메뉴 건너뛰기




Volumn 27, Issue 3, 2017, Pages 373-385

High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx

Author keywords

Activated state; Asymmetric nucleotide occupancy; High resolution cryo EM; Proteasome

Indexed keywords

ADENOSINE DIPHOSPHATE; PROTEASOME; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 85009957618     PISSN: 10010602     EISSN: 17487838     Source Type: Journal    
DOI: 10.1038/cr.2017.12     Document Type: Article
Times cited : (48)

References (81)
  • 1
    • 61449156563 scopus 로고    scopus 로고
    • Targeting proteins for destruction by the ubiquitin system: Implications for human pathobiology
    • Schwartz AL, Ciechanover A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 2009; 49:73-96.
    • (2009) Annu Rev Pharmacol Toxicol , vol.49 , pp. 73-96
    • Schwartz, A.L.1    Ciechanover, A.2
  • 2
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 2009; 78:477-513.
    • (2009) Annu Rev Biochem , vol.78 , pp. 477-513
    • Finley, D.1
  • 3
    • 13244298289 scopus 로고    scopus 로고
    • Nobel committee tags ubiquitin for distinction
    • Goldberg AL. Nobel committee tags ubiquitin for distinction. Neuron 2005; 45:339-344.
    • (2005) Neuron , vol.45 , pp. 339-344
    • Goldberg, A.L.1
  • 4
    • 0036083396 scopus 로고    scopus 로고
    • The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction
    • Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373-428.
    • (2002) Physiol Rev , vol.82 , pp. 373-428
    • Glickman, M.H.1    Ciechanover, A.2
  • 5
    • 0032190090 scopus 로고    scopus 로고
    • The ubiquitin pathway in Parkinsons disease
    • Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinsons disease. Nature 1998; 395:451-452.
    • (1998) Nature , vol.395 , pp. 451-452
    • Leroy, E.1    Boyer, R.2    Auburger, G.3
  • 6
    • 84876916040 scopus 로고    scopus 로고
    • Structural biology of the proteasome
    • Kish-Trier E, Hill CP. Structural Biology of the Proteasome. Annu Rev Biophys 2013; 42:29-49.
    • (2013) Annu Rev Biophys , vol.42 , pp. 29-49
    • Kish-Trier, E.1    Hill, C.P.2
  • 7
    • 0032867676 scopus 로고    scopus 로고
    • The 26S proteasome: A molecular machine designed for controlled proteolysis
    • Voges D, Zwickl P, Baumeister W. The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu Rev Biochem 1999; 68:1015-1068.
    • (1999) Annu Rev Biochem , vol.68 , pp. 1015-1068
    • Voges, D.1    Zwickl, P.2    Baumeister, W.3
  • 8
    • 84863230500 scopus 로고    scopus 로고
    • Assembly and function of the proteasome
    • Saeki Y, Tanaka K. Assembly and function of the proteasome. Methods Mol Biol 2012; 832:315-337.
    • (2012) Methods Mol Biol , vol.832 , pp. 315-337
    • Saeki, Y.1    Tanaka, K.2
  • 10
    • 34249085552 scopus 로고    scopus 로고
    • Proteasomes: Machines for all reasons
    • Demartino GN, Gillette TG. Proteasomes: machines for all reasons. Cell 2007; 129:659-662.
    • (2007) Cell , vol.129 , pp. 659-662
    • Demartino, G.N.1    Gillette, T.G.2
  • 11
    • 33749234748 scopus 로고    scopus 로고
    • Proteasomes and their associated ATPases: A destructive combination
    • Smith DM, Benaroudj N, Goldberg A. Proteasomes and their associated ATPases: A destructive combination. J Struct Biol 2006; 156:72-83.
    • (2006) J Struct Biol , vol.156 , pp. 72-83
    • Smith, D.M.1    Benaroudj, N.2    Goldberg, A.3
  • 13
    • 0032483546 scopus 로고    scopus 로고
    • A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
    • Glickman MH, Rubin DM, Coux O, et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 1998; 94:615-623.
    • (1998) Cell , vol.94 , pp. 615-623
    • Glickman, M.H.1    Rubin, D.M.2    Coux, O.3
  • 14
    • 79959389010 scopus 로고    scopus 로고
    • AAA+ proteases: ATP-fueled machines of protein destruction
    • Sauer RT, Baker TA. AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 2011; 80:587-612.
    • (2011) Annu Rev Biochem , vol.80 , pp. 587-612
    • Sauer, R.T.1    Baker, T.A.2
  • 15
    • 66449131251 scopus 로고    scopus 로고
    • Structure and activity of the n-Terminal substrate recognition domains in proteasomal atpases
    • Djuranovic S, Hartmann MD, Habeck M, et al. Structure and activity of the N-Terminal substrate recognition domains in proteasomal ATPases. Mol Cell 2009; 34:580-590.
    • (2009) Mol Cell , vol.34 , pp. 580-590
    • Djuranovic, S.1    Hartmann, M.D.2    Habeck, M.3
  • 17
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela ME, Lander GC, Martin A. Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 2013; 20:781-788.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 781-788
    • Matyskiela, M.E.1    Lander, G.C.2    Martin, A.3
  • 18
    • 84898807479 scopus 로고    scopus 로고
    • Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
    • Unverdorben P, Beck F, Sledz P, et al. Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA 2014; 111:5544-5549.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 5544-5549
    • Unverdorben, P.1    Beck, F.2    Sledz, P.3
  • 19
    • 0032104227 scopus 로고    scopus 로고
    • The PCI domain: A common theme in three multiprotein complexes
    • Hofmann K, Bucher P. The PCI domain: A common theme in three multiprotein complexes. Trends Biochem Sci 1998; 23:204-205.
    • (1998) Trends Biochem Sci , vol.23 , pp. 204-205
    • Hofmann, K.1    Bucher, P.2
  • 20
    • 84857134729 scopus 로고    scopus 로고
    • Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
    • Lasker K, Forster F, Bohn S, et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 2012; 109:1380-1387.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 1380-1387
    • Lasker, K.1    Forster, F.2    Bohn, S.3
  • 21
    • 84866269021 scopus 로고    scopus 로고
    • Near-Atomic resolution structural model of the yeast 26S proteasome
    • Beck F, Unverdorben P, Bohn S, et al. Near-Atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci USA 2012; 109:14870-14875.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 14870-14875
    • Beck, F.1    Unverdorben, P.2    Bohn, S.3
  • 22
    • 84859702750 scopus 로고    scopus 로고
    • Molecular model of the human 26S proteasome
    • da Fonseca PC, He J, Morris EP. Molecular model of the human 26S proteasome. Mol Cell 2012; 46:54-66.
    • (2012) Mol Cell , vol.46 , pp. 54-66
    • Da Fonseca, P.C.1    He, J.2    Morris, E.P.3
  • 23
    • 84960934506 scopus 로고    scopus 로고
    • Structure of an endogenous yeast 26S proteasome reveals two major conformational states
    • Luan B, Huang X, Wu J, et al. Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci USA 2016; 113:2642-2647.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. 2642-2647
    • Luan, B.1    Huang, X.2    Wu, J.3
  • 24
    • 84883488318 scopus 로고    scopus 로고
    • Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid
    • Estrin E, Lopez-Blanco JR, Chacon P, Martin A. Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 2013; 21:1624-1635.
    • (2013) Structure , vol.21 , pp. 1624-1635
    • Estrin, E.1    Lopez-Blanco, J.R.2    Chacon, P.3    Martin, A.4
  • 25
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • Verma R, Aravind L, Oania R, et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002; 298:611-615.
    • (2002) Science , vol.298 , pp. 611-615
    • Verma, R.1    Aravind, L.2    Oania, R.3
  • 26
    • 0029806477 scopus 로고    scopus 로고
    • The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover
    • vanNocker S, Sadis S, Rubin DM, et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 1996; 16:6020-6028.
    • (1996) Mol Cell Biol , vol.16 , pp. 6020-6028
    • VanNocker, S.1    Sadis, S.2    Rubin, D.M.3
  • 27
    • 84876909425 scopus 로고    scopus 로고
    • Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
    • Sledz P, Unverdorben P, Beck F, et al. Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci USA 2013; 110:7264-7269.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 7264-7269
    • Sledz, P.1    Unverdorben, P.2    Beck, F.3
  • 28
    • 84894555108 scopus 로고    scopus 로고
    • Regulated protein turnover: Snapshots of the proteasome in action
    • Bhattacharyya S, Yu H, Mim C, Matouschek A. Regulated protein turnover: snapshots of the proteasome in action. Nat Rev Mol Cell Biol 2014; 15:122-133.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 122-133
    • Bhattacharyya, S.1    Yu, H.2    Mim, C.3    Matouschek, A.4
  • 29
    • 84960914544 scopus 로고    scopus 로고
    • Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
    • Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 2016; 5:e13027.
    • (2016) ELife , vol.5 , pp. e13027
    • Dambacher, C.M.1    Worden, E.J.2    Ma, H.3    Martin, A.4    Lander, G.C.5
  • 30
    • 84978042613 scopus 로고    scopus 로고
    • Structure of the human 26S proteasome at a resolution of 3.9 A
    • Schweitzer A, Aufderheide A, Rudack T, et al. Structure of the human 26S proteasome at a resolution of 3.9 A. Proc Natl Acad Sci USA 2016; 113:7816-7821.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. 7816-7821
    • Schweitzer, A.1    Aufderheide, A.2    Rudack, T.3
  • 31
    • 84978676943 scopus 로고    scopus 로고
    • An atomic structure of the human 26S proteasome
    • Huang X, Luan B, Wu J, Shi Y. An atomic structure of the human 26S proteasome. Nat Struct Mol Biol 2016; 23:778-785.
    • (2016) Nat Struct Mol Biol , vol.23 , pp. 778-785
    • Huang, X.1    Luan, B.2    Wu, J.3    Shi, Y.4
  • 32
    • 84995618106 scopus 로고    scopus 로고
    • Structural basis for dynamic regulation of the human 26S proteasome
    • Chen S, Wu J, Lu Y, et al. Structural basis for dynamic regulation of the human 26S proteasome. Proc Natl Acad Sci USA 2016; 113:12991-12996.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. 12991-12996
    • Chen, S.1    Wu, J.2    Lu, Y.3
  • 33
    • 33749069075 scopus 로고    scopus 로고
    • ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome
    • Liu CW, Li X, Thompson D, et al. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol Cell 2006; 24:39-50.
    • (2006) Mol Cell , vol.24 , pp. 39-50
    • Liu, C.W.1    Li, X.2    Thompson, D.3
  • 34
    • 0025191377 scopus 로고
    • Aluminofluoride and beryllofluoride complexes: A new phosphate analogs in enzymology
    • Chabre M. Aluminofluoride and beryllofluoride complexes: A new phosphate analogs in enzymology. Trends Biochem Sci 1990; 15:6-10.
    • (1990) Trends Biochem Sci , vol.15 , pp. 6-10
    • Chabre, M.1
  • 35
    • 0038737003 scopus 로고    scopus 로고
    • Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis
    • Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, Frydman J. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 2003; 113:369-381.
    • (2003) Cell , vol.113 , pp. 369-381
    • Meyer, A.S.1    Gillespie, J.R.2    Walther, D.3    Millet, I.S.4    Doniach, S.5    Frydman, J.6
  • 36
    • 84867538324 scopus 로고    scopus 로고
    • The hexameric helicase DnaB adopts a nonplanar conformation during translocation
    • Itsathitphaisarn O, Wing RA, Eliason WK, Wang J, Steitz TA. The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 2012; 151:267-277.
    • (2012) Cell , vol.151 , pp. 267-277
    • Itsathitphaisarn, O.1    Wing, R.A.2    Eliason, W.K.3    Wang, J.4    Steitz, T.A.5
  • 37
    • 84960517495 scopus 로고    scopus 로고
    • Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation
    • Choi WH, de Poot SA, Lee JH, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun 2016; 7:10963.
    • (2016) Nat Commun , vol.7 , pp. 10963
    • Choi, W.H.1    De Poot, S.A.2    Lee, J.H.3
  • 38
    • 79951707743 scopus 로고    scopus 로고
    • ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
    • Smith DM, Fraga H, Reis C, Kafri G, Goldberg AL. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 2011; 144:526-538.
    • (2011) Cell , vol.144 , pp. 526-538
    • Smith, D.M.1    Fraga, H.2    Reis, C.3    Kafri, G.4    Goldberg, A.L.5
  • 39
    • 84878551013 scopus 로고    scopus 로고
    • The proteasome under the microscope: The regulatory particle in focus
    • Lander GC, Martin A, Nogales E. The proteasome under the microscope: The regulatory particle in focus. Curr Opin Struct Biol 2013; 23:243-251.
    • (2013) Curr Opin Struct Biol , vol.23 , pp. 243-251
    • Lander, G.C.1    Martin, A.2    Nogales, E.3
  • 40
    • 84883472009 scopus 로고    scopus 로고
    • Unveiling the long-held secrets of the 26S proteasome
    • Forster F, Unverdorben P, Sledz P, Baumeister W. Unveiling the long-held secrets of the 26S proteasome. Structure 2013; 21:1551-1562.
    • (2013) Structure , vol.21 , pp. 1551-1562
    • Forster, F.1    Unverdorben, P.2    Sledz, P.3    Baumeister, W.4
  • 42
    • 0035096082 scopus 로고    scopus 로고
    • Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism
    • Wang J, Song JJ, Franklin MC, et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 2001; 9:177-184.
    • (2001) Structure , vol.9 , pp. 177-184
    • Wang, J.1    Song, J.J.2    Franklin, M.C.3
  • 43
    • 0348010363 scopus 로고    scopus 로고
    • Conserved pore residues in the aaa protease ftsh are important for proteolysis and its coupling to atp hydrolysis
    • Yamada-Inagawa T, Okuno T, Karata K, Yamanaka K, Ogura T. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J Biol Chem 2003; 278:50182-50187.
    • (2003) J Biol Chem , vol.278 , pp. 50182-50187
    • Yamada-Inagawa, T.1    Okuno, T.2    Karata, K.3    Yamanaka, K.4    Ogura, T.5
  • 44
    • 84952639230 scopus 로고    scopus 로고
    • Gates, channels, and switches: Elements of the proteasome machine
    • Finley D, Chen X, Walters KJ. Gates, channels, and switches: elements of the proteasome machine. Trends Biochem Sci 2016; 41:77-93.
    • (2016) Trends Biochem Sci , vol.41 , pp. 77-93
    • Finley, D.1    Chen, X.2    Walters, K.J.3
  • 45
    • 21244482459 scopus 로고    scopus 로고
    • Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: Allosteric control of a protein machine
    • Hersch GL, Burton RE, Bolon DN, Baker TA, Sauer RT. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: Allosteric control of a protein machine. Cell 2005; 121:1017-1027.
    • (2005) Cell , vol.121 , pp. 1017-1027
    • Hersch, G.L.1    Burton, R.E.2    Bolon, D.N.3    Baker, T.A.4    Sauer, R.T.5
  • 46
    • 45849107940 scopus 로고    scopus 로고
    • Asymmetric nucleotide transactions of the HslUV protease
    • Yakamavich JA, Baker TA, Sauer RT. Asymmetric nucleotide transactions of the HslUV protease. J Mol Biol 2008; 380:946-957.
    • (2008) J Mol Biol , vol.380 , pp. 946-957
    • Yakamavich, J.A.1    Baker, T.A.2    Sauer, R.T.3
  • 47
    • 34547963061 scopus 로고    scopus 로고
    • ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea
    • Horwitz AA, Navon A, Groll M, Smith DM, Reis C, Goldberg AL. ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea. J Biol Chem 2007; 282:22921-22929.
    • (2007) J Biol Chem , vol.282 , pp. 22921-22929
    • Horwitz, A.A.1    Navon, A.2    Groll, M.3    Smith, D.M.4    Reis, C.5    Goldberg, A.L.6
  • 48
    • 84944463457 scopus 로고    scopus 로고
    • ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function
    • Kim YC, Snoberger A, Schupp J, Smith DM. ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function. Nat Commun 2015; 6:8520.
    • (2015) Nat Commun , vol.6 , pp. 8520
    • Kim, Y.C.1    Snoberger, A.2    Schupp, J.3    Smith, D.M.4
  • 49
    • 84876903053 scopus 로고    scopus 로고
    • Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine
    • Stinson BM, Nager AR, Glynn SE, Schmitz KR, Baker TA, Sauer RT. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell 2013; 153:628-639.
    • (2013) Cell , vol.153 , pp. 628-639
    • Stinson, B.M.1    Nager, A.R.2    Glynn, S.E.3    Schmitz, K.R.4    Baker, T.A.5    Sauer, R.T.6
  • 50
    • 70350772363 scopus 로고    scopus 로고
    • Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine
    • Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 2009; 139:744-756.
    • (2009) Cell , vol.139 , pp. 744-756
    • Glynn, S.E.1    Martin, A.2    Nager, A.R.3    Baker, T.A.4    Sauer, R.T.5
  • 51
    • 34548274872 scopus 로고    scopus 로고
    • Docking of the proteasomal ATPases carboxyl termini in the 20S proteasomes α ring opens the gate for substrate entry
    • Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL. Docking of the proteasomal ATPases carboxyl termini in the 20S proteasomes α ring opens the gate for substrate entry. Mol Cell 2007; 27:731-744.
    • (2007) Mol Cell , vol.27 , pp. 731-744
    • Smith, D.M.1    Chang, S.C.2    Park, S.3    Finley, D.4    Cheng, Y.5    Goldberg, A.L.6
  • 52
    • 42949096020 scopus 로고    scopus 로고
    • Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
    • Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 2008; 30:360-368.
    • (2008) Mol Cell , vol.30 , pp. 360-368
    • Rabl, J.1    Smith, D.M.2    Yu, Y.3    Chang, S.C.4    Goldberg, A.L.5    Cheng, Y.6
  • 53
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20S proteasome from yeast at 2.4 A resolution
    • Groll M, Ditzel L, Lowe J, et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 1997; 386:463-471.
    • (1997) Nature , vol.386 , pp. 463-471
    • Groll, M.1    Ditzel, L.2    Lowe, J.3
  • 55
    • 59649104242 scopus 로고    scopus 로고
    • Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome
    • Bech-Otschir D, Helfrich A, Enenkel C, et al. Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome. Nat Struct Mol Biol 2009; 16:219-225.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 219-225
    • Bech-Otschir, D.1    Helfrich, A.2    Enenkel, C.3
  • 56
    • 4344559454 scopus 로고    scopus 로고
    • An unstructured initiation site is required for efficient proteasome-mediated degradation
    • Prakash S, Tian L, Ratliff KS, Lehotzky RE, Matouschek A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat Struct Mol Biol 2004; 11:830-837.
    • (2004) Nat Struct Mol Biol , vol.11 , pp. 830-837
    • Prakash, S.1    Tian, L.2    Ratliff, K.S.3    Lehotzky, R.E.4    Matouschek, A.5
  • 57
    • 84885428073 scopus 로고    scopus 로고
    • Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase
    • Beckwith R, Estrin E, Worden EJ, Martin A. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat Struct Mol Biol 2013; 20:1164-1172.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 1164-1172
    • Beckwith, R.1    Estrin, E.2    Worden, E.J.3    Martin, A.4
  • 58
    • 68149164657 scopus 로고    scopus 로고
    • A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the α-ring channel
    • Osmulski PA, Hochstrasser M, Gaczynska M. A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the α-ring channel. Structure 2009; 17:1137-1147.
    • (2009) Structure , vol.17 , pp. 1137-1147
    • Osmulski, P.A.1    Hochstrasser, M.2    Gaczynska, M.3
  • 59
    • 70350344051 scopus 로고    scopus 로고
    • Running in reverse: The structural basis for translocation polarity in hexameric helicases
    • Thomsen ND, Berger JM. Running in reverse: The structural basis for translocation polarity in hexameric helicases. Cell 2009; 139:523-534.
    • (2009) Cell , vol.139 , pp. 523-534
    • Thomsen, N.D.1    Berger, J.M.2
  • 60
    • 0032168508 scopus 로고    scopus 로고
    • Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome
    • Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S, Finley D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J 1998; 17:4909-4919.
    • (1998) EMBO J , vol.17 , pp. 4909-4919
    • Rubin, D.M.1    Glickman, M.H.2    Larsen, C.N.3    Dhruvakumar, S.4    Finley, D.5
  • 61
    • 0034964524 scopus 로고    scopus 로고
    • The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release
    • Kohler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 2001; 7:1143-1152.
    • (2001) Mol Cell , vol.7 , pp. 1143-1152
    • Kohler, A.1    Cascio, P.2    Leggett, D.S.3    Woo, K.M.4    Goldberg, A.L.5    Finley, D.6
  • 63
    • 3042799223 scopus 로고    scopus 로고
    • Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae
    • Sone T, Saeki Y, Toh-e A, Yokosawa H. Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae. J Biol Chem 2004; 279:28807-28816.
    • (2004) J Biol Chem , vol.279 , pp. 28807-28816
    • Sone, T.1    Saeki, Y.2    Toh-E, A.3    Yokosawa, H.4
  • 64
    • 0033791447 scopus 로고    scopus 로고
    • Proteasomal proteomics: Identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
    • Verma R, Chen S, Feldman R, et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 2000; 11:3425-3439.
    • (2000) Mol Biol Cell , vol.11 , pp. 3425-3439
    • Verma, R.1    Chen, S.2    Feldman, R.3
  • 65
    • 20344370277 scopus 로고    scopus 로고
    • Purification of proteasomes, proteasome subcomplexes, and proteasome-Associated proteins from budding yeast
    • Leggett DS, Glickman MH, Finley D. Purification of proteasomes, proteasome subcomplexes, and proteasome-Associated proteins from budding yeast. Methods Mol Biol 2005; 301:57-70.
    • (2005) Methods Mol Biol , vol.301 , pp. 57-70
    • Leggett, D.S.1    Glickman, M.H.2    Finley, D.3
  • 66
    • 0023655017 scopus 로고
    • Purification of two high molecular weight proteases from rabbit reticulocyte lysate
    • Hough R, Pratt G, Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem 1987; 262:8303-8313.
    • (1987) J Biol Chem , vol.262 , pp. 8303-8313
    • Hough, R.1    Pratt, G.2    Rechsteiner, M.3
  • 67
    • 25644458666 scopus 로고    scopus 로고
    • Automated electron microscope tomography using robust prediction of specimen movements
    • Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 2005; 152:36-51.
    • (2005) J Struct Biol , vol.152 , pp. 36-51
    • Mastronarde, D.N.1
  • 68
    • 84880848354 scopus 로고    scopus 로고
    • Electron counting and beam-induced motion correction enable near-Atomic-resolution single-particle cryo-EM
    • Li X, Mooney P, Zheng S, et al. Electron counting and beam-induced motion correction enable near-Atomic-resolution single-particle cryo-EM. Nat Methods 2013; 10:584-590.
    • (2013) Nat Methods , vol.10 , pp. 584-590
    • Li, X.1    Mooney, P.2    Zheng, S.3
  • 69
    • 84868444740 scopus 로고    scopus 로고
    • RELION: Implementation of a Bayesian approach to cryo-EM structure determination
    • Scheres SH. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 2012; 180:519-530.
    • (2012) J Struct Biol , vol.180 , pp. 519-530
    • Scheres, S.H.1
  • 70
    • 0038441501 scopus 로고    scopus 로고
    • Accurate determination of local defocus and specimen tilt in electron microscopy
    • Mindell JA, Grigorieff N. Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 2003; 142:334-347.
    • (2003) J Struct Biol , vol.142 , pp. 334-347
    • Mindell, J.A.1    Grigorieff, N.2
  • 71
    • 0033377664 scopus 로고    scopus 로고
    • EMAN: Semiautomated software for high-resolution single-particle reconstructions
    • Ludtke SJ, Baldwin PR, Chiu W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 1999; 128:82-97.
    • (1999) J Struct Biol , vol.128 , pp. 82-97
    • Ludtke, S.J.1    Baldwin, P.R.2    Chiu, W.3
  • 72
    • 84920942671 scopus 로고    scopus 로고
    • Beam-induced motion correction for sub-megadalton cryo-EM particles
    • Scheres SH. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 2014; 3:e03665.
    • (2014) ELife , vol.3 , pp. e03665
    • Scheres, S.H.1
  • 73
    • 84894623755 scopus 로고    scopus 로고
    • Quantifying the local resolution of cryo-EM density maps
    • Kucukelbir A, Sigworth FJ, Tagare HD. Quantifying the local resolution of cryo-EM density maps. Nat Methods 2014; 11:63-65.
    • (2014) Nat Methods , vol.11 , pp. 63-65
    • Kucukelbir, A.1    Sigworth, F.J.2    Tagare, H.D.3
  • 74
  • 75
    • 4444221565 scopus 로고    scopus 로고
    • Ucsf chimera-A visualization system for exploratory research and analysis
    • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera-A visualization system for exploratory research and analysis. J Comput Chem 2004; 25:1605-1612.
    • (2004) J Comput Chem , vol.25 , pp. 1605-1612
    • Pettersen, E.F.1    Goddard, T.D.2    Huang, C.C.3
  • 76
    • 77957260973 scopus 로고    scopus 로고
    • Integration of cryo-em with atomic and protein-protein interaction data
    • Forster F, Villa E. Integration of cryo-EM with atomic and protein-protein interaction data. Methods Enzymol 2010; 483:47-72.
    • (2010) Methods Enzymol , vol.483 , pp. 47-72
    • Forster, F.1    Villa, E.2
  • 77
    • 84926520440 scopus 로고    scopus 로고
    • Atomic-Accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement
    • DiMaio F, Song Y, Li X, et al. Atomic-Accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement. Nat Methods 2015; 12:361-365.
    • (2015) Nat Methods , vol.12 , pp. 361-365
    • DiMaio, F.1    Song, Y.2    Li, X.3
  • 78
    • 74549178560 scopus 로고    scopus 로고
    • MolProbity: All-Atom structure validation for macromolecular crystallography
    • Chen VB, Arendall WB 3rd, Headd JJ, et al. MolProbity: All-Atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010; 66:12-21.
    • (2010) Acta Crystallogr D Biol Crystallogr , vol.66 , pp. 12-21
    • Chen, V.B.1    Arendall, W.B.2    Headd, J.J.3
  • 79
    • 76449098262 scopus 로고    scopus 로고
    • Phenix: A comprehensive python-based system for macromolecular structure solution
    • Adams PD, Afonine PV, Bunkoczi G, et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010; 66:213-221.
    • (2010) Acta Crystallogr D Biol Crystallogr , vol.66 , pp. 213-221
    • Adams, P.D.1    Afonine, P.V.2    Bunkoczi, G.3
  • 80
    • 65649091692 scopus 로고    scopus 로고
    • Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F, Hu M, Tian G, et al. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 2009; 34:473-484.
    • (2009) Mol Cell , vol.34 , pp. 473-484
    • Zhang, F.1    Hu, M.2    Tian, G.3
  • 81
    • 34548232365 scopus 로고    scopus 로고
    • Inference of macromolecular assemblies from crystalline state
    • Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007; 372:774-797.
    • (2007) J Mol Biol , vol.372 , pp. 774-797
    • Krissinel, E.1    Henrick, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.