus nexus. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 10.1098/rstb.2013.0462 Published online September 5, 2014.
-
(2014)
Philos. Trans. R. Soc. Lond. B Biol. Sci.
-
-
Rios, R.M.1
-
12
-
-
84859901966
-
Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC
-
12 McKnight, N.C., et al. Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC. EMBO J. 31 (2012), 1931–1946.
-
(2012)
EMBO J.
, vol.31
, pp. 1931-1946
-
-
McKnight, N.C.1
-
13
-
-
84953373631
-
Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130
-
13 Joachim, J., et al. Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130. Mol. Cell 60 (2015), 899–913.
-
(2015)
Mol. Cell
, vol.60
, pp. 899-913
-
-
Joachim, J.1
-
14
-
-
84869222326
-
ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs
-
14 Alemu, E.A., et al. ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J. Biol. Chem. 287 (2012), 39275–39290.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 39275-39290
-
-
Alemu, E.A.1
-
15
-
-
84866426794
-
Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy
-
15 Kraft, C., et al. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 31 (2012), 3691–3703.
-
(2012)
EMBO J.
, vol.31
, pp. 3691-3703
-
-
Kraft, C.1
-
16
-
-
84888121146
-
Dynamic association of the ULK1 complex with omegasomes during autophagy induction
-
16 Karanasios, E., et al. Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J. Cell Sci. 126 (2013), 5224–5238.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 5224-5238
-
-
Karanasios, E.1
-
17
-
-
59249089394
-
Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
-
17 Itakura, E., et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19 (2008), 5360–5372.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 5360-5372
-
-
Itakura, E.1
-
18
-
-
58049192897
-
Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase
-
18 Sun, Q., et al. Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 19211–19216.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 19211-19216
-
-
Sun, Q.1
-
19
-
-
85040786734
-
The different facets of organelle interplay – an overview of organelle interactions
-
19 Schrader, M., et al. The different facets of organelle interplay – an overview of organelle interactions. Front. Cell Dev. Biol., 3, 2015, 56.
-
(2015)
Front. Cell Dev. Biol.
, vol.3
, pp. 56
-
-
Schrader, M.1
-
20
-
-
84943798225
-
Ultrastructural relationship of the phagophore with surrounding organelles
-
20 Biazik, J., et al. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy 11 (2015), 439–451.
-
(2015)
Autophagy
, vol.11
, pp. 439-451
-
-
Biazik, J.1
-
21
-
-
84904575441
-
WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1
-
21 Dooley, H.C., et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55 (2014), 238–252.
-
(2014)
Mol. Cell
, vol.55
, pp. 238-252
-
-
Dooley, H.C.1
-
22
-
-
84892161646
-
The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy
-
22 Slobodkin, M.R., Elazar, Z., The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem. 55 (2013), 51–64.
-
(2013)
Essays Biochem.
, vol.55
, pp. 51-64
-
-
Slobodkin, M.R.1
Elazar, Z.2
-
23
-
-
84901815187
-
Cargo recognition and trafficking in selective autophagy
-
23 Stolz, A., et al. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16 (2014), 495–501.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 495-501
-
-
Stolz, A.1
-
24
-
-
84926253496
-
PI3P binding by Atg21 organises Atg8 lipidation
-
24 Juris, L., et al. PI3P binding by Atg21 organises Atg8 lipidation. EMBO J. 34 (2015), 955–973.
-
(2015)
EMBO J.
, vol.34
, pp. 955-973
-
-
Juris, L.1
-
25
-
-
84940538301
-
CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane
-
25 Mi, N., et al. CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat. Cell Biol. 17 (2015), 1112–1123.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1112-1123
-
-
Mi, N.1
-
26
-
-
84937515172
-
WHAMM directs the Arp2/3 complex to the ER for autophagosome biogenesis through an actin comet tail mechanism
-
26 Kast, D.J., et al. WHAMM directs the Arp2/3 complex to the ER for autophagosome biogenesis through an actin comet tail mechanism. Curr. Biol. 25 (2015), 1791–1797.
-
(2015)
Curr. Biol.
, vol.25
, pp. 1791-1797
-
-
Kast, D.J.1
-
27
-
-
84938327015
-
Actin nucleation by WH2 domains at the autophagosome
-
27 Coutts, A.S., La Thangue, N.B., Actin nucleation by WH2 domains at the autophagosome. Nat. Commun., 6, 2015, 7888.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7888
-
-
Coutts, A.S.1
La Thangue, N.B.2
-
28
-
-
84869413919
-
The actin cytoskeleton participates in the early events of autophagosome formation upon starvation induced autophagy
-
28 Aguilera, M.O., et al. The actin cytoskeleton participates in the early events of autophagosome formation upon starvation induced autophagy. Autophagy 8 (2012), 1590–1603.
-
(2012)
Autophagy
, vol.8
, pp. 1590-1603
-
-
Aguilera, M.O.1
-
29
-
-
84907835041
-
Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase
-
29 Bago, R., et al. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem. J. 463 (2014), 413–427.
-
(2014)
Biochem. J.
, vol.463
, pp. 413-427
-
-
Bago, R.1
-
30
-
-
84908466248
-
Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
-
30 Dowdle, W.E., et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16 (2014), 1069–1079.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 1069-1079
-
-
Dowdle, W.E.1
-
31
-
-
84911906578
-
A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy
-
31 Ronan, B., et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 10 (2014), 1013–1019.
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 1013-1019
-
-
Ronan, B.1
-
32
-
-
84943665694
-
Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex
-
Published online December 9, 2014
-
32 Baskaran, S., et al. Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex. Elife, 2014, 10.7554/eLife.05115 Published online December 9, 2014.
-
(2014)
Elife
-
-
Baskaran, S.1
-
33
-
-
84943521176
-
Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes
-
33 Rostislavleva, K., et al. Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science, 350, 2015, aac7365.
-
(2015)
Science
, vol.350
, pp. aac7365
-
-
Rostislavleva, K.1
-
34
-
-
84927720203
-
Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER–Golgi intermediate compartment
-
34 Ge, L., et al. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER–Golgi intermediate compartment. Elife, 3, 2014, e04135.
-
(2014)
Elife
, vol.3
, pp. e04135
-
-
Ge, L.1
-
35
-
-
84885051388
-
Endocytosis and autophagy: exploitation or cooperation?
-
35 Tooze, S.A., et al. Endocytosis and autophagy: exploitation or cooperation?. Cold Spring Harb. Perspect. Biol., 6, 2014, a018358.
-
(2014)
Cold Spring Harb. Perspect. Biol.
, vol.6
, pp. a018358
-
-
Tooze, S.A.1
-
36
-
-
77953122645
-
LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
-
36 Weidberg, H., et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29 (2010), 1792–1802.
-
(2010)
EMBO J.
, vol.29
, pp. 1792-1802
-
-
Weidberg, H.1
-
37
-
-
84930643015
-
GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion
-
37 Wang, H., et al. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 7015–7020.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 7015-7020
-
-
Wang, H.1
-
38
-
-
84926406721
-
Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs
-
38 Szalai, P., et al. Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. Exp. Cell Res. 333 (2015), 21–38.
-
(2015)
Exp. Cell Res.
, vol.333
, pp. 21-38
-
-
Szalai, P.1
-
39
-
-
84930375084
-
Recruitment of VPS33A to HOPS by VPS16 is required for lysosome fusion with endosomes and autophagosomes
-
39 Wartosch, L., et al. Recruitment of VPS33A to HOPS by VPS16 is required for lysosome fusion with endosomes and autophagosomes. Traffic 16 (2015), 727–742.
-
(2015)
Traffic
, vol.16
, pp. 727-742
-
-
Wartosch, L.1
-
40
-
-
84920448565
-
PLEKHM1 regulates autophagosome–lysosome fusion through HOPS complex and LC3/GABARAP proteins
-
40 McEwan, D.G., et al. PLEKHM1 regulates autophagosome–lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57 (2015), 39–54.
-
(2015)
Mol. Cell
, vol.57
, pp. 39-54
-
-
McEwan, D.G.1
-
41
-
-
84921443304
-
mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation
-
41 Kim, Y-M., et al. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol. Cell 57 (2015), 207–218.
-
(2015)
Mol. Cell
, vol.57
, pp. 207-218
-
-
Kim, Y.-M.1
-
42
-
-
84940719535
-
mTOR activates the VPS34–UVRAG complex to regulate autolysosomal tubulation and cell survival
-
42 Munson, M.J., et al. mTOR activates the VPS34–UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 34 (2015), 2272–2290.
-
(2015)
EMBO J.
, vol.34
, pp. 2272-2290
-
-
Munson, M.J.1
-
43
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
43 Yu, L., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465 (2010), 942–946.
-
(2010)
Nature
, vol.465
, pp. 942-946
-
-
Yu, L.1
-
44
-
-
79956358522
-
Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L)
-
44 Fan, W., et al. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 7769–7774.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 7769-7774
-
-
Fan, W.1
-
45
-
-
84928550400
-
ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
-
45 Diao, J., et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520 (2015), 563–566.
-
(2015)
Nature
, vol.520
, pp. 563-566
-
-
Diao, J.1
-
46
-
-
84925284243
-
O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation
-
46 Guo, B., et al. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat. Cell Biol. 16 (2014), 1215–1226.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 1215-1226
-
-
Guo, B.1
-
47
-
-
84870880174
-
The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
47 Itakura, E., et al. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151 (2012), 1256–1269.
-
(2012)
Cell
, vol.151
, pp. 1256-1269
-
-
Itakura, E.1
-
48
-
-
84875365804
-
Autophagosomes form at ER–mitochondria contact sites
-
48 Hamasaki, M., et al. Autophagosomes form at ER–mitochondria contact sites. Nature 495 (2013), 389–393.
-
(2013)
Nature
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
-
49
-
-
84868104379
-
N-terminal domain of vacuolar SNARE Vam7p promotes trans-SNARE complex assembly
-
49 Xu, H., Wickner, W.T., N-terminal domain of vacuolar SNARE Vam7p promotes trans-SNARE complex assembly. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 17936–17941.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 17936-17941
-
-
Xu, H.1
Wickner, W.T.2
-
50
-
-
84939482242
-
Organelle-specific initiation of autophagy
-
50 Sica, V., et al. Organelle-specific initiation of autophagy. Mol. Cell 59 (2015), 522–539.
-
(2015)
Mol. Cell
, vol.59
, pp. 522-539
-
-
Sica, V.1
-
51
-
-
84940718245
-
Autophagy machinery in the context of mammalian mitophagy
-
51 Yoshii, S.R., Mizushima, N., Autophagy machinery in the context of mammalian mitophagy. Biochim. Biophys. Acta 1853 (2015), 2797–2801.
-
(2015)
Biochim. Biophys. Acta
, vol.1853
, pp. 2797-2801
-
-
Yoshii, S.R.1
Mizushima, N.2
-
52
-
-
84934449988
-
Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
-
52 Mochida, K., et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522 (2015), 359–362.
-
(2015)
Nature
, vol.522
, pp. 359-362
-
-
Mochida, K.1
-
53
-
-
84934449989
-
Regulation of endoplasmic reticulum turnover by selective autophagy
-
53 Khaminets, A., et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522 (2015), 354–358.
-
(2015)
Nature
, vol.522
, pp. 354-358
-
-
Khaminets, A.1
-
54
-
-
84930178496
-
Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming
-
54 Wu, Y., et al. Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming. Nat. Cell Biol. 17 (2015), 715–725.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 715-725
-
-
Wu, Y.1
-
55
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
55 Twig, G., et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27 (2008), 433–446.
-
(2008)
EMBO J.
, vol.27
, pp. 433-446
-
-
Twig, G.1
-
56
-
-
84898624312
-
Self and nonself: how autophagy targets mitochondria and bacteria
-
56 Randow, F., Youle, R.J., Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15 (2014), 403–411.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 403-411
-
-
Randow, F.1
Youle, R.J.2
-
57
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
57 Lazarou, M., et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524 (2015), 309–314.
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
-
58
-
-
84923789937
-
Huntingtin functions as a scaffold for selective macroautophagy
-
58 Rui, Y-N., et al. Huntingtin functions as a scaffold for selective macroautophagy. Nat. Cell Biol. 17 (2015), 262–275.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 262-275
-
-
Rui, Y.-N.1
-
59
-
-
84912100068
-
Potential function for the huntingtin protein as a scaffold for selective autophagy
-
59 Ochaba, J., et al. Potential function for the huntingtin protein as a scaffold for selective autophagy. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 16889–16894.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 16889-16894
-
-
Ochaba, J.1
-
60
-
-
84949992730
-
Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy
-
60 Wurzer, B., et al. Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. Elife, 4, 2015, e08941.
-
(2015)
Elife
, vol.4
, pp. e08941
-
-
Wurzer, B.1
-
61
-
-
84933679024
-
The selective autophagy receptor p62 forms a flexible filamentous helical scaffold
-
61 Ciuffa, R., et al. The selective autophagy receptor p62 forms a flexible filamentous helical scaffold. Cell Rep. 11 (2015), 748–758.
-
(2015)
Cell Rep.
, vol.11
, pp. 748-758
-
-
Ciuffa, R.1
-
62
-
-
84964240800
-
A diffraction-quality protein crystal processed as an autophagic cargo
-
62 Tsutsui, H., et al. A diffraction-quality protein crystal processed as an autophagic cargo. Mol. Cell 58 (2015), 186–193.
-
(2015)
Mol. Cell
, vol.58
, pp. 186-193
-
-
Tsutsui, H.1
-
63
-
-
33847048316
-
Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death
-
63 Zhu, J.H., et al. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am. J. Pathol. 170 (2007), 75–86.
-
(2007)
Am. J. Pathol.
, vol.170
, pp. 75-86
-
-
Zhu, J.H.1
-
64
-
-
84927695059
-
Non-canonical autophagy: facts and prospects
-
64 Dupont, N., Codogno, P., Non-canonical autophagy: facts and prospects. Curr. Pathobiol. Rep. 1 (2013), 263–271.
-
(2013)
Curr. Pathobiol. Rep.
, vol.1
, pp. 263-271
-
-
Dupont, N.1
Codogno, P.2
-
65
-
-
84872117614
-
The role of lipids in the control of autophagy
-
65 Dall'Armi, C., et al. The role of lipids in the control of autophagy. Curr. Biol. 23 (2013), R33–R45.
-
(2013)
Curr. Biol.
, vol.23
, pp. R33-R45
-
-
Dall'Armi, C.1
-
66
-
-
84927695693
-
Unsaturated fatty acids induce non-canonical autophagy
-
66 Niso-Santano, M., et al. Unsaturated fatty acids induce non-canonical autophagy. EMBO J. 34 (2015), 1025–1041.
-
(2015)
EMBO J.
, vol.34
, pp. 1025-1041
-
-
Niso-Santano, M.1
-
67
-
-
84921615639
-
5P regulates autophagosome biogenesis
-
5P regulates autophagosome biogenesis. Mol. Cell 57 (2015), 219–234.
-
(2015)
Mol. Cell
, vol.57
, pp. 219-234
-
-
Vicinanza, M.1
-
68
-
-
84877323647
-
Regulation of nutrient-sensitive autophagy by uncoordinated-51 like kinases 1 and 2
-
68 McAlpine, F., et al. Regulation of nutrient-sensitive autophagy by uncoordinated-51 like kinases 1 and 2. Autophagy 9 (2013), 361–373.
-
(2013)
Autophagy
, vol.9
, pp. 361-373
-
-
McAlpine, F.1
-
69
-
-
70349687405
-
Discovery of Atg5/Atg7-independent alternative macroautophagy
-
69 Nishida, Y., et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461 (2009), 654–658.
-
(2009)
Nature
, vol.461
, pp. 654-658
-
-
Nishida, Y.1
-
70
-
-
84902007678
-
Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes
-
70 Honda, S., et al. Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat. Commun., 5, 2014, 4004.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4004
-
-
Honda, S.1
-
71
-
-
84946478936
-
Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming
-
71 Ma, T., et al. Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat. Cell Biol. 17 (2015), 1379–1387.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1379-1387
-
-
Ma, T.1
-
72
-
-
84938693671
-
Secretory autophagy
-
72 Ponpuak, M., et al. Secretory autophagy. Curr. Opin. Cell Biol. 35 (2015), 106–116.
-
(2015)
Curr. Opin. Cell Biol.
, vol.35
, pp. 106-116
-
-
Ponpuak, M.1
-
73
-
-
84934275822
-
Of LAP, CUPS, and DRibbles – unconventional use of autophagy proteins for MHC restricted antigen presentation
-
73 Münz, C., Of LAP, CUPS, and DRibbles – unconventional use of autophagy proteins for MHC restricted antigen presentation. Front. Immunol., 6, 2015, 200.
-
(2015)
Front. Immunol.
, vol.6
, pp. 200
-
-
Münz, C.1
-
74
-
-
37549043217
-
Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
-
74 Sanjuan, M.A., et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450 (2007), 1253–1257.
-
(2007)
Nature
, vol.450
, pp. 1253-1257
-
-
Sanjuan, M.A.1
-
75
-
-
84934287492
-
Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins
-
75 Martinez, J., et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17 (2015), 893–906.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 893-906
-
-
Martinez, J.1
-
76
-
-
70349919804
-
Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes
-
76 Simonsen, A., Tooze, S.A., Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J. Cell Biol. 186 (2009), 773–782.
-
(2009)
J. Cell Biol.
, vol.186
, pp. 773-782
-
-
Simonsen, A.1
Tooze, S.A.2
-
77
-
-
77954237882
-
Network organization of the human autophagy system
-
77 Behrends, C., et al. Network organization of the human autophagy system. Nature 466 (2010), 68–76.
-
(2010)
Nature
, vol.466
, pp. 68-76
-
-
Behrends, C.1
-
78
-
-
84925248134
-
CUL3–KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1–RAC1 signaling
-
78 Genau, Heide, M., et al. CUL3–KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1–RAC1 signaling. Mol. Cell 57 (2015), 995–1010.
-
(2015)
Mol. Cell
, vol.57
, pp. 995-1010
-
-
Genau1
Heide, M.2
-
79
-
-
84951962450
-
TECPR2 cooperates with LC3C to regulate COPII-dependent ER export
-
79 Stadel, D., et al. TECPR2 cooperates with LC3C to regulate COPII-dependent ER export. Mol. Cell 60 (2015), 89–104.
-
(2015)
Mol. Cell
, vol.60
, pp. 89-104
-
-
Stadel, D.1
-
80
-
-
84870886343
-
Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis
-
80 Oz-Levi, D., et al. Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am. J. Hum. Genet. 91 (2012), 1065–1072.
-
(2012)
Am. J. Hum. Genet.
, vol.91
, pp. 1065-1072
-
-
Oz-Levi, D.1
-
81
-
-
84924366318
-
How and why to study autophagy in Drosophila: it's more than just a garbage chute
-
81 Nagy, P., et al. How and why to study autophagy in Drosophila: it's more than just a garbage chute. Methods 75 (2015), 151–161.
-
(2015)
Methods
, vol.75
, pp. 151-161
-
-
Nagy, P.1
-
82
-
-
79959397904
-
Mechanisms of membrane curvature sensing
-
82 Antonny, B., Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80 (2011), 101–123.
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 101-123
-
-
Antonny, B.1
-
83
-
-
22744442219
-
ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif
-
83 Bigay, J., et al. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 24 (2005), 2244–2253.
-
(2005)
EMBO J.
, vol.24
, pp. 2244-2253
-
-
Bigay, J.1
|