메뉴 건너뛰기




Volumn 26, Issue 8, 2016, Pages 624-635

Digesting the Expanding Mechanisms of Autophagy

Author keywords

autophagosomes; noncanonical autophagy; organelles; selective autophagy; Vps34 complex

Indexed keywords

THYMOCYTE ANTIBODY; AUTOPHAGY RELATED PROTEIN;

EID: 84961944001     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2016.03.006     Document Type: Review
Times cited : (292)

References (83)
  • 1
    • 10744225487 scopus 로고    scopus 로고
    • A unified nomenclature for yeast autophagy-related genes
    • 1 Klionsky, D.J., et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5 (2003), 539–545.
    • (2003) Dev. Cell , vol.5 , pp. 539-545
    • Klionsky, D.J.1
  • 2
    • 77956404377 scopus 로고    scopus 로고
    • Eaten alive: a history of macroautophagy
    • 2 Yang, Z., Klionsky, D.J., Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12 (2010), 814–822.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 814-822
    • Yang, Z.1    Klionsky, D.J.2
  • 3
    • 80054025654 scopus 로고    scopus 로고
    • The role of Atg proteins in autophagosome formation
    • 3 Mizushima, N., et al. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27 (2011), 107–132.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 107-132
    • Mizushima, N.1
  • 4
    • 0027424777 scopus 로고
    • Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
    • 4 Tsukada, M., Ohsumi, Y., Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333 (1993), 169–174.
    • (1993) FEBS Lett. , vol.333 , pp. 169-174
    • Tsukada, M.1    Ohsumi, Y.2
  • 5
    • 0027936092 scopus 로고
    • Isolation of autophagocytosis mutants of Saccharomyces cerevisiae
    • 5 Thumm, M., et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 349 (1994), 275–280.
    • (1994) FEBS Lett. , vol.349 , pp. 275-280
    • Thumm, M.1
  • 6
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • 6 Axe, E.L., et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182 (2008), 685–701.
    • (2008) J. Cell Biol. , vol.182 , pp. 685-701
    • Axe, E.L.1
  • 7
    • 84921366480 scopus 로고    scopus 로고
    • WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome
    • 7 Proikas-Cezanne, T., et al. WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J. Cell Sci. 128 (2015), 207–217.
    • (2015) J. Cell Sci. , vol.128 , pp. 207-217
    • Proikas-Cezanne, T.1
  • 8
    • 84888380983 scopus 로고    scopus 로고
    • The autophagosome: origins unknown, biogenesis complex
    • 8 Lamb, C.A., et al. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14 (2013), 759–774.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 759-774
    • Lamb, C.A.1
  • 9
    • 84861158462 scopus 로고    scopus 로고
    • Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, is required for autophagy
    • 9 Orsi, A., et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, is required for autophagy. Mol. Biol. Cell 23 (2012), 1860–1873.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 1860-1873
    • Orsi, A.1
  • 10
    • 84988422403 scopus 로고    scopus 로고
    • ATG16L1 meets ATG9 in recycling endosomes: additional roles for the plasma membrane and endocytosis in autophagosome biogenesis
    • 10 Puri, C., et al. ATG16L1 meets ATG9 in recycling endosomes: additional roles for the plasma membrane and endocytosis in autophagosome biogenesis. Autophagy 10 (2014), 182–184.
    • (2014) Autophagy , vol.10 , pp. 182-184
    • Puri, C.1
  • 11
    • 84904568128 scopus 로고    scopus 로고
    • The centrosome–Golgi apparatus nexus
    • Published online September 5, 2014
    • 11 Rios, R.M., The centrosome–Golgi apparatus nexus. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 10.1098/rstb.2013.0462 Published online September 5, 2014.
    • (2014) Philos. Trans. R. Soc. Lond. B Biol. Sci.
    • Rios, R.M.1
  • 12
    • 84859901966 scopus 로고    scopus 로고
    • Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC
    • 12 McKnight, N.C., et al. Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC. EMBO J. 31 (2012), 1931–1946.
    • (2012) EMBO J. , vol.31 , pp. 1931-1946
    • McKnight, N.C.1
  • 13
    • 84953373631 scopus 로고    scopus 로고
    • Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130
    • 13 Joachim, J., et al. Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130. Mol. Cell 60 (2015), 899–913.
    • (2015) Mol. Cell , vol.60 , pp. 899-913
    • Joachim, J.1
  • 14
    • 84869222326 scopus 로고    scopus 로고
    • ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs
    • 14 Alemu, E.A., et al. ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J. Biol. Chem. 287 (2012), 39275–39290.
    • (2012) J. Biol. Chem. , vol.287 , pp. 39275-39290
    • Alemu, E.A.1
  • 15
    • 84866426794 scopus 로고    scopus 로고
    • Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy
    • 15 Kraft, C., et al. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 31 (2012), 3691–3703.
    • (2012) EMBO J. , vol.31 , pp. 3691-3703
    • Kraft, C.1
  • 16
    • 84888121146 scopus 로고    scopus 로고
    • Dynamic association of the ULK1 complex with omegasomes during autophagy induction
    • 16 Karanasios, E., et al. Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J. Cell Sci. 126 (2013), 5224–5238.
    • (2013) J. Cell Sci. , vol.126 , pp. 5224-5238
    • Karanasios, E.1
  • 17
    • 59249089394 scopus 로고    scopus 로고
    • Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
    • 17 Itakura, E., et al. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19 (2008), 5360–5372.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 5360-5372
    • Itakura, E.1
  • 18
    • 58049192897 scopus 로고    scopus 로고
    • Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase
    • 18 Sun, Q., et al. Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 19211–19216.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 19211-19216
    • Sun, Q.1
  • 19
    • 85040786734 scopus 로고    scopus 로고
    • The different facets of organelle interplay – an overview of organelle interactions
    • 19 Schrader, M., et al. The different facets of organelle interplay – an overview of organelle interactions. Front. Cell Dev. Biol., 3, 2015, 56.
    • (2015) Front. Cell Dev. Biol. , vol.3 , pp. 56
    • Schrader, M.1
  • 20
    • 84943798225 scopus 로고    scopus 로고
    • Ultrastructural relationship of the phagophore with surrounding organelles
    • 20 Biazik, J., et al. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy 11 (2015), 439–451.
    • (2015) Autophagy , vol.11 , pp. 439-451
    • Biazik, J.1
  • 21
    • 84904575441 scopus 로고    scopus 로고
    • WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1
    • 21 Dooley, H.C., et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55 (2014), 238–252.
    • (2014) Mol. Cell , vol.55 , pp. 238-252
    • Dooley, H.C.1
  • 22
    • 84892161646 scopus 로고    scopus 로고
    • The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy
    • 22 Slobodkin, M.R., Elazar, Z., The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem. 55 (2013), 51–64.
    • (2013) Essays Biochem. , vol.55 , pp. 51-64
    • Slobodkin, M.R.1    Elazar, Z.2
  • 23
    • 84901815187 scopus 로고    scopus 로고
    • Cargo recognition and trafficking in selective autophagy
    • 23 Stolz, A., et al. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16 (2014), 495–501.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 495-501
    • Stolz, A.1
  • 24
    • 84926253496 scopus 로고    scopus 로고
    • PI3P binding by Atg21 organises Atg8 lipidation
    • 24 Juris, L., et al. PI3P binding by Atg21 organises Atg8 lipidation. EMBO J. 34 (2015), 955–973.
    • (2015) EMBO J. , vol.34 , pp. 955-973
    • Juris, L.1
  • 25
    • 84940538301 scopus 로고    scopus 로고
    • CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane
    • 25 Mi, N., et al. CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat. Cell Biol. 17 (2015), 1112–1123.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1112-1123
    • Mi, N.1
  • 26
    • 84937515172 scopus 로고    scopus 로고
    • WHAMM directs the Arp2/3 complex to the ER for autophagosome biogenesis through an actin comet tail mechanism
    • 26 Kast, D.J., et al. WHAMM directs the Arp2/3 complex to the ER for autophagosome biogenesis through an actin comet tail mechanism. Curr. Biol. 25 (2015), 1791–1797.
    • (2015) Curr. Biol. , vol.25 , pp. 1791-1797
    • Kast, D.J.1
  • 27
    • 84938327015 scopus 로고    scopus 로고
    • Actin nucleation by WH2 domains at the autophagosome
    • 27 Coutts, A.S., La Thangue, N.B., Actin nucleation by WH2 domains at the autophagosome. Nat. Commun., 6, 2015, 7888.
    • (2015) Nat. Commun. , vol.6 , pp. 7888
    • Coutts, A.S.1    La Thangue, N.B.2
  • 28
    • 84869413919 scopus 로고    scopus 로고
    • The actin cytoskeleton participates in the early events of autophagosome formation upon starvation induced autophagy
    • 28 Aguilera, M.O., et al. The actin cytoskeleton participates in the early events of autophagosome formation upon starvation induced autophagy. Autophagy 8 (2012), 1590–1603.
    • (2012) Autophagy , vol.8 , pp. 1590-1603
    • Aguilera, M.O.1
  • 29
    • 84907835041 scopus 로고    scopus 로고
    • Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase
    • 29 Bago, R., et al. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem. J. 463 (2014), 413–427.
    • (2014) Biochem. J. , vol.463 , pp. 413-427
    • Bago, R.1
  • 30
    • 84908466248 scopus 로고    scopus 로고
    • Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
    • 30 Dowdle, W.E., et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16 (2014), 1069–1079.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 1069-1079
    • Dowdle, W.E.1
  • 31
    • 84911906578 scopus 로고    scopus 로고
    • A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy
    • 31 Ronan, B., et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 10 (2014), 1013–1019.
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 1013-1019
    • Ronan, B.1
  • 32
    • 84943665694 scopus 로고    scopus 로고
    • Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex
    • Published online December 9, 2014
    • 32 Baskaran, S., et al. Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex. Elife, 2014, 10.7554/eLife.05115 Published online December 9, 2014.
    • (2014) Elife
    • Baskaran, S.1
  • 33
    • 84943521176 scopus 로고    scopus 로고
    • Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes
    • 33 Rostislavleva, K., et al. Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science, 350, 2015, aac7365.
    • (2015) Science , vol.350 , pp. aac7365
    • Rostislavleva, K.1
  • 34
    • 84927720203 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER–Golgi intermediate compartment
    • 34 Ge, L., et al. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER–Golgi intermediate compartment. Elife, 3, 2014, e04135.
    • (2014) Elife , vol.3 , pp. e04135
    • Ge, L.1
  • 35
    • 84885051388 scopus 로고    scopus 로고
    • Endocytosis and autophagy: exploitation or cooperation?
    • 35 Tooze, S.A., et al. Endocytosis and autophagy: exploitation or cooperation?. Cold Spring Harb. Perspect. Biol., 6, 2014, a018358.
    • (2014) Cold Spring Harb. Perspect. Biol. , vol.6 , pp. a018358
    • Tooze, S.A.1
  • 36
    • 77953122645 scopus 로고    scopus 로고
    • LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
    • 36 Weidberg, H., et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29 (2010), 1792–1802.
    • (2010) EMBO J. , vol.29 , pp. 1792-1802
    • Weidberg, H.1
  • 37
    • 84930643015 scopus 로고    scopus 로고
    • GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion
    • 37 Wang, H., et al. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 7015–7020.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 7015-7020
    • Wang, H.1
  • 38
    • 84926406721 scopus 로고    scopus 로고
    • Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs
    • 38 Szalai, P., et al. Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. Exp. Cell Res. 333 (2015), 21–38.
    • (2015) Exp. Cell Res. , vol.333 , pp. 21-38
    • Szalai, P.1
  • 39
    • 84930375084 scopus 로고    scopus 로고
    • Recruitment of VPS33A to HOPS by VPS16 is required for lysosome fusion with endosomes and autophagosomes
    • 39 Wartosch, L., et al. Recruitment of VPS33A to HOPS by VPS16 is required for lysosome fusion with endosomes and autophagosomes. Traffic 16 (2015), 727–742.
    • (2015) Traffic , vol.16 , pp. 727-742
    • Wartosch, L.1
  • 40
    • 84920448565 scopus 로고    scopus 로고
    • PLEKHM1 regulates autophagosome–lysosome fusion through HOPS complex and LC3/GABARAP proteins
    • 40 McEwan, D.G., et al. PLEKHM1 regulates autophagosome–lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57 (2015), 39–54.
    • (2015) Mol. Cell , vol.57 , pp. 39-54
    • McEwan, D.G.1
  • 41
    • 84921443304 scopus 로고    scopus 로고
    • mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation
    • 41 Kim, Y-M., et al. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol. Cell 57 (2015), 207–218.
    • (2015) Mol. Cell , vol.57 , pp. 207-218
    • Kim, Y.-M.1
  • 42
    • 84940719535 scopus 로고    scopus 로고
    • mTOR activates the VPS34–UVRAG complex to regulate autolysosomal tubulation and cell survival
    • 42 Munson, M.J., et al. mTOR activates the VPS34–UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 34 (2015), 2272–2290.
    • (2015) EMBO J. , vol.34 , pp. 2272-2290
    • Munson, M.J.1
  • 43
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • 43 Yu, L., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465 (2010), 942–946.
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1
  • 44
    • 79956358522 scopus 로고    scopus 로고
    • Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L)
    • 44 Fan, W., et al. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 7769–7774.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 7769-7774
    • Fan, W.1
  • 45
    • 84928550400 scopus 로고    scopus 로고
    • ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
    • 45 Diao, J., et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520 (2015), 563–566.
    • (2015) Nature , vol.520 , pp. 563-566
    • Diao, J.1
  • 46
    • 84925284243 scopus 로고    scopus 로고
    • O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation
    • 46 Guo, B., et al. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat. Cell Biol. 16 (2014), 1215–1226.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 1215-1226
    • Guo, B.1
  • 47
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • 47 Itakura, E., et al. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151 (2012), 1256–1269.
    • (2012) Cell , vol.151 , pp. 1256-1269
    • Itakura, E.1
  • 48
    • 84875365804 scopus 로고    scopus 로고
    • Autophagosomes form at ER–mitochondria contact sites
    • 48 Hamasaki, M., et al. Autophagosomes form at ER–mitochondria contact sites. Nature 495 (2013), 389–393.
    • (2013) Nature , vol.495 , pp. 389-393
    • Hamasaki, M.1
  • 49
    • 84868104379 scopus 로고    scopus 로고
    • N-terminal domain of vacuolar SNARE Vam7p promotes trans-SNARE complex assembly
    • 49 Xu, H., Wickner, W.T., N-terminal domain of vacuolar SNARE Vam7p promotes trans-SNARE complex assembly. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 17936–17941.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 17936-17941
    • Xu, H.1    Wickner, W.T.2
  • 50
    • 84939482242 scopus 로고    scopus 로고
    • Organelle-specific initiation of autophagy
    • 50 Sica, V., et al. Organelle-specific initiation of autophagy. Mol. Cell 59 (2015), 522–539.
    • (2015) Mol. Cell , vol.59 , pp. 522-539
    • Sica, V.1
  • 51
    • 84940718245 scopus 로고    scopus 로고
    • Autophagy machinery in the context of mammalian mitophagy
    • 51 Yoshii, S.R., Mizushima, N., Autophagy machinery in the context of mammalian mitophagy. Biochim. Biophys. Acta 1853 (2015), 2797–2801.
    • (2015) Biochim. Biophys. Acta , vol.1853 , pp. 2797-2801
    • Yoshii, S.R.1    Mizushima, N.2
  • 52
    • 84934449988 scopus 로고    scopus 로고
    • Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
    • 52 Mochida, K., et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522 (2015), 359–362.
    • (2015) Nature , vol.522 , pp. 359-362
    • Mochida, K.1
  • 53
    • 84934449989 scopus 로고    scopus 로고
    • Regulation of endoplasmic reticulum turnover by selective autophagy
    • 53 Khaminets, A., et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522 (2015), 354–358.
    • (2015) Nature , vol.522 , pp. 354-358
    • Khaminets, A.1
  • 54
    • 84930178496 scopus 로고    scopus 로고
    • Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming
    • 54 Wu, Y., et al. Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming. Nat. Cell Biol. 17 (2015), 715–725.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 715-725
    • Wu, Y.1
  • 55
    • 38549110110 scopus 로고    scopus 로고
    • Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
    • 55 Twig, G., et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27 (2008), 433–446.
    • (2008) EMBO J. , vol.27 , pp. 433-446
    • Twig, G.1
  • 56
    • 84898624312 scopus 로고    scopus 로고
    • Self and nonself: how autophagy targets mitochondria and bacteria
    • 56 Randow, F., Youle, R.J., Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15 (2014), 403–411.
    • (2014) Cell Host Microbe , vol.15 , pp. 403-411
    • Randow, F.1    Youle, R.J.2
  • 57
    • 84939804206 scopus 로고    scopus 로고
    • The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
    • 57 Lazarou, M., et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524 (2015), 309–314.
    • (2015) Nature , vol.524 , pp. 309-314
    • Lazarou, M.1
  • 58
    • 84923789937 scopus 로고    scopus 로고
    • Huntingtin functions as a scaffold for selective macroautophagy
    • 58 Rui, Y-N., et al. Huntingtin functions as a scaffold for selective macroautophagy. Nat. Cell Biol. 17 (2015), 262–275.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 262-275
    • Rui, Y.-N.1
  • 59
    • 84912100068 scopus 로고    scopus 로고
    • Potential function for the huntingtin protein as a scaffold for selective autophagy
    • 59 Ochaba, J., et al. Potential function for the huntingtin protein as a scaffold for selective autophagy. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 16889–16894.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 16889-16894
    • Ochaba, J.1
  • 60
    • 84949992730 scopus 로고    scopus 로고
    • Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy
    • 60 Wurzer, B., et al. Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. Elife, 4, 2015, e08941.
    • (2015) Elife , vol.4 , pp. e08941
    • Wurzer, B.1
  • 61
    • 84933679024 scopus 로고    scopus 로고
    • The selective autophagy receptor p62 forms a flexible filamentous helical scaffold
    • 61 Ciuffa, R., et al. The selective autophagy receptor p62 forms a flexible filamentous helical scaffold. Cell Rep. 11 (2015), 748–758.
    • (2015) Cell Rep. , vol.11 , pp. 748-758
    • Ciuffa, R.1
  • 62
    • 84964240800 scopus 로고    scopus 로고
    • A diffraction-quality protein crystal processed as an autophagic cargo
    • 62 Tsutsui, H., et al. A diffraction-quality protein crystal processed as an autophagic cargo. Mol. Cell 58 (2015), 186–193.
    • (2015) Mol. Cell , vol.58 , pp. 186-193
    • Tsutsui, H.1
  • 63
    • 33847048316 scopus 로고    scopus 로고
    • Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death
    • 63 Zhu, J.H., et al. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am. J. Pathol. 170 (2007), 75–86.
    • (2007) Am. J. Pathol. , vol.170 , pp. 75-86
    • Zhu, J.H.1
  • 64
    • 84927695059 scopus 로고    scopus 로고
    • Non-canonical autophagy: facts and prospects
    • 64 Dupont, N., Codogno, P., Non-canonical autophagy: facts and prospects. Curr. Pathobiol. Rep. 1 (2013), 263–271.
    • (2013) Curr. Pathobiol. Rep. , vol.1 , pp. 263-271
    • Dupont, N.1    Codogno, P.2
  • 65
    • 84872117614 scopus 로고    scopus 로고
    • The role of lipids in the control of autophagy
    • 65 Dall'Armi, C., et al. The role of lipids in the control of autophagy. Curr. Biol. 23 (2013), R33–R45.
    • (2013) Curr. Biol. , vol.23 , pp. R33-R45
    • Dall'Armi, C.1
  • 66
    • 84927695693 scopus 로고    scopus 로고
    • Unsaturated fatty acids induce non-canonical autophagy
    • 66 Niso-Santano, M., et al. Unsaturated fatty acids induce non-canonical autophagy. EMBO J. 34 (2015), 1025–1041.
    • (2015) EMBO J. , vol.34 , pp. 1025-1041
    • Niso-Santano, M.1
  • 67
    • 84921615639 scopus 로고    scopus 로고
    • 5P regulates autophagosome biogenesis
    • 5P regulates autophagosome biogenesis. Mol. Cell 57 (2015), 219–234.
    • (2015) Mol. Cell , vol.57 , pp. 219-234
    • Vicinanza, M.1
  • 68
    • 84877323647 scopus 로고    scopus 로고
    • Regulation of nutrient-sensitive autophagy by uncoordinated-51 like kinases 1 and 2
    • 68 McAlpine, F., et al. Regulation of nutrient-sensitive autophagy by uncoordinated-51 like kinases 1 and 2. Autophagy 9 (2013), 361–373.
    • (2013) Autophagy , vol.9 , pp. 361-373
    • McAlpine, F.1
  • 69
    • 70349687405 scopus 로고    scopus 로고
    • Discovery of Atg5/Atg7-independent alternative macroautophagy
    • 69 Nishida, Y., et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461 (2009), 654–658.
    • (2009) Nature , vol.461 , pp. 654-658
    • Nishida, Y.1
  • 70
    • 84902007678 scopus 로고    scopus 로고
    • Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes
    • 70 Honda, S., et al. Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat. Commun., 5, 2014, 4004.
    • (2014) Nat. Commun. , vol.5 , pp. 4004
    • Honda, S.1
  • 71
    • 84946478936 scopus 로고    scopus 로고
    • Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming
    • 71 Ma, T., et al. Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat. Cell Biol. 17 (2015), 1379–1387.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1379-1387
    • Ma, T.1
  • 72
    • 84938693671 scopus 로고    scopus 로고
    • Secretory autophagy
    • 72 Ponpuak, M., et al. Secretory autophagy. Curr. Opin. Cell Biol. 35 (2015), 106–116.
    • (2015) Curr. Opin. Cell Biol. , vol.35 , pp. 106-116
    • Ponpuak, M.1
  • 73
    • 84934275822 scopus 로고    scopus 로고
    • Of LAP, CUPS, and DRibbles – unconventional use of autophagy proteins for MHC restricted antigen presentation
    • 73 Münz, C., Of LAP, CUPS, and DRibbles – unconventional use of autophagy proteins for MHC restricted antigen presentation. Front. Immunol., 6, 2015, 200.
    • (2015) Front. Immunol. , vol.6 , pp. 200
    • Münz, C.1
  • 74
    • 37549043217 scopus 로고    scopus 로고
    • Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
    • 74 Sanjuan, M.A., et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450 (2007), 1253–1257.
    • (2007) Nature , vol.450 , pp. 1253-1257
    • Sanjuan, M.A.1
  • 75
    • 84934287492 scopus 로고    scopus 로고
    • Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins
    • 75 Martinez, J., et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17 (2015), 893–906.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 893-906
    • Martinez, J.1
  • 76
    • 70349919804 scopus 로고    scopus 로고
    • Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes
    • 76 Simonsen, A., Tooze, S.A., Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J. Cell Biol. 186 (2009), 773–782.
    • (2009) J. Cell Biol. , vol.186 , pp. 773-782
    • Simonsen, A.1    Tooze, S.A.2
  • 77
    • 77954237882 scopus 로고    scopus 로고
    • Network organization of the human autophagy system
    • 77 Behrends, C., et al. Network organization of the human autophagy system. Nature 466 (2010), 68–76.
    • (2010) Nature , vol.466 , pp. 68-76
    • Behrends, C.1
  • 78
    • 84925248134 scopus 로고    scopus 로고
    • CUL3–KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1–RAC1 signaling
    • 78 Genau, Heide, M., et al. CUL3–KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1–RAC1 signaling. Mol. Cell 57 (2015), 995–1010.
    • (2015) Mol. Cell , vol.57 , pp. 995-1010
    • Genau1    Heide, M.2
  • 79
    • 84951962450 scopus 로고    scopus 로고
    • TECPR2 cooperates with LC3C to regulate COPII-dependent ER export
    • 79 Stadel, D., et al. TECPR2 cooperates with LC3C to regulate COPII-dependent ER export. Mol. Cell 60 (2015), 89–104.
    • (2015) Mol. Cell , vol.60 , pp. 89-104
    • Stadel, D.1
  • 80
    • 84870886343 scopus 로고    scopus 로고
    • Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis
    • 80 Oz-Levi, D., et al. Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am. J. Hum. Genet. 91 (2012), 1065–1072.
    • (2012) Am. J. Hum. Genet. , vol.91 , pp. 1065-1072
    • Oz-Levi, D.1
  • 81
    • 84924366318 scopus 로고    scopus 로고
    • How and why to study autophagy in Drosophila: it's more than just a garbage chute
    • 81 Nagy, P., et al. How and why to study autophagy in Drosophila: it's more than just a garbage chute. Methods 75 (2015), 151–161.
    • (2015) Methods , vol.75 , pp. 151-161
    • Nagy, P.1
  • 82
    • 79959397904 scopus 로고    scopus 로고
    • Mechanisms of membrane curvature sensing
    • 82 Antonny, B., Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80 (2011), 101–123.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 101-123
    • Antonny, B.1
  • 83
    • 22744442219 scopus 로고    scopus 로고
    • ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif
    • 83 Bigay, J., et al. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 24 (2005), 2244–2253.
    • (2005) EMBO J. , vol.24 , pp. 2244-2253
    • Bigay, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.