-
1
-
-
84952639230
-
Gates, channels, and switches: Elements of the proteasome machine
-
Finley D, Chen X, Walters KJ (2016) Gates, channels, and switches: Elements of the proteasome machine. Trends Biochem Sci 41(1):77-93.
-
(2016)
Trends Biochem Sci
, vol.41
, Issue.1
, pp. 77-93
-
-
Finley, D.1
Chen, X.2
Walters, K.J.3
-
2
-
-
84878942836
-
Molecular architecture and assembly of the eukaryotic proteasome
-
Tomko RJ, Jr, Hochstrasser M (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82:415-445.
-
(2013)
Annu Rev Biochem
, vol.82
, pp. 415-445
-
-
Tomko, R.J.1
Hochstrasser, M.2
-
3
-
-
84876916040
-
Structural biology of the proteasome
-
Kish-Trier E, Hill CP (2013) Structural biology of the proteasome. Annu Rev Biophys 42: 29-49.
-
(2013)
Annu Rev Biophys
, vol.42
, pp. 29-49
-
-
Kish-Trier, E.1
Hill, C.P.2
-
4
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477-513.
-
(2009)
Annu Rev Biochem
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
5
-
-
84930188528
-
Crystal structure of the human 20S proteasome in complex with carfilzomib
-
Harshbarger W, Miller C, Diedrich C, Sacchettini J (2015) Crystal structure of the human 20S proteasome in complex with carfilzomib. Structure 23(2):418-424.
-
(2015)
Structure
, vol.23
, Issue.2
, pp. 418-424
-
-
Harshbarger, W.1
Miller, C.2
Diedrich, C.3
Sacchettini, J.4
-
6
-
-
84865405382
-
Inhibitors for the immuno- and constitutive proteasome: Current and future trends in drug development
-
Huber EM, Groll M (2012) Inhibitors for the immuno- and constitutive proteasome: Current and future trends in drug development. Angew Chem Int Ed Engl 51(35): 8708-8720.
-
(2012)
Angew Chem Int Ed Engl
, vol.51
, Issue.35
, pp. 8708-8720
-
-
Huber, E.M.1
Groll, M.2
-
7
-
-
84866269021
-
Near-atomic resolution structural model of the yeast 26S proteasome
-
Beck F, et al. (2012) Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci USA 109(37):14870-14875.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.37
, pp. 14870-14875
-
-
Beck, F.1
-
8
-
-
84857134729
-
Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
-
Lasker K, et al. (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 109(5):1380-1387.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.5
, pp. 1380-1387
-
-
Lasker, K.1
-
9
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander GC, et al. (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482(7384):186-191.
-
(2012)
Nature
, vol.482
, Issue.7384
, pp. 186-191
-
-
Lander, G.C.1
-
10
-
-
84859702750
-
Molecular model of the human 26S proteasome
-
da Fonseca PC, He J, Morris EP (2012) Molecular model of the human 26S proteasome. Mol Cell 46(1):54-66.
-
(2012)
Mol Cell
, vol.46
, Issue.1
, pp. 54-66
-
-
Da Fonseca, P.C.1
He, J.2
Morris, E.P.3
-
11
-
-
0029042511
-
Crystal structure of the 20S proteasome from the archaeon T. Acidophilum at 3.4 Å resolution
-
Löwe J, et al. (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268(5210):533-539.
-
(1995)
Science
, vol.268
, Issue.5210
, pp. 533-539
-
-
Löwe, J.1
-
12
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4Å resolution
-
Groll M, et al. (1997) Structure of 20S proteasome from yeast at 2.4Å resolution. Nature 386(6624):463-471.
-
(1997)
Nature
, vol.386
, Issue.6624
, pp. 463-471
-
-
Groll, M.1
-
13
-
-
0036103598
-
The structure of the mammalian 20S proteasome at 2.75 Å resolution
-
Unno M, et al. (2002) The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure 10(5):609-618.
-
(2002)
Structure
, vol.10
, Issue.5
, pp. 609-618
-
-
Unno, M.1
-
14
-
-
84856023509
-
The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together
-
Pathare GR, et al. (2012) The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc Natl Acad Sci USA 109(1):149-154.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.1
, pp. 149-154
-
-
Pathare, G.R.1
-
15
-
-
84896856969
-
Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11
-
Pathare GR, et al. (2014) Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proc Natl Acad Sci USA 111(8):2984-2989.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.8
, pp. 2984-2989
-
-
Pathare, G.R.1
-
16
-
-
77958604450
-
Structure of Rpn10 and its interactions with polyubiquitin chains and the proteasome subunit Rpn12
-
Riedinger C, et al. (2010) Structure of Rpn10 and its interactions with polyubiquitin chains and the proteasome subunit Rpn12. J Biol Chem 285(44):33992-34003.
-
(2010)
J Biol Chem
, vol.285
, Issue.44
, pp. 33992-34003
-
-
Riedinger, C.1
-
17
-
-
17144417404
-
Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition
-
Wang Q, Young P, Walters KJ (2005) Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J Mol Biol 348(3):727-739.
-
(2005)
J Mol Biol
, vol.348
, Issue.3
, pp. 727-739
-
-
Wang, Q.1
Young, P.2
Walters, K.J.3
-
18
-
-
84895868714
-
Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
-
Worden EJ, Padovani C, Martin A (2014) Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat Struct Mol Biol 21(3):220-227.
-
(2014)
Nat Struct Mol Biol
, vol.21
, Issue.3
, pp. 220-227
-
-
Worden, E.J.1
Padovani, C.2
Martin, A.3
-
19
-
-
68349135106
-
Structure of the S5a:K48-linked diubiquitin complex and its interactions with Rpn13
-
Zhang N, et al. (2009) Structure of the S5a:K48-linked diubiquitin complex and its interactions with Rpn13. Mol Cell 35(3):280-290.
-
(2009)
Mol Cell
, vol.35
, Issue.3
, pp. 280-290
-
-
Zhang, N.1
-
20
-
-
84960914544
-
Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
-
Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC (2016) Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 5:e13027.
-
(2016)
ELife
, vol.5
, pp. e13027
-
-
Dambacher, C.M.1
Worden, E.J.2
Herzik, M.A.3
Martin, A.4
Lander, G.C.5
-
21
-
-
84867838277
-
Structural and functional characterization of Rpn12 identifies residues required for Rpn10 proteasome incorporation
-
Boehringer J, et al. (2012) Structural and functional characterization of Rpn12 identifies residues required for Rpn10 proteasome incorporation. Biochem J 448(1):55-65.
-
(2012)
Biochem J
, vol.448
, Issue.1
, pp. 55-65
-
-
Boehringer, J.1
-
22
-
-
84857935771
-
The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings
-
He J, et al. (2012) The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings. Structure 20(3):513-521.
-
(2012)
Structure
, vol.20
, Issue.3
, pp. 513-521
-
-
He, J.1
-
23
-
-
65649091692
-
Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
-
Zhang F, et al. (2009) Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34(4):473-484.
-
(2009)
Mol Cell
, vol.34
, Issue.4
, pp. 473-484
-
-
Zhang, F.1
-
24
-
-
65649123769
-
Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii
-
Zhang F, et al. (2009) Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34(4):485-496.
-
(2009)
Mol Cell
, vol.34
, Issue.4
, pp. 485-496
-
-
Zhang, F.1
-
25
-
-
84960934506
-
Structure of an endogenous yeast 26S proteasome reveals two major conformational states
-
Luan B, et al. (2016) Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci USA 113(10):2642-2647.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, Issue.10
, pp. 2642-2647
-
-
Luan, B.1
-
26
-
-
84880157841
-
Conformational switching of the 26S proteasome enables substrate degradation
-
Matyskiela ME, Lander GC, Martin A (2013) Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 20(7):781-788.
-
(2013)
Nat Struct Mol Biol
, vol.20
, Issue.7
, pp. 781-788
-
-
Matyskiela, M.E.1
Lander, G.C.2
Martin, A.3
-
27
-
-
84876909425
-
Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
-
Śledź P, et al. (2013) Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci USA 110(18):7264-7269.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, Issue.18
, pp. 7264-7269
-
-
Śledź, P.1
-
28
-
-
84898807479
-
Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
-
Unverdorben P, et al. (2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA 111(15):5544-5549.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.15
, pp. 5544-5549
-
-
Unverdorben, P.1
-
29
-
-
84883488318
-
Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid
-
Estrin E, Lopez-Blanco JR, Chacón P, Martin A (2013) Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 21(9):1624-1635.
-
(2013)
Structure
, vol.21
, Issue.9
, pp. 1624-1635
-
-
Estrin, E.1
Lopez-Blanco, J.R.2
Chacón, P.3
Martin, A.4
-
30
-
-
33947380146
-
Mass spectrometric characterization of the affinity-purified human 26S proteasome complex
-
Wang X, et al. (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46(11):3553-3565.
-
(2007)
Biochemistry
, vol.46
, Issue.11
, pp. 3553-3565
-
-
Wang, X.1
-
31
-
-
33845939047
-
Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization
-
Scheres SH, et al. (2007) Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat Methods 4(1):27-29.
-
(2007)
Nat Methods
, vol.4
, Issue.1
, pp. 27-29
-
-
Scheres, S.H.1
-
32
-
-
84855818650
-
A Bayesian view on cryo-EM structure determination
-
Scheres SH (2012) A Bayesian view on cryo-EM structure determination. J Mol Biol 415(2):406-418.
-
(2012)
J Mol Biol
, vol.415
, Issue.2
, pp. 406-418
-
-
Scheres, S.H.1
-
33
-
-
0034597824
-
Structural basis for the activation of 20S proteasomes by 11S regulators
-
Whitby FG, et al. (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408(6808):115-120.
-
(2000)
Nature
, vol.408
, Issue.6808
, pp. 115-120
-
-
Whitby, F.G.1
-
34
-
-
79959389010
-
AAA+ proteases: ATP-fueled machines of protein destruction
-
Sauer RT, Baker TA (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587-612.
-
(2011)
Annu Rev Biochem
, vol.80
, pp. 587-612
-
-
Sauer, R.T.1
Baker, T.A.2
-
35
-
-
0034885052
-
AAA+ superfamily ATPases: Common structure-diverse function
-
Ogura T, Wilkinson AJ (2001) AAA+ superfamily ATPases: Common structure-diverse function. Genes Cells 6(7):575-597.
-
(2001)
Genes Cells
, vol.6
, Issue.7
, pp. 575-597
-
-
Ogura, T.1
Wilkinson, A.J.2
-
36
-
-
84885428073
-
Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase
-
Beckwith R, Estrin E, Worden EJ, Martin A (2013) Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat Struct Mol Biol 20(10):1164-1172.
-
(2013)
Nat Struct Mol Biol
, vol.20
, Issue.10
, pp. 1164-1172
-
-
Beckwith, R.1
Estrin, E.2
Worden, E.J.3
Martin, A.4
-
37
-
-
70350772363
-
Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine
-
Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT (2009) Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139(4):744-756.
-
(2009)
Cell
, vol.139
, Issue.4
, pp. 744-756
-
-
Glynn, S.E.1
Martin, A.2
Nager, A.R.3
Baker, T.A.4
Sauer, R.T.5
-
38
-
-
84925496573
-
Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine
-
Iosefson O, Nager AR, Baker TA, Sauer RT (2015) Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine. Nat Chem Biol 11(3):201-206.
-
(2015)
Nat Chem Biol
, vol.11
, Issue.3
, pp. 201-206
-
-
Iosefson, O.1
Nager, A.R.2
Baker, T.A.3
Sauer, R.T.4
-
39
-
-
55549132236
-
The 'glutamate switch' provides a link between ATPase activity and ligand binding in AAA+ proteins
-
Zhang X, Wigley DB (2008) The 'glutamate switch' provides a link between ATPase activity and ligand binding in AAA+ proteins. Nat Struct Mol Biol 15(11):1223-1227.
-
(2008)
Nat Struct Mol Biol
, vol.15
, Issue.11
, pp. 1223-1227
-
-
Zhang, X.1
Wigley, D.B.2
-
40
-
-
80555130924
-
An asymmetric interface between the regulatory and core particles of the proteasome
-
Tian G, et al. (2011) An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18(11):1259-1267.
-
(2011)
Nat Struct Mol Biol
, vol.18
, Issue.11
, pp. 1259-1267
-
-
Tian, G.1
-
41
-
-
73649128544
-
Structural models for interactions between the 20S proteasome and its PAN/19S activators
-
Stadtmueller BM, et al. (2010) Structural models for interactions between the 20S proteasome and its PAN/19S activators. J Biol Chem 285(1):13-17.
-
(2010)
J Biol Chem
, vol.285
, Issue.1
, pp. 13-17
-
-
Stadtmueller, B.M.1
-
42
-
-
79960658440
-
C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome
-
Kim YC, DeMartino GN (2011) C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome. J Biol Chem 286(30): 26652-26666.
-
(2011)
J Biol Chem
, vol.286
, Issue.30
, pp. 26652-26666
-
-
Kim, Y.C.1
DeMartino, G.N.2
-
43
-
-
84863338481
-
Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails
-
Lee SH, Moon JH, Yoon SK, Yoon JB (2012) Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails. J Biol Chem 287(12):9269-9279.
-
(2012)
J Biol Chem
, vol.287
, Issue.12
, pp. 9269-9279
-
-
Lee, S.H.1
Moon, J.H.2
Yoon, S.K.3
Yoon, J.B.4
-
44
-
-
0033766480
-
A gated channel into the proteasome core particle
-
Groll M, et al. (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7(11):1062-1067.
-
(2000)
Nat Struct Biol
, vol.7
, Issue.11
, pp. 1062-1067
-
-
Groll, M.1
-
45
-
-
84861553163
-
Functional asymmetries of proteasome translocase pore
-
Erales J, Hoyt MA, Troll F, Coffino P (2012) Functional asymmetries of proteasome translocase pore. J Biol Chem 287(22):18535-18543.
-
(2012)
J Biol Chem
, vol.287
, Issue.22
, pp. 18535-18543
-
-
Erales, J.1
Hoyt, M.A.2
Troll, F.3
Coffino, P.4
-
46
-
-
84875130745
-
Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs
-
Peth A, Kukushkin N, Bossé M, Goldberg AL (2013) Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs. J Biol Chem 288(11):7781-7790.
-
(2013)
J Biol Chem
, vol.288
, Issue.11
, pp. 7781-7790
-
-
Peth, A.1
Kukushkin, N.2
Bossé, M.3
Goldberg, A.L.4
-
47
-
-
84978042613
-
Structure of the human 26S proteasome at a resolution of 3.9 Å
-
Schweitzer A, et al. (2016) Structure of the human 26S proteasome at a resolution of 3.9 Å. Proc Natl Acad Sci USA 113(28):7816-7821.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, Issue.28
, pp. 7816-7821
-
-
Schweitzer, A.1
-
48
-
-
84978676943
-
An atomic structure of the human 26S proteasome
-
Huang X, Luan B, Wu J, Shi Y (2016) An atomic structure of the human 26S proteasome. Nat Struct Mol Biol 23(9):778-785.
-
(2016)
Nat Struct Mol Biol
, vol.23
, Issue.9
, pp. 778-785
-
-
Huang, X.1
Luan, B.2
Wu, J.3
Shi, Y.4
-
50
-
-
0030404988
-
HOLE: A program for the analysis of the pore dimensions of ion channel structural models
-
376
-
Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MS (1996) HOLE: A program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 14(6):354-360, 376.
-
(1996)
J Mol Graph
, vol.14
, Issue.6
, pp. 354-360
-
-
Smart, O.S.1
Neduvelil, J.G.2
Wang, X.3
Wallace, B.A.4
Sansom, M.S.5
|