-
2
-
-
17844403545
-
Role of oxidative carbonylation in protein quality control and senescence
-
[2] Nyström, T., Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 24 (2005), 1311–1317.
-
(2005)
EMBO J.
, vol.24
, pp. 1311-1317
-
-
Nyström, T.1
-
3
-
-
0038799736
-
Oxidative DNA damage: mechanisms, mutation, and disease
-
[3] Cooke, M.S., Evans, M.D., Dizdaroglu, M., Lunec, J., Oxidative DNA damage: mechanisms, mutation, and disease. Faseb J. 17 (2003), 1195–1214, 10.1096/fj.02-0752rev.
-
(2003)
Faseb J.
, vol.17
, pp. 1195-1214
-
-
Cooke, M.S.1
Evans, M.D.2
Dizdaroglu, M.3
Lunec, J.4
-
4
-
-
33644893895
-
Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress
-
[4] Herdeiro, R.S., Pereira, M.D., Panek, A.D., Eleutherio, E.C.A., Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim. Biophys. Acta – Gen. Subj. 1760 (2006), 340–346, 10.1016/j.bbagen.2006.01.010.
-
(2006)
Biochim. Biophys. Acta – Gen. Subj.
, vol.1760
, pp. 340-346
-
-
Herdeiro, R.S.1
Pereira, M.D.2
Panek, A.D.3
Eleutherio, E.C.A.4
-
5
-
-
77954314057
-
Oleic acid and ergosterol supplementation mitigates oxidative stress in wine strains of Saccharomyces cerevisiae
-
[5] Landolfo, S., Zara, G., Zara, S., Budroni, M., Ciani, M., Mannazzu, I., Oleic acid and ergosterol supplementation mitigates oxidative stress in wine strains of Saccharomyces cerevisiae. Int. J. Food Microbiol. 141 (2010), 229–235, 10.1016/j.ijfoodmicro.2010.05.020.
-
(2010)
Int. J. Food Microbiol.
, vol.141
, pp. 229-235
-
-
Landolfo, S.1
Zara, G.2
Zara, S.3
Budroni, M.4
Ciani, M.5
Mannazzu, I.6
-
6
-
-
0003526162
-
Yeast Stress Responses
-
Springer Science & Business
-
[6] Hohmann, S., Mager, W.H., Yeast Stress Responses. 2007, Springer Science & Business.
-
(2007)
-
-
Hohmann, S.1
Mager, W.H.2
-
7
-
-
84859586432
-
The response to heat shock and oxidative stress in Saccharomyces cerevisiae
-
[7] Morano, K.A., Grant, C.M., Moye-Rowley, W.S., The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190 (2012), 1157–1195, 10.1534/genetics.111.128033.
-
(2012)
Genetics
, vol.190
, pp. 1157-1195
-
-
Morano, K.A.1
Grant, C.M.2
Moye-Rowley, W.S.3
-
8
-
-
49349100455
-
Redox control and oxidative stress in yeast cells
-
[8] Herrero, E., Ros, J., Bellí, G., Cabiscol, E., Redox control and oxidative stress in yeast cells. Biochim. Biophys. Acta - Gen. Subj. 1780 (2008), 1217–1235, 10.1016/j.bbagen.2007.12.004.
-
(2008)
Biochim. Biophys. Acta - Gen. Subj.
, vol.1780
, pp. 1217-1235
-
-
Herrero, E.1
Ros, J.2
Bellí, G.3
Cabiscol, E.4
-
9
-
-
0032439653
-
Oxidative stress responses of the yeast Saccharomyces cerevisiae
-
(10.1002/(SICI)(1097-0061(199812)(14:16[[___)](lt;1511::AID-YEA356[[___)](gt;3.0.CO;2-S)
-
[9] Jamieson, D.J., Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14 (1998), 1511–1527 (10.1002/(SICI)(1097-0061(199812)(14:16[[___)](lt;1511::AID-YEA356[[___)](gt;3.0.CO;2-S).
-
(1998)
Yeast
, vol.14
, pp. 1511-1527
-
-
Jamieson, D.J.1
-
10
-
-
84887212425
-
The Warburg effect suppresses oxidative stress induced apoptosis in a yeast model for cancer
-
[10] Ruckenstuhl, C., Büttner, S., Carmona-Gutierrez, D., Eisenberg, T., Kroemer, G., Sigrist, S.J., et al. The Warburg effect suppresses oxidative stress induced apoptosis in a yeast model for cancer. PLoS One, 4, 2009, e4592, 10.1371/journal.pone.0004592.
-
(2009)
PLoS One
, vol.4
, pp. e4592
-
-
Ruckenstuhl, C.1
Büttner, S.2
Carmona-Gutierrez, D.3
Eisenberg, T.4
Kroemer, G.5
Sigrist, S.J.6
-
11
-
-
14644442283
-
Oxygen, oxidative stress, hypoxia, and heart failure
-
[11] Giordano, F.J., Oxygen, oxidative stress, hypoxia, and heart failure. J. Clin. Investig. 115 (2005), 500–508, 10.1172/JCI24408.
-
(2005)
J. Clin. Investig.
, vol.115
, pp. 500-508
-
-
Giordano, F.J.1
-
12
-
-
0024986945
-
Oxidative stress: a role in the pathogenesis of Parkinson's disease
-
[12] Götz, M.E., Freyberger, A., Riederer, P., Oxidative stress: a role in the pathogenesis of Parkinson's disease. J. Neural Transm. Suppl. 29 (1990), 241–249.
-
(1990)
J. Neural Transm. Suppl.
, vol.29
, pp. 241-249
-
-
Götz, M.E.1
Freyberger, A.2
Riederer, P.3
-
13
-
-
0037378026
-
Oxidative stress in Parkinson's disease
-
[13] Jenner, P., Oxidative stress in Parkinson's disease. Ann. Neurol., 2003.
-
(2003)
Ann. Neurol.
-
-
Jenner, P.1
-
14
-
-
0030915855
-
Oxidative stress hypothesis in Alzheimer's disease
-
[14] Markesbery, W.R., Oxidative stress hypothesis in Alzheimer's disease. Free Radic. Biol. Med. 23 (1997), 134–147.
-
(1997)
Free Radic. Biol. Med.
, vol.23
, pp. 134-147
-
-
Markesbery, W.R.1
-
15
-
-
0033954991
-
Oxidative stress and Alzheimer disease
-
[15] Christen, Y., Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr., 2000.
-
(2000)
Am. J. Clin. Nutr.
-
-
Christen, Y.1
-
16
-
-
84865861394
-
Oxidative damage, ageing, and life-history evolution: where now?
-
[16] Selman, C., Blount, J.D., Nussey, D.H., Speakman, J.R., Oxidative damage, ageing, and life-history evolution: where now?. Trends Ecol. Evol. 27 (2012), 570–577, 10.1016/j.tree.2012.06.006.
-
(2012)
Trends Ecol. Evol.
, vol.27
, pp. 570-577
-
-
Selman, C.1
Blount, J.D.2
Nussey, D.H.3
Speakman, J.R.4
-
17
-
-
0029439509
-
Oxidative stress: the paradox of aerobic life
-
[17] Davies, K.J., Oxidative stress: the paradox of aerobic life. Biochem. Soc. Symp. 61 (1995), 1–31.
-
(1995)
Biochem. Soc. Symp.
, vol.61
, pp. 1-31
-
-
Davies, K.J.1
-
18
-
-
2342487990
-
Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes
-
[18] Thorpe, G.W., Fong, C.S., Alic, N., Higgins, V.J., Dawes, I.W., Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc. Natl. Acad. Sci. USA 101 (2004), 6564–6569, 10.1073/pnas.0305888101.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 6564-6569
-
-
Thorpe, G.W.1
Fong, C.S.2
Alic, N.3
Higgins, V.J.4
Dawes, I.W.5
-
19
-
-
0035131144
-
Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions
-
[19] Grant, C.M., Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbiol. 39 (2001), 533–541, 10.1046/j.1365-2958.2001.02283.x.
-
(2001)
Mol. Microbiol.
, vol.39
, pp. 533-541
-
-
Grant, C.M.1
-
20
-
-
80055008140
-
Hydrogen peroxide: a Jekyll and Hyde signalling molecule
-
[20] Gough, D.R., Cotter, T.G., Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis., 2, 2011, e213, 10.1038/cddis.2011.96.
-
(2011)
Cell Death Dis.
, vol.2
, pp. e213
-
-
Gough, D.R.1
Cotter, T.G.2
-
21
-
-
33847660853
-
Use and abuse of exogenous H2O2 in studies of signal transduction
-
[21] Forman, H.J., Use and abuse of exogenous H2O2 in studies of signal transduction. Free Radic. Biol. Med. 42 (2007), 926–932, 10.1016/j.freeradbiomed.2007.01.011.
-
(2007)
Free Radic. Biol. Med.
, vol.42
, pp. 926-932
-
-
Forman, H.J.1
-
22
-
-
40949119481
-
H2O2 induces rapid biophysical and permeability changes in the plasma membrane of Saccharomyces cerevisiae
-
[22] Folmer, V., Pedroso, N., Matias, A.C., Lopes, S.C.D.N., Antunes, F., Cyrne, L., et al. H2O2 induces rapid biophysical and permeability changes in the plasma membrane of Saccharomyces cerevisiae. Biochem. Biophys. Acta - General Subjects 1778 (2013), 1141–1147, 10.1016/j.bbagen.2013.09.017.
-
(2013)
Biochem. Biophys. Acta - General Subjects
, vol.1778
, pp. 1141-1147
-
-
Folmer, V.1
Pedroso, N.2
Matias, A.C.3
Lopes, S.C.D.N.4
Antunes, F.5
Cyrne, L.6
-
23
-
-
0034674055
-
Estimation of H2O2 gradients across biomembranes
-
[23] Antunes, F., Cadenas, E., Estimation of H2O2 gradients across biomembranes. FEBS Lett. 475 (2000), 121–126, 10.1016/S0014-5793(00)01638-0.
-
(2000)
FEBS Lett.
, vol.475
, pp. 121-126
-
-
Antunes, F.1
Cadenas, E.2
-
24
-
-
77954356493
-
Fluorescent protein-based redox probes
-
[24] Meyer, A.J., Dick, T.P., Fluorescent protein-based redox probes. Antioxid. Redox Signal. 13 (2010), 621–650, 10.1089/ars.2009.2948.
-
(2010)
Antioxid. Redox Signal.
, vol.13
, pp. 621-650
-
-
Meyer, A.J.1
Dick, T.P.2
-
25
-
-
33645283923
-
Genetically encoded fluorescent indicator for intracellular hydrogen peroxide
-
[25] Belousov, V.V., Fradkov, A.F., Lukyanov, K.A., Staroverov, D.B., Shakhbazov, K.S., Terskikh, A.V., et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3 (2006), 281–286, 10.1038/nmeth866.
-
(2006)
Nat. Methods
, vol.3
, pp. 281-286
-
-
Belousov, V.V.1
Fradkov, A.F.2
Lukyanov, K.A.3
Staroverov, D.B.4
Shakhbazov, K.S.5
Terskikh, A.V.6
-
26
-
-
0032994431
-
Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol—disulfide status
-
[26] Fredrik Åslund, M.Z.J.B.G.S., Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol—disulfide status. Proc. Natl. Acad. Sci. USA, 96, 1999, 6161.
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 6161
-
-
Fredrik Åslund, M.Z.J.B.G.S.1
-
27
-
-
0035815274
-
Structural basis of the redox switch in the OxyR transcription factor
-
[27] Choi, H., Kim, S., Mukhopadhyay, P., Cho, S., Woo, J., Storz, G., et al. Structural basis of the redox switch in the OxyR transcription factor. Cell 105 (2001), 103–113.
-
(2001)
Cell
, vol.105
, pp. 103-113
-
-
Choi, H.1
Kim, S.2
Mukhopadhyay, P.3
Cho, S.4
Woo, J.5
Storz, G.6
-
28
-
-
77955048966
-
Methods for detection and measurement of hydrogen peroxide inside and outside of cells
-
[28] Rhee, S.G., Chang, T.-S., Jeong, W., Kang, D., Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol. Cells 29 (2010), 539–549, 10.1007/s10059-010-0082-3.
-
(2010)
Mol. Cells
, vol.29
, pp. 539-549
-
-
Rhee, S.G.1
Chang, T.-S.2
Jeong, W.3
Kang, D.4
-
29
-
-
1342325429
-
Decrease of H2O2 plasma membrane permeability during adaptation to H2O2 in Saccharomyces cerevisiae
-
[29] Branco, M.R., Marinho, H.S., Cyrne, L., Antunes, F., Decrease of H2O2 plasma membrane permeability during adaptation to H2O2 in Saccharomyces cerevisiae. J. Biol. Chem. 279 (2004), 6501–6506, 10.1074/jbc.M311818200.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 6501-6506
-
-
Branco, M.R.1
Marinho, H.S.2
Cyrne, L.3
Antunes, F.4
-
30
-
-
84947799070
-
Integrative model of oxidative stress adaptation in the fungal pathogen Candida albicans
-
[30] Komalapriya, C., Kaloriti, D., Tillmann, A.T., Yin, Z., Herrero-de-Dios, C., Jacobsen, M.D., et al. Integrative model of oxidative stress adaptation in the fungal pathogen Candida albicans. PLoS One, 10, 2015, e0137750, 10.1371/journal.pone.0137750.
-
(2015)
PLoS One
, vol.10
, pp. e0137750
-
-
Komalapriya, C.1
Kaloriti, D.2
Tillmann, A.T.3
Yin, Z.4
Herrero-de-Dios, C.5
Jacobsen, M.D.6
-
31
-
-
84865627805
-
The H2O2-sensitive HyPer protein targeted to the endoplasmic reticulum as a mirror of the oxidizing thiol–disulfide milieu
-
[31] Mehmeti, I., Lortz, S., Lenzen, S., The H2O2-sensitive HyPer protein targeted to the endoplasmic reticulum as a mirror of the oxidizing thiol–disulfide milieu. Free Radic. Biol. Med. 53 (2012), 1451–1458, 10.1016/j.freeradbiomed.2012.08.010.
-
(2012)
Free Radic. Biol. Med.
, vol.53
, pp. 1451-1458
-
-
Mehmeti, I.1
Lortz, S.2
Lenzen, S.3
-
32
-
-
67649255876
-
A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish
-
[32] Niethammer, P., Grabher, C., Look, A.T., Mitchison, T.J., A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature, 2009.
-
(2009)
Nature
-
-
Niethammer, P.1
Grabher, C.2
Look, A.T.3
Mitchison, T.J.4
-
33
-
-
84893658473
-
Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast
-
[33] Martins, D., English, A.M., Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast. Redox Biol., 2014.
-
(2014)
Redox Biol.
-
-
Martins, D.1
English, A.M.2
-
34
-
-
38749112941
-
Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast
-
[34] Brauer, M.J., Huttenhower, C., Airoldi, E.M., Rosenstein, R., Matese, J.C., Gresham, D., et al. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol. Biol. Cell 19 (2008), 352–367, 10.1091/mbc.E07-08-0779.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 352-367
-
-
Brauer, M.J.1
Huttenhower, C.2
Airoldi, E.M.3
Rosenstein, R.4
Matese, J.C.5
Gresham, D.6
-
35
-
-
84872687926
-
Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis
-
[35] Morgan, B., Ezeriņa, D., Amoako, T.N.E., Riemer, J., Seedorf, M., Dick, T.P., Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat. Chem. Biol. 9 (2012), 119–125, 10.1038/nchembio.1142.
-
(2012)
Nat. Chem. Biol.
, vol.9
, pp. 119-125
-
-
Morgan, B.1
Ezeriņa, D.2
Amoako, T.N.E.3
Riemer, J.4
Seedorf, M.5
Dick, T.P.6
-
36
-
-
0032575374
-
The H2O2 stimulon in Saccharomyces cerevisiae
-
[36] Godon, C., Lagniel, G., Lee, J., Buhler, J.-M., Kieffer, S., Perrot, M., et al. The H2O2 stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273 (1998), 22480–22489.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 22480-22489
-
-
Godon, C.1
Lagniel, G.2
Lee, J.3
Buhler, J.-M.4
Kieffer, S.5
Perrot, M.6
-
37
-
-
81355139585
-
Controlling gene expression in response to stress
-
[37] de Nadal, E., Ammerer, G., Posas, F., Controlling gene expression in response to stress. Nat. Rev. Genet. 12 (2011), 833–845, 10.1038/nrg3055.
-
(2011)
Nat. Rev. Genet.
, vol.12
, pp. 833-845
-
-
de Nadal, E.1
Ammerer, G.2
Posas, F.3
-
38
-
-
0035131144
-
Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions
-
[38] Grant, C.M., Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbiol. 39 (2001), 533–541.
-
(2001)
Mol. Microbiol.
, vol.39
, pp. 533-541
-
-
Grant, C.M.1
-
39
-
-
0028057226
-
YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides
-
[39] Kuge, S., Jones, N., YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J., 1994.
-
(1994)
EMBO J.
-
-
Kuge, S.1
Jones, N.2
-
40
-
-
0033523113
-
Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast
-
[40] Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., et al. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274 (1999), 16040–16046.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 16040-16046
-
-
Lee, J.1
Godon, C.2
Lagniel, G.3
Spector, D.4
Garin, J.5
Labarre, J.6
-
41
-
-
0037110454
-
Is an H2O2 receptor and redox-transducer in gene activation
-
[41] Delaunay, A., Pflieger, D., Barrault, M.-B., Vinh, J., Toledano, M.B., Thiol Peroxidase, A., Is an H2O2 receptor and redox-transducer in gene activation. Cell 111 (2002), 471–481, 10.1016/S0092-8674(02)01048-6.
-
(2002)
Cell
, vol.111
, pp. 471-481
-
-
Delaunay, A.1
Pflieger, D.2
Barrault, M.-B.3
Vinh, J.4
Toledano, M.B.5
Thiol Peroxidase, A.6
-
42
-
-
14044271510
-
Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast
-
[42] Okazaki, S., Naganuma, A., Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast. Antioxid. Redox., 2005.
-
(2005)
Antioxid. Redox.
-
-
Okazaki, S.1
Naganuma, A.2
-
43
-
-
63249111293
-
A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive disulfide bonds and reveals a low level of transcriptional activation
-
[43] Tachibana, T., Okazaki, S., Murayama, A., Naganuma, A., Nomoto, A., Kuge, S., A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive disulfide bonds and reveals a low level of transcriptional activation. J. Biol. Chem. 284 (2009), 4464–4472, 10.1074/jbc.M807583200.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 4464-4472
-
-
Tachibana, T.1
Okazaki, S.2
Murayama, A.3
Naganuma, A.4
Nomoto, A.5
Kuge, S.6
-
44
-
-
84941051170
-
STRING v10: protein-protein interaction networks, integrated over the tree of life
-
[44] Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43 (2015), D447–D452, 10.1093/nar/gku1003.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. D447-D452
-
-
Szklarczyk, D.1
Franceschini, A.2
Wyder, S.3
Forslund, K.4
Heller, D.5
Huerta-Cepas, J.6
-
45
-
-
84891806965
-
The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae
-
[45] Teixeira, M.C., Monteiro, P.T., Guerreiro, J.F., Gonçalves, J.P., Mira, N.P., dos Santos, S.C., et al. The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae. Nucleic Acids Res. 42 (2014), D161–D166, 10.1093/nar/gkt1015.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. D161-D166
-
-
Teixeira, M.C.1
Monteiro, P.T.2
Guerreiro, J.F.3
Gonçalves, J.P.4
Mira, N.P.5
dos Santos, S.C.6
-
46
-
-
0032583570
-
Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae
-
[46] Grant, C.M., Perrone, G., Dawes, I.W., Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 253 (1998), 893–898, 10.1006/bbrc.1998.9864.
-
(1998)
Biochem. Biophys. Res. Commun.
, vol.253
, pp. 893-898
-
-
Grant, C.M.1
Perrone, G.2
Dawes, I.W.3
-
47
-
-
0034076851
-
A single glutaredoxin or thioredoxin gene is essential for viability in the yeast Saccharomyces cerevisiae
-
[47] Draculic, T., Dawes, I.W., Grant, C.M., A single glutaredoxin or thioredoxin gene is essential for viability in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 36 (2000), 1167–1174.
-
(2000)
Mol. Microbiol.
, vol.36
, pp. 1167-1174
-
-
Draculic, T.1
Dawes, I.W.2
Grant, C.M.3
-
48
-
-
0036052119
-
An overview on glutathione in Saccharomyces versus non-conventional yeasts
-
[48] Penninckx, M.J., An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res. 2 (2002), 295–305.
-
(2002)
FEMS Yeast Res.
, vol.2
, pp. 295-305
-
-
Penninckx, M.J.1
-
49
-
-
0030747207
-
Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine
-
[49] Grant, C.M., MacIver, F.H., Dawes, I.W., Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine. Mol. Biol. Cell 8 (1997), 1699–1707.
-
(1997)
Mol. Biol. Cell
, vol.8
, pp. 1699-1707
-
-
Grant, C.M.1
MacIver, F.H.2
Dawes, I.W.3
-
50
-
-
0031048280
-
The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae
-
[50] Morgan, B.A., Banks, G.R., Toone, W.M., Raitt, D., Kuge, S., Johnston, L.H., The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 16 (1997), 1035–1044, 10.1093/emboj/16.5.1035.
-
(1997)
EMBO J.
, vol.16
, pp. 1035-1044
-
-
Morgan, B.A.1
Banks, G.R.2
Toone, W.M.3
Raitt, D.4
Kuge, S.5
Johnston, L.H.6
-
51
-
-
33750975084
-
Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments
-
[51] Nour-Eldin, H.H., Hansen, B.G., Norholm, M.H.H., Jensen, J.K., Halkier, B.A., Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res., 34, 2006, 10.1093/nar/gkl635.
-
(2006)
Nucleic Acids Res.
, vol.34
-
-
Nour-Eldin, H.H.1
Hansen, B.G.2
Norholm, M.H.H.3
Jensen, J.K.4
Halkier, B.A.5
-
52
-
-
0034603061
-
Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles
-
[52] Roberts, C.J., Nelson, B., Marton, M.J., Stoughton, R., Meyer, M.R., Bennett, H.A., et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287 (2000), 873–880, 10.1126/science.287.5454.873.
-
(2000)
Science
, vol.287
, pp. 873-880
-
-
Roberts, C.J.1
Nelson, B.2
Marton, M.J.3
Stoughton, R.4
Meyer, M.R.5
Bennett, H.A.6
-
53
-
-
77950603940
-
A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering
-
[53] Nørholm, M.H.H., A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol., 10, 2010, 21, 10.1186/1472-6750-10-21.
-
(2010)
BMC Biotechnol.
, vol.10
, pp. 21
-
-
Nørholm, M.H.H.1
-
54
-
-
34347252686
-
High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
-
[54] Gietz, R.D., Schiestl, R.H., High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc., 2007.
-
(2007)
Nat. Protoc.
-
-
Gietz, R.D.1
Schiestl, R.H.2
-
55
-
-
84992487667
-
-
[55] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, COPASI—a complex pathway simulator, 2006.
-
(2006)
COPASI—a complex pathway simulator
-
-
Hoops, S.1
Sahle, S.2
Gauges, R.3
Lee, C.4
Pahle, J.5
-
56
-
-
0034490302
-
Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of …
-
[56] Henzler, T., Steudle, E., Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of …. J. Exp. Bot., 2000.
-
(2000)
J. Exp. Bot.
-
-
Henzler, T.1
Steudle, E.2
-
57
-
-
33748564986
-
Membrane transport of hydrogen peroxide
-
[57] Bienert, G.P., Schjoerring, J.K., Jahn, T.P., Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta 1758 (2006), 994–1003, 10.1016/j.bbamem.2006.02.015.
-
(2006)
Biochim. Biophys. Acta
, vol.1758
, pp. 994-1003
-
-
Bienert, G.P.1
Schjoerring, J.K.2
Jahn, T.P.3
-
58
-
-
84899841563
-
Organelle size scaling of the budding yeast vacuole is tuned by membrane trafficking rates
-
[58] Chan, Y.-H.M., Marshall, W.F., Organelle size scaling of the budding yeast vacuole is tuned by membrane trafficking rates. Biophys. J. 106 (2014), 1986–1996, 10.1016/j.bpj.2014.03.014.
-
(2014)
Biophys. J.
, vol.106
, pp. 1986-1996
-
-
Chan, Y.-H.M.1
Marshall, W.F.2
|