-
1
-
-
61449156563
-
Targeting proteins for destruction by the ubiquitin system: Implications for human pathobiology
-
Schwartz AL, Ciechanover A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 2009; 49:73-96.
-
(2009)
Annu Rev Pharmacol Toxicol
, vol.49
, pp. 73-96
-
-
Schwartz, A.L.1
Ciechanover, A.2
-
2
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 2009; 78:477-513.
-
(2009)
Annu Rev Biochem
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
3
-
-
13244298289
-
Nobel committee tags ubiquitin for distinction
-
Goldberg AL. Nobel committee tags ubiquitin for distinction. Neuron 2005; 45:339-344.
-
(2005)
Neuron
, vol.45
, pp. 339-344
-
-
Goldberg, A.L.1
-
4
-
-
0036083396
-
The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction
-
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373-428.
-
(2002)
Physiol Rev
, vol.82
, pp. 373-428
-
-
Glickman, M.H.1
Ciechanover, A.2
-
5
-
-
0032190090
-
The ubiquitin pathway in Parkinsons disease
-
Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinsons disease. Nature 1998; 395:451-452.
-
(1998)
Nature
, vol.395
, pp. 451-452
-
-
Leroy, E.1
Boyer, R.2
Auburger, G.3
-
6
-
-
84876916040
-
Structural biology of the proteasome
-
Kish-Trier E, Hill CP. Structural Biology of the Proteasome. Annu Rev Biophys 2013; 42:29-49.
-
(2013)
Annu Rev Biophys
, vol.42
, pp. 29-49
-
-
Kish-Trier, E.1
Hill, C.P.2
-
7
-
-
0032867676
-
The 26S proteasome: A molecular machine designed for controlled proteolysis
-
Voges D, Zwickl P, Baumeister W. The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu Rev Biochem 1999; 68:1015-1068.
-
(1999)
Annu Rev Biochem
, vol.68
, pp. 1015-1068
-
-
Voges, D.1
Zwickl, P.2
Baumeister, W.3
-
8
-
-
84863230500
-
Assembly and function of the proteasome
-
Saeki Y, Tanaka K. Assembly and function of the proteasome. Methods Mol Biol 2012; 832:315-337.
-
(2012)
Methods Mol Biol
, vol.832
, pp. 315-337
-
-
Saeki, Y.1
Tanaka, K.2
-
9
-
-
0027771443
-
Structural features of the 26 S proteasome complex
-
Peters JM, Cejka Z, Harris JR, Kleinschmidt JA, Baumeister W. Structural features of the 26 S proteasome complex. J Mol Biol 1993; 234:932-937.
-
(1993)
J Mol Biol
, vol.234
, pp. 932-937
-
-
Peters, J.M.1
Cejka, Z.2
Harris, J.R.3
Kleinschmidt, J.A.4
Baumeister, W.5
-
10
-
-
34249085552
-
Proteasomes: Machines for all reasons
-
Demartino GN, Gillette TG. Proteasomes: machines for all reasons. Cell 2007; 129:659-662.
-
(2007)
Cell
, vol.129
, pp. 659-662
-
-
Demartino, G.N.1
Gillette, T.G.2
-
11
-
-
33749234748
-
Proteasomes and their associated ATPases: A destructive combination
-
Smith DM, Benaroudj N, Goldberg A. Proteasomes and their associated ATPases: A destructive combination. J Struct Biol 2006; 156:72-83.
-
(2006)
J Struct Biol
, vol.156
, pp. 72-83
-
-
Smith, D.M.1
Benaroudj, N.2
Goldberg, A.3
-
12
-
-
21144447324
-
Molecular machines for protein degradation
-
Groll M, Bochtler M, Brandstetter H, Clausen T, Huber R. Molecular machines for protein degradation. Chembiochem 2005; 6:222-256.
-
(2005)
Chembiochem
, vol.6
, pp. 222-256
-
-
Groll, M.1
Bochtler, M.2
Brandstetter, H.3
Clausen, T.4
Huber, R.5
-
13
-
-
0032483546
-
A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
-
Glickman MH, Rubin DM, Coux O, et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 1998; 94:615-623.
-
(1998)
Cell
, vol.94
, pp. 615-623
-
-
Glickman, M.H.1
Rubin, D.M.2
Coux, O.3
-
14
-
-
79959389010
-
AAA+ proteases: ATP-fueled machines of protein destruction
-
Sauer RT, Baker TA. AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 2011; 80:587-612.
-
(2011)
Annu Rev Biochem
, vol.80
, pp. 587-612
-
-
Sauer, R.T.1
Baker, T.A.2
-
15
-
-
66449131251
-
Structure and activity of the n-Terminal substrate recognition domains in proteasomal atpases
-
Djuranovic S, Hartmann MD, Habeck M, et al. Structure and activity of the N-Terminal substrate recognition domains in proteasomal ATPases. Mol Cell 2009; 34:580-590.
-
(2009)
Mol Cell
, vol.34
, pp. 580-590
-
-
Djuranovic, S.1
Hartmann, M.D.2
Habeck, M.3
-
16
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. Complete subunit architecture of the proteasome regulatory particle. Nature 2012; 482:186-191.
-
(2012)
Nature
, vol.482
, pp. 186-191
-
-
Lander, G.C.1
Estrin, E.2
Matyskiela, M.E.3
Bashore, C.4
Nogales, E.5
Martin, A.6
-
17
-
-
84880157841
-
Conformational switching of the 26S proteasome enables substrate degradation
-
Matyskiela ME, Lander GC, Martin A. Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 2013; 20:781-788.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 781-788
-
-
Matyskiela, M.E.1
Lander, G.C.2
Martin, A.3
-
18
-
-
84898807479
-
Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
-
Unverdorben P, Beck F, Sledz P, et al. Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA 2014; 111:5544-5549.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 5544-5549
-
-
Unverdorben, P.1
Beck, F.2
Sledz, P.3
-
19
-
-
0032104227
-
The PCI domain: A common theme in three multiprotein complexes
-
Hofmann K, Bucher P. The PCI domain: A common theme in three multiprotein complexes. Trends Biochem Sci 1998; 23:204-205.
-
(1998)
Trends Biochem Sci
, vol.23
, pp. 204-205
-
-
Hofmann, K.1
Bucher, P.2
-
20
-
-
84857134729
-
Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
-
Lasker K, Forster F, Bohn S, et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 2012; 109:1380-1387.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 1380-1387
-
-
Lasker, K.1
Forster, F.2
Bohn, S.3
-
21
-
-
84866269021
-
Near-Atomic resolution structural model of the yeast 26S proteasome
-
Beck F, Unverdorben P, Bohn S, et al. Near-Atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci USA 2012; 109:14870-14875.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 14870-14875
-
-
Beck, F.1
Unverdorben, P.2
Bohn, S.3
-
22
-
-
84859702750
-
Molecular model of the human 26S proteasome
-
da Fonseca PC, He J, Morris EP. Molecular model of the human 26S proteasome. Mol Cell 2012; 46:54-66.
-
(2012)
Mol Cell
, vol.46
, pp. 54-66
-
-
Da Fonseca, P.C.1
He, J.2
Morris, E.P.3
-
23
-
-
84960934506
-
Structure of an endogenous yeast 26S proteasome reveals two major conformational states
-
Luan B, Huang X, Wu J, et al. Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci USA 2016; 113:2642-2647.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 2642-2647
-
-
Luan, B.1
Huang, X.2
Wu, J.3
-
24
-
-
84883488318
-
Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid
-
Estrin E, Lopez-Blanco JR, Chacon P, Martin A. Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 2013; 21:1624-1635.
-
(2013)
Structure
, vol.21
, pp. 1624-1635
-
-
Estrin, E.1
Lopez-Blanco, J.R.2
Chacon, P.3
Martin, A.4
-
25
-
-
0037131243
-
Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
-
Verma R, Aravind L, Oania R, et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002; 298:611-615.
-
(2002)
Science
, vol.298
, pp. 611-615
-
-
Verma, R.1
Aravind, L.2
Oania, R.3
-
26
-
-
0029806477
-
The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover
-
vanNocker S, Sadis S, Rubin DM, et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 1996; 16:6020-6028.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 6020-6028
-
-
VanNocker, S.1
Sadis, S.2
Rubin, D.M.3
-
27
-
-
84876909425
-
Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
-
Sledz P, Unverdorben P, Beck F, et al. Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci USA 2013; 110:7264-7269.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 7264-7269
-
-
Sledz, P.1
Unverdorben, P.2
Beck, F.3
-
29
-
-
84960914544
-
Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
-
Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 2016; 5:e13027.
-
(2016)
ELife
, vol.5
, pp. e13027
-
-
Dambacher, C.M.1
Worden, E.J.2
Ma, H.3
Martin, A.4
Lander, G.C.5
-
30
-
-
84978042613
-
Structure of the human 26S proteasome at a resolution of 3.9 A
-
Schweitzer A, Aufderheide A, Rudack T, et al. Structure of the human 26S proteasome at a resolution of 3.9 A. Proc Natl Acad Sci USA 2016; 113:7816-7821.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 7816-7821
-
-
Schweitzer, A.1
Aufderheide, A.2
Rudack, T.3
-
32
-
-
84995618106
-
Structural basis for dynamic regulation of the human 26S proteasome
-
Chen S, Wu J, Lu Y, et al. Structural basis for dynamic regulation of the human 26S proteasome. Proc Natl Acad Sci USA 2016; 113:12991-12996.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 12991-12996
-
-
Chen, S.1
Wu, J.2
Lu, Y.3
-
33
-
-
33749069075
-
ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome
-
Liu CW, Li X, Thompson D, et al. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol Cell 2006; 24:39-50.
-
(2006)
Mol Cell
, vol.24
, pp. 39-50
-
-
Liu, C.W.1
Li, X.2
Thompson, D.3
-
34
-
-
0025191377
-
Aluminofluoride and beryllofluoride complexes: A new phosphate analogs in enzymology
-
Chabre M. Aluminofluoride and beryllofluoride complexes: A new phosphate analogs in enzymology. Trends Biochem Sci 1990; 15:6-10.
-
(1990)
Trends Biochem Sci
, vol.15
, pp. 6-10
-
-
Chabre, M.1
-
35
-
-
0038737003
-
Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis
-
Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, Frydman J. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 2003; 113:369-381.
-
(2003)
Cell
, vol.113
, pp. 369-381
-
-
Meyer, A.S.1
Gillespie, J.R.2
Walther, D.3
Millet, I.S.4
Doniach, S.5
Frydman, J.6
-
36
-
-
84867538324
-
The hexameric helicase DnaB adopts a nonplanar conformation during translocation
-
Itsathitphaisarn O, Wing RA, Eliason WK, Wang J, Steitz TA. The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 2012; 151:267-277.
-
(2012)
Cell
, vol.151
, pp. 267-277
-
-
Itsathitphaisarn, O.1
Wing, R.A.2
Eliason, W.K.3
Wang, J.4
Steitz, T.A.5
-
37
-
-
84960517495
-
Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation
-
Choi WH, de Poot SA, Lee JH, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun 2016; 7:10963.
-
(2016)
Nat Commun
, vol.7
, pp. 10963
-
-
Choi, W.H.1
De Poot, S.A.2
Lee, J.H.3
-
38
-
-
79951707743
-
ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
-
Smith DM, Fraga H, Reis C, Kafri G, Goldberg AL. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 2011; 144:526-538.
-
(2011)
Cell
, vol.144
, pp. 526-538
-
-
Smith, D.M.1
Fraga, H.2
Reis, C.3
Kafri, G.4
Goldberg, A.L.5
-
39
-
-
84878551013
-
The proteasome under the microscope: The regulatory particle in focus
-
Lander GC, Martin A, Nogales E. The proteasome under the microscope: The regulatory particle in focus. Curr Opin Struct Biol 2013; 23:243-251.
-
(2013)
Curr Opin Struct Biol
, vol.23
, pp. 243-251
-
-
Lander, G.C.1
Martin, A.2
Nogales, E.3
-
42
-
-
0035096082
-
Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism
-
Wang J, Song JJ, Franklin MC, et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 2001; 9:177-184.
-
(2001)
Structure
, vol.9
, pp. 177-184
-
-
Wang, J.1
Song, J.J.2
Franklin, M.C.3
-
43
-
-
0348010363
-
Conserved pore residues in the aaa protease ftsh are important for proteolysis and its coupling to atp hydrolysis
-
Yamada-Inagawa T, Okuno T, Karata K, Yamanaka K, Ogura T. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J Biol Chem 2003; 278:50182-50187.
-
(2003)
J Biol Chem
, vol.278
, pp. 50182-50187
-
-
Yamada-Inagawa, T.1
Okuno, T.2
Karata, K.3
Yamanaka, K.4
Ogura, T.5
-
44
-
-
84952639230
-
Gates, channels, and switches: Elements of the proteasome machine
-
Finley D, Chen X, Walters KJ. Gates, channels, and switches: elements of the proteasome machine. Trends Biochem Sci 2016; 41:77-93.
-
(2016)
Trends Biochem Sci
, vol.41
, pp. 77-93
-
-
Finley, D.1
Chen, X.2
Walters, K.J.3
-
45
-
-
21244482459
-
Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: Allosteric control of a protein machine
-
Hersch GL, Burton RE, Bolon DN, Baker TA, Sauer RT. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: Allosteric control of a protein machine. Cell 2005; 121:1017-1027.
-
(2005)
Cell
, vol.121
, pp. 1017-1027
-
-
Hersch, G.L.1
Burton, R.E.2
Bolon, D.N.3
Baker, T.A.4
Sauer, R.T.5
-
46
-
-
45849107940
-
Asymmetric nucleotide transactions of the HslUV protease
-
Yakamavich JA, Baker TA, Sauer RT. Asymmetric nucleotide transactions of the HslUV protease. J Mol Biol 2008; 380:946-957.
-
(2008)
J Mol Biol
, vol.380
, pp. 946-957
-
-
Yakamavich, J.A.1
Baker, T.A.2
Sauer, R.T.3
-
47
-
-
34547963061
-
ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea
-
Horwitz AA, Navon A, Groll M, Smith DM, Reis C, Goldberg AL. ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea. J Biol Chem 2007; 282:22921-22929.
-
(2007)
J Biol Chem
, vol.282
, pp. 22921-22929
-
-
Horwitz, A.A.1
Navon, A.2
Groll, M.3
Smith, D.M.4
Reis, C.5
Goldberg, A.L.6
-
48
-
-
84944463457
-
ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function
-
Kim YC, Snoberger A, Schupp J, Smith DM. ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function. Nat Commun 2015; 6:8520.
-
(2015)
Nat Commun
, vol.6
, pp. 8520
-
-
Kim, Y.C.1
Snoberger, A.2
Schupp, J.3
Smith, D.M.4
-
49
-
-
84876903053
-
Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine
-
Stinson BM, Nager AR, Glynn SE, Schmitz KR, Baker TA, Sauer RT. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell 2013; 153:628-639.
-
(2013)
Cell
, vol.153
, pp. 628-639
-
-
Stinson, B.M.1
Nager, A.R.2
Glynn, S.E.3
Schmitz, K.R.4
Baker, T.A.5
Sauer, R.T.6
-
50
-
-
70350772363
-
Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine
-
Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 2009; 139:744-756.
-
(2009)
Cell
, vol.139
, pp. 744-756
-
-
Glynn, S.E.1
Martin, A.2
Nager, A.R.3
Baker, T.A.4
Sauer, R.T.5
-
51
-
-
34548274872
-
Docking of the proteasomal ATPases carboxyl termini in the 20S proteasomes α ring opens the gate for substrate entry
-
Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL. Docking of the proteasomal ATPases carboxyl termini in the 20S proteasomes α ring opens the gate for substrate entry. Mol Cell 2007; 27:731-744.
-
(2007)
Mol Cell
, vol.27
, pp. 731-744
-
-
Smith, D.M.1
Chang, S.C.2
Park, S.3
Finley, D.4
Cheng, Y.5
Goldberg, A.L.6
-
52
-
-
42949096020
-
Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
-
Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 2008; 30:360-368.
-
(2008)
Mol Cell
, vol.30
, pp. 360-368
-
-
Rabl, J.1
Smith, D.M.2
Yu, Y.3
Chang, S.C.4
Goldberg, A.L.5
Cheng, Y.6
-
53
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4 A resolution
-
Groll M, Ditzel L, Lowe J, et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 1997; 386:463-471.
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
Ditzel, L.2
Lowe, J.3
-
54
-
-
69249217672
-
An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome
-
Forster F, Lasker K, Beck F, Nickell S, Sali A, Baumeister W. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome. Biochem Biophys Res Commun 2009; 388:228-233.
-
(2009)
Biochem Biophys Res Commun
, vol.388
, pp. 228-233
-
-
Forster, F.1
Lasker, K.2
Beck, F.3
Nickell, S.4
Sali, A.5
Baumeister, W.6
-
55
-
-
59649104242
-
Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome
-
Bech-Otschir D, Helfrich A, Enenkel C, et al. Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome. Nat Struct Mol Biol 2009; 16:219-225.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 219-225
-
-
Bech-Otschir, D.1
Helfrich, A.2
Enenkel, C.3
-
56
-
-
4344559454
-
An unstructured initiation site is required for efficient proteasome-mediated degradation
-
Prakash S, Tian L, Ratliff KS, Lehotzky RE, Matouschek A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat Struct Mol Biol 2004; 11:830-837.
-
(2004)
Nat Struct Mol Biol
, vol.11
, pp. 830-837
-
-
Prakash, S.1
Tian, L.2
Ratliff, K.S.3
Lehotzky, R.E.4
Matouschek, A.5
-
57
-
-
84885428073
-
Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase
-
Beckwith R, Estrin E, Worden EJ, Martin A. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat Struct Mol Biol 2013; 20:1164-1172.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 1164-1172
-
-
Beckwith, R.1
Estrin, E.2
Worden, E.J.3
Martin, A.4
-
58
-
-
68149164657
-
A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the α-ring channel
-
Osmulski PA, Hochstrasser M, Gaczynska M. A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the α-ring channel. Structure 2009; 17:1137-1147.
-
(2009)
Structure
, vol.17
, pp. 1137-1147
-
-
Osmulski, P.A.1
Hochstrasser, M.2
Gaczynska, M.3
-
59
-
-
70350344051
-
Running in reverse: The structural basis for translocation polarity in hexameric helicases
-
Thomsen ND, Berger JM. Running in reverse: The structural basis for translocation polarity in hexameric helicases. Cell 2009; 139:523-534.
-
(2009)
Cell
, vol.139
, pp. 523-534
-
-
Thomsen, N.D.1
Berger, J.M.2
-
60
-
-
0032168508
-
Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome
-
Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S, Finley D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J 1998; 17:4909-4919.
-
(1998)
EMBO J
, vol.17
, pp. 4909-4919
-
-
Rubin, D.M.1
Glickman, M.H.2
Larsen, C.N.3
Dhruvakumar, S.4
Finley, D.5
-
61
-
-
0034964524
-
The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release
-
Kohler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 2001; 7:1143-1152.
-
(2001)
Mol Cell
, vol.7
, pp. 1143-1152
-
-
Kohler, A.1
Cascio, P.2
Leggett, D.S.3
Woo, K.M.4
Goldberg, A.L.5
Finley, D.6
-
63
-
-
3042799223
-
Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae
-
Sone T, Saeki Y, Toh-e A, Yokosawa H. Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae. J Biol Chem 2004; 279:28807-28816.
-
(2004)
J Biol Chem
, vol.279
, pp. 28807-28816
-
-
Sone, T.1
Saeki, Y.2
Toh-E, A.3
Yokosawa, H.4
-
64
-
-
0033791447
-
Proteasomal proteomics: Identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
-
Verma R, Chen S, Feldman R, et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 2000; 11:3425-3439.
-
(2000)
Mol Biol Cell
, vol.11
, pp. 3425-3439
-
-
Verma, R.1
Chen, S.2
Feldman, R.3
-
65
-
-
20344370277
-
Purification of proteasomes, proteasome subcomplexes, and proteasome-Associated proteins from budding yeast
-
Leggett DS, Glickman MH, Finley D. Purification of proteasomes, proteasome subcomplexes, and proteasome-Associated proteins from budding yeast. Methods Mol Biol 2005; 301:57-70.
-
(2005)
Methods Mol Biol
, vol.301
, pp. 57-70
-
-
Leggett, D.S.1
Glickman, M.H.2
Finley, D.3
-
66
-
-
0023655017
-
Purification of two high molecular weight proteases from rabbit reticulocyte lysate
-
Hough R, Pratt G, Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem 1987; 262:8303-8313.
-
(1987)
J Biol Chem
, vol.262
, pp. 8303-8313
-
-
Hough, R.1
Pratt, G.2
Rechsteiner, M.3
-
67
-
-
25644458666
-
Automated electron microscope tomography using robust prediction of specimen movements
-
Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 2005; 152:36-51.
-
(2005)
J Struct Biol
, vol.152
, pp. 36-51
-
-
Mastronarde, D.N.1
-
68
-
-
84880848354
-
Electron counting and beam-induced motion correction enable near-Atomic-resolution single-particle cryo-EM
-
Li X, Mooney P, Zheng S, et al. Electron counting and beam-induced motion correction enable near-Atomic-resolution single-particle cryo-EM. Nat Methods 2013; 10:584-590.
-
(2013)
Nat Methods
, vol.10
, pp. 584-590
-
-
Li, X.1
Mooney, P.2
Zheng, S.3
-
69
-
-
84868444740
-
RELION: Implementation of a Bayesian approach to cryo-EM structure determination
-
Scheres SH. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 2012; 180:519-530.
-
(2012)
J Struct Biol
, vol.180
, pp. 519-530
-
-
Scheres, S.H.1
-
70
-
-
0038441501
-
Accurate determination of local defocus and specimen tilt in electron microscopy
-
Mindell JA, Grigorieff N. Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 2003; 142:334-347.
-
(2003)
J Struct Biol
, vol.142
, pp. 334-347
-
-
Mindell, J.A.1
Grigorieff, N.2
-
71
-
-
0033377664
-
EMAN: Semiautomated software for high-resolution single-particle reconstructions
-
Ludtke SJ, Baldwin PR, Chiu W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 1999; 128:82-97.
-
(1999)
J Struct Biol
, vol.128
, pp. 82-97
-
-
Ludtke, S.J.1
Baldwin, P.R.2
Chiu, W.3
-
72
-
-
84920942671
-
Beam-induced motion correction for sub-megadalton cryo-EM particles
-
Scheres SH. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 2014; 3:e03665.
-
(2014)
ELife
, vol.3
, pp. e03665
-
-
Scheres, S.H.1
-
73
-
-
84894623755
-
Quantifying the local resolution of cryo-EM density maps
-
Kucukelbir A, Sigworth FJ, Tagare HD. Quantifying the local resolution of cryo-EM density maps. Nat Methods 2014; 11:63-65.
-
(2014)
Nat Methods
, vol.11
, pp. 63-65
-
-
Kucukelbir, A.1
Sigworth, F.J.2
Tagare, H.D.3
-
75
-
-
4444221565
-
Ucsf chimera-A visualization system for exploratory research and analysis
-
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera-A visualization system for exploratory research and analysis. J Comput Chem 2004; 25:1605-1612.
-
(2004)
J Comput Chem
, vol.25
, pp. 1605-1612
-
-
Pettersen, E.F.1
Goddard, T.D.2
Huang, C.C.3
-
76
-
-
77957260973
-
Integration of cryo-em with atomic and protein-protein interaction data
-
Forster F, Villa E. Integration of cryo-EM with atomic and protein-protein interaction data. Methods Enzymol 2010; 483:47-72.
-
(2010)
Methods Enzymol
, vol.483
, pp. 47-72
-
-
Forster, F.1
Villa, E.2
-
77
-
-
84926520440
-
Atomic-Accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement
-
DiMaio F, Song Y, Li X, et al. Atomic-Accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement. Nat Methods 2015; 12:361-365.
-
(2015)
Nat Methods
, vol.12
, pp. 361-365
-
-
DiMaio, F.1
Song, Y.2
Li, X.3
-
78
-
-
74549178560
-
MolProbity: All-Atom structure validation for macromolecular crystallography
-
Chen VB, Arendall WB 3rd, Headd JJ, et al. MolProbity: All-Atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010; 66:12-21.
-
(2010)
Acta Crystallogr D Biol Crystallogr
, vol.66
, pp. 12-21
-
-
Chen, V.B.1
Arendall, W.B.2
Headd, J.J.3
-
79
-
-
76449098262
-
Phenix: A comprehensive python-based system for macromolecular structure solution
-
Adams PD, Afonine PV, Bunkoczi G, et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010; 66:213-221.
-
(2010)
Acta Crystallogr D Biol Crystallogr
, vol.66
, pp. 213-221
-
-
Adams, P.D.1
Afonine, P.V.2
Bunkoczi, G.3
-
80
-
-
65649091692
-
Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
-
Zhang F, Hu M, Tian G, et al. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 2009; 34:473-484.
-
(2009)
Mol Cell
, vol.34
, pp. 473-484
-
-
Zhang, F.1
Hu, M.2
Tian, G.3
-
81
-
-
34548232365
-
Inference of macromolecular assemblies from crystalline state
-
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007; 372:774-797.
-
(2007)
J Mol Biol
, vol.372
, pp. 774-797
-
-
Krissinel, E.1
Henrick, K.2
|