메뉴 건너뛰기




Volumn 113, Issue 46, 2016, Pages 12991-12996

Structural basis for dynamic regulation of the human 26S proteasome

Author keywords

AAA ATPase; Cyroelectron microscopy; Ubiquitin proteasome system

Indexed keywords

ADENOSINE TRIPHOSPHATASE; ADENOSINE TRIPHOSPHATE; HOLOENZYME; PROTEASOME; ATP DEPENDENT 26S PROTEASE;

EID: 84995618106     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1614614113     Document Type: Article
Times cited : (134)

References (50)
  • 1
    • 84952639230 scopus 로고    scopus 로고
    • Gates, channels, and switches: Elements of the proteasome machine
    • Finley D, Chen X, Walters KJ (2016) Gates, channels, and switches: Elements of the proteasome machine. Trends Biochem Sci 41(1):77-93.
    • (2016) Trends Biochem Sci , vol.41 , Issue.1 , pp. 77-93
    • Finley, D.1    Chen, X.2    Walters, K.J.3
  • 2
    • 84878942836 scopus 로고    scopus 로고
    • Molecular architecture and assembly of the eukaryotic proteasome
    • Tomko RJ, Jr, Hochstrasser M (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82:415-445.
    • (2013) Annu Rev Biochem , vol.82 , pp. 415-445
    • Tomko, R.J.1    Hochstrasser, M.2
  • 3
    • 84876916040 scopus 로고    scopus 로고
    • Structural biology of the proteasome
    • Kish-Trier E, Hill CP (2013) Structural biology of the proteasome. Annu Rev Biophys 42: 29-49.
    • (2013) Annu Rev Biophys , vol.42 , pp. 29-49
    • Kish-Trier, E.1    Hill, C.P.2
  • 4
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477-513.
    • (2009) Annu Rev Biochem , vol.78 , pp. 477-513
    • Finley, D.1
  • 5
    • 84930188528 scopus 로고    scopus 로고
    • Crystal structure of the human 20S proteasome in complex with carfilzomib
    • Harshbarger W, Miller C, Diedrich C, Sacchettini J (2015) Crystal structure of the human 20S proteasome in complex with carfilzomib. Structure 23(2):418-424.
    • (2015) Structure , vol.23 , Issue.2 , pp. 418-424
    • Harshbarger, W.1    Miller, C.2    Diedrich, C.3    Sacchettini, J.4
  • 6
    • 84865405382 scopus 로고    scopus 로고
    • Inhibitors for the immuno- and constitutive proteasome: Current and future trends in drug development
    • Huber EM, Groll M (2012) Inhibitors for the immuno- and constitutive proteasome: Current and future trends in drug development. Angew Chem Int Ed Engl 51(35): 8708-8720.
    • (2012) Angew Chem Int Ed Engl , vol.51 , Issue.35 , pp. 8708-8720
    • Huber, E.M.1    Groll, M.2
  • 7
    • 84866269021 scopus 로고    scopus 로고
    • Near-atomic resolution structural model of the yeast 26S proteasome
    • Beck F, et al. (2012) Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci USA 109(37):14870-14875.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.37 , pp. 14870-14875
    • Beck, F.1
  • 8
    • 84857134729 scopus 로고    scopus 로고
    • Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
    • Lasker K, et al. (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 109(5):1380-1387.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.5 , pp. 1380-1387
    • Lasker, K.1
  • 9
    • 84856976866 scopus 로고    scopus 로고
    • Complete subunit architecture of the proteasome regulatory particle
    • Lander GC, et al. (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482(7384):186-191.
    • (2012) Nature , vol.482 , Issue.7384 , pp. 186-191
    • Lander, G.C.1
  • 10
    • 84859702750 scopus 로고    scopus 로고
    • Molecular model of the human 26S proteasome
    • da Fonseca PC, He J, Morris EP (2012) Molecular model of the human 26S proteasome. Mol Cell 46(1):54-66.
    • (2012) Mol Cell , vol.46 , Issue.1 , pp. 54-66
    • Da Fonseca, P.C.1    He, J.2    Morris, E.P.3
  • 11
    • 0029042511 scopus 로고
    • Crystal structure of the 20S proteasome from the archaeon T. Acidophilum at 3.4 Å resolution
    • Löwe J, et al. (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268(5210):533-539.
    • (1995) Science , vol.268 , Issue.5210 , pp. 533-539
    • Löwe, J.1
  • 12
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20S proteasome from yeast at 2.4Å resolution
    • Groll M, et al. (1997) Structure of 20S proteasome from yeast at 2.4Å resolution. Nature 386(6624):463-471.
    • (1997) Nature , vol.386 , Issue.6624 , pp. 463-471
    • Groll, M.1
  • 13
    • 0036103598 scopus 로고    scopus 로고
    • The structure of the mammalian 20S proteasome at 2.75 Å resolution
    • Unno M, et al. (2002) The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure 10(5):609-618.
    • (2002) Structure , vol.10 , Issue.5 , pp. 609-618
    • Unno, M.1
  • 14
    • 84856023509 scopus 로고    scopus 로고
    • The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together
    • Pathare GR, et al. (2012) The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc Natl Acad Sci USA 109(1):149-154.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.1 , pp. 149-154
    • Pathare, G.R.1
  • 15
    • 84896856969 scopus 로고    scopus 로고
    • Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11
    • Pathare GR, et al. (2014) Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proc Natl Acad Sci USA 111(8):2984-2989.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.8 , pp. 2984-2989
    • Pathare, G.R.1
  • 16
    • 77958604450 scopus 로고    scopus 로고
    • Structure of Rpn10 and its interactions with polyubiquitin chains and the proteasome subunit Rpn12
    • Riedinger C, et al. (2010) Structure of Rpn10 and its interactions with polyubiquitin chains and the proteasome subunit Rpn12. J Biol Chem 285(44):33992-34003.
    • (2010) J Biol Chem , vol.285 , Issue.44 , pp. 33992-34003
    • Riedinger, C.1
  • 17
    • 17144417404 scopus 로고    scopus 로고
    • Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition
    • Wang Q, Young P, Walters KJ (2005) Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J Mol Biol 348(3):727-739.
    • (2005) J Mol Biol , vol.348 , Issue.3 , pp. 727-739
    • Wang, Q.1    Young, P.2    Walters, K.J.3
  • 18
    • 84895868714 scopus 로고    scopus 로고
    • Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
    • Worden EJ, Padovani C, Martin A (2014) Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat Struct Mol Biol 21(3):220-227.
    • (2014) Nat Struct Mol Biol , vol.21 , Issue.3 , pp. 220-227
    • Worden, E.J.1    Padovani, C.2    Martin, A.3
  • 19
    • 68349135106 scopus 로고    scopus 로고
    • Structure of the S5a:K48-linked diubiquitin complex and its interactions with Rpn13
    • Zhang N, et al. (2009) Structure of the S5a:K48-linked diubiquitin complex and its interactions with Rpn13. Mol Cell 35(3):280-290.
    • (2009) Mol Cell , vol.35 , Issue.3 , pp. 280-290
    • Zhang, N.1
  • 20
    • 84960914544 scopus 로고    scopus 로고
    • Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
    • Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC (2016) Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 5:e13027.
    • (2016) ELife , vol.5 , pp. e13027
    • Dambacher, C.M.1    Worden, E.J.2    Herzik, M.A.3    Martin, A.4    Lander, G.C.5
  • 21
    • 84867838277 scopus 로고    scopus 로고
    • Structural and functional characterization of Rpn12 identifies residues required for Rpn10 proteasome incorporation
    • Boehringer J, et al. (2012) Structural and functional characterization of Rpn12 identifies residues required for Rpn10 proteasome incorporation. Biochem J 448(1):55-65.
    • (2012) Biochem J , vol.448 , Issue.1 , pp. 55-65
    • Boehringer, J.1
  • 22
    • 84857935771 scopus 로고    scopus 로고
    • The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings
    • He J, et al. (2012) The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings. Structure 20(3):513-521.
    • (2012) Structure , vol.20 , Issue.3 , pp. 513-521
    • He, J.1
  • 23
    • 65649091692 scopus 로고    scopus 로고
    • Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F, et al. (2009) Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34(4):473-484.
    • (2009) Mol Cell , vol.34 , Issue.4 , pp. 473-484
    • Zhang, F.1
  • 24
    • 65649123769 scopus 로고    scopus 로고
    • Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F, et al. (2009) Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34(4):485-496.
    • (2009) Mol Cell , vol.34 , Issue.4 , pp. 485-496
    • Zhang, F.1
  • 25
    • 84960934506 scopus 로고    scopus 로고
    • Structure of an endogenous yeast 26S proteasome reveals two major conformational states
    • Luan B, et al. (2016) Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci USA 113(10):2642-2647.
    • (2016) Proc Natl Acad Sci USA , vol.113 , Issue.10 , pp. 2642-2647
    • Luan, B.1
  • 26
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela ME, Lander GC, Martin A (2013) Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 20(7):781-788.
    • (2013) Nat Struct Mol Biol , vol.20 , Issue.7 , pp. 781-788
    • Matyskiela, M.E.1    Lander, G.C.2    Martin, A.3
  • 27
    • 84876909425 scopus 로고    scopus 로고
    • Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
    • Śledź P, et al. (2013) Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci USA 110(18):7264-7269.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.18 , pp. 7264-7269
    • Śledź, P.1
  • 28
    • 84898807479 scopus 로고    scopus 로고
    • Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
    • Unverdorben P, et al. (2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA 111(15):5544-5549.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.15 , pp. 5544-5549
    • Unverdorben, P.1
  • 29
    • 84883488318 scopus 로고    scopus 로고
    • Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid
    • Estrin E, Lopez-Blanco JR, Chacón P, Martin A (2013) Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 21(9):1624-1635.
    • (2013) Structure , vol.21 , Issue.9 , pp. 1624-1635
    • Estrin, E.1    Lopez-Blanco, J.R.2    Chacón, P.3    Martin, A.4
  • 30
    • 33947380146 scopus 로고    scopus 로고
    • Mass spectrometric characterization of the affinity-purified human 26S proteasome complex
    • Wang X, et al. (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46(11):3553-3565.
    • (2007) Biochemistry , vol.46 , Issue.11 , pp. 3553-3565
    • Wang, X.1
  • 31
    • 33845939047 scopus 로고    scopus 로고
    • Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization
    • Scheres SH, et al. (2007) Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat Methods 4(1):27-29.
    • (2007) Nat Methods , vol.4 , Issue.1 , pp. 27-29
    • Scheres, S.H.1
  • 32
    • 84855818650 scopus 로고    scopus 로고
    • A Bayesian view on cryo-EM structure determination
    • Scheres SH (2012) A Bayesian view on cryo-EM structure determination. J Mol Biol 415(2):406-418.
    • (2012) J Mol Biol , vol.415 , Issue.2 , pp. 406-418
    • Scheres, S.H.1
  • 33
    • 0034597824 scopus 로고    scopus 로고
    • Structural basis for the activation of 20S proteasomes by 11S regulators
    • Whitby FG, et al. (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408(6808):115-120.
    • (2000) Nature , vol.408 , Issue.6808 , pp. 115-120
    • Whitby, F.G.1
  • 34
    • 79959389010 scopus 로고    scopus 로고
    • AAA+ proteases: ATP-fueled machines of protein destruction
    • Sauer RT, Baker TA (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587-612.
    • (2011) Annu Rev Biochem , vol.80 , pp. 587-612
    • Sauer, R.T.1    Baker, T.A.2
  • 35
    • 0034885052 scopus 로고    scopus 로고
    • AAA+ superfamily ATPases: Common structure-diverse function
    • Ogura T, Wilkinson AJ (2001) AAA+ superfamily ATPases: Common structure-diverse function. Genes Cells 6(7):575-597.
    • (2001) Genes Cells , vol.6 , Issue.7 , pp. 575-597
    • Ogura, T.1    Wilkinson, A.J.2
  • 36
    • 84885428073 scopus 로고    scopus 로고
    • Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase
    • Beckwith R, Estrin E, Worden EJ, Martin A (2013) Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat Struct Mol Biol 20(10):1164-1172.
    • (2013) Nat Struct Mol Biol , vol.20 , Issue.10 , pp. 1164-1172
    • Beckwith, R.1    Estrin, E.2    Worden, E.J.3    Martin, A.4
  • 37
    • 70350772363 scopus 로고    scopus 로고
    • Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine
    • Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT (2009) Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139(4):744-756.
    • (2009) Cell , vol.139 , Issue.4 , pp. 744-756
    • Glynn, S.E.1    Martin, A.2    Nager, A.R.3    Baker, T.A.4    Sauer, R.T.5
  • 38
    • 84925496573 scopus 로고    scopus 로고
    • Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine
    • Iosefson O, Nager AR, Baker TA, Sauer RT (2015) Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine. Nat Chem Biol 11(3):201-206.
    • (2015) Nat Chem Biol , vol.11 , Issue.3 , pp. 201-206
    • Iosefson, O.1    Nager, A.R.2    Baker, T.A.3    Sauer, R.T.4
  • 39
    • 55549132236 scopus 로고    scopus 로고
    • The 'glutamate switch' provides a link between ATPase activity and ligand binding in AAA+ proteins
    • Zhang X, Wigley DB (2008) The 'glutamate switch' provides a link between ATPase activity and ligand binding in AAA+ proteins. Nat Struct Mol Biol 15(11):1223-1227.
    • (2008) Nat Struct Mol Biol , vol.15 , Issue.11 , pp. 1223-1227
    • Zhang, X.1    Wigley, D.B.2
  • 40
    • 80555130924 scopus 로고    scopus 로고
    • An asymmetric interface between the regulatory and core particles of the proteasome
    • Tian G, et al. (2011) An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18(11):1259-1267.
    • (2011) Nat Struct Mol Biol , vol.18 , Issue.11 , pp. 1259-1267
    • Tian, G.1
  • 41
    • 73649128544 scopus 로고    scopus 로고
    • Structural models for interactions between the 20S proteasome and its PAN/19S activators
    • Stadtmueller BM, et al. (2010) Structural models for interactions between the 20S proteasome and its PAN/19S activators. J Biol Chem 285(1):13-17.
    • (2010) J Biol Chem , vol.285 , Issue.1 , pp. 13-17
    • Stadtmueller, B.M.1
  • 42
    • 79960658440 scopus 로고    scopus 로고
    • C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome
    • Kim YC, DeMartino GN (2011) C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome. J Biol Chem 286(30): 26652-26666.
    • (2011) J Biol Chem , vol.286 , Issue.30 , pp. 26652-26666
    • Kim, Y.C.1    DeMartino, G.N.2
  • 43
    • 84863338481 scopus 로고    scopus 로고
    • Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails
    • Lee SH, Moon JH, Yoon SK, Yoon JB (2012) Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails. J Biol Chem 287(12):9269-9279.
    • (2012) J Biol Chem , vol.287 , Issue.12 , pp. 9269-9279
    • Lee, S.H.1    Moon, J.H.2    Yoon, S.K.3    Yoon, J.B.4
  • 44
    • 0033766480 scopus 로고    scopus 로고
    • A gated channel into the proteasome core particle
    • Groll M, et al. (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7(11):1062-1067.
    • (2000) Nat Struct Biol , vol.7 , Issue.11 , pp. 1062-1067
    • Groll, M.1
  • 45
    • 84861553163 scopus 로고    scopus 로고
    • Functional asymmetries of proteasome translocase pore
    • Erales J, Hoyt MA, Troll F, Coffino P (2012) Functional asymmetries of proteasome translocase pore. J Biol Chem 287(22):18535-18543.
    • (2012) J Biol Chem , vol.287 , Issue.22 , pp. 18535-18543
    • Erales, J.1    Hoyt, M.A.2    Troll, F.3    Coffino, P.4
  • 46
    • 84875130745 scopus 로고    scopus 로고
    • Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs
    • Peth A, Kukushkin N, Bossé M, Goldberg AL (2013) Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs. J Biol Chem 288(11):7781-7790.
    • (2013) J Biol Chem , vol.288 , Issue.11 , pp. 7781-7790
    • Peth, A.1    Kukushkin, N.2    Bossé, M.3    Goldberg, A.L.4
  • 47
    • 84978042613 scopus 로고    scopus 로고
    • Structure of the human 26S proteasome at a resolution of 3.9 Å
    • Schweitzer A, et al. (2016) Structure of the human 26S proteasome at a resolution of 3.9 Å. Proc Natl Acad Sci USA 113(28):7816-7821.
    • (2016) Proc Natl Acad Sci USA , vol.113 , Issue.28 , pp. 7816-7821
    • Schweitzer, A.1
  • 48
    • 84978676943 scopus 로고    scopus 로고
    • An atomic structure of the human 26S proteasome
    • Huang X, Luan B, Wu J, Shi Y (2016) An atomic structure of the human 26S proteasome. Nat Struct Mol Biol 23(9):778-785.
    • (2016) Nat Struct Mol Biol , vol.23 , Issue.9 , pp. 778-785
    • Huang, X.1    Luan, B.2    Wu, J.3    Shi, Y.4
  • 50
    • 0030404988 scopus 로고    scopus 로고
    • HOLE: A program for the analysis of the pore dimensions of ion channel structural models
    • 376
    • Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MS (1996) HOLE: A program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 14(6):354-360, 376.
    • (1996) J Mol Graph , vol.14 , Issue.6 , pp. 354-360
    • Smart, O.S.1    Neduvelil, J.G.2    Wang, X.3    Wallace, B.A.4    Sansom, M.S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.