-
1
-
-
13244288422
-
-
Washington (DC): Office of Energy Efficiency and Renewable Energy, US Department of Energy
-
Werpy T, Petersen G., Top value added chemicals from biomass. Washington (DC):Office of Energy Efficiency and Renewable Energy, US Department of Energy; 2004.
-
(2004)
Top value added chemicals from biomass
-
-
Werpy, T.1
Petersen, G.2
-
2
-
-
0000008274
-
2 and acetate
-
2 and acetate. Arch Microbiol. 1989;151:252–256.
-
(1989)
Arch Microbiol
, vol.151
, pp. 252-256
-
-
Holo, H.1
-
3
-
-
33845383207
-
Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp
-
Alber B, Olinger M, Rieder A, et al. Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. J Bacteriol. 2006;188:8551–8559.
-
(2006)
J Bacteriol
, vol.188
, pp. 8551-8559
-
-
Alber, B.1
Olinger, M.2
Rieder, A.3
-
4
-
-
75849126252
-
2 fixation: fait accompli
-
2 fixation:fait accompli. Proc Natl Acad Sci USA. 2009;106:21015–21016.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 21015-21016
-
-
Tabita, F.R.1
-
6
-
-
0028948710
-
Technological and economic potential of poly (lactic acid) and lactic acid derivatives
-
Datta R, Tsai SP, Bonsignore P, et al. Technological and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS Microbiol Rev. 1995;16:221–231.
-
(1995)
FEMS Microbiol Rev
, vol.16
, pp. 221-231
-
-
Datta, R.1
Tsai, S.P.2
Bonsignore, P.3
-
7
-
-
18744389531
-
A new synthetic route to poly [3-hydroxypropionic acid](P [3-HP]): ring-opening polymerization of 3-HP macrocyclic esters
-
Zhang D, Hillmyer MA, Tolman WB., A new synthetic route to poly [3-hydroxypropionic acid](P [3-HP]):ring-opening polymerization of 3-HP macrocyclic esters. Macromolecules. 2004;37:8198–8200.
-
(2004)
Macromolecules
, vol.37
, pp. 8198-8200
-
-
Zhang, D.1
Hillmyer, M.A.2
Tolman, W.B.3
-
8
-
-
84865783440
-
Biosynthetic pathway for poly(3-hydroxypropionate) in recombinant Escherichia coli
-
Wang Q, Liu C, Xian M, et al. Biosynthetic pathway for poly(3-hydroxypropionate) in recombinant Escherichia coli. J Microbiol. 2012;50:693–697.
-
(2012)
J Microbiol
, vol.50
, pp. 693-697
-
-
Wang, Q.1
Liu, C.2
Xian, M.3
-
9
-
-
0027697314
-
Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxypropionate)
-
Hiramitsu M, Doi Y., Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxypropionate). Polymer. 1993;34:4782–4786.
-
(1993)
Polymer
, vol.34
, pp. 4782-4786
-
-
Hiramitsu, M.1
Doi, Y.2
-
10
-
-
79960244883
-
A green approach to chemical building blocks. The case of 3-hydroxypropanoic acid
-
Della Pina C, Falletta E, Rossi M., A green approach to chemical building blocks. The case of 3-hydroxypropanoic acid. Green Chem. 2011;13:1624–1632.
-
(2011)
Green Chem
, vol.13
, pp. 1624-1632
-
-
Della Pina, C.1
Falletta, E.2
Rossi, M.3
-
11
-
-
60549117589
-
Oxidation of allyl alcohol in the presence of a gold catalyst: a route to 3-hydroxypropionic acid
-
Della Pina C, Falletta E, Rossi M., Oxidation of allyl alcohol in the presence of a gold catalyst:a route to 3-hydroxypropionic acid. ChemSusChem. 2009;2:57–58.
-
(2009)
ChemSusChem
, vol.2
, pp. 57-58
-
-
Della Pina, C.1
Falletta, E.2
Rossi, M.3
-
12
-
-
63949083313
-
Biosynthetic pathways for 3-hydroxypropionic acid production
-
Jiang X, Meng X, Xian M., Biosynthetic pathways for 3-hydroxypropionic acid production. Appl Microbiol Biotechnol. 2009;82:995–1003.
-
(2009)
Appl Microbiol Biotechnol
, vol.82
, pp. 995-1003
-
-
Jiang, X.1
Meng, X.2
Xian, M.3
-
13
-
-
53049107739
-
Biomass-based energy fuel through biochemical routes: a review
-
Saxena R, Adhikari D, Goyal H., Biomass-based energy fuel through biochemical routes:a review. Renew Sust Energ Rev. 2009;13:167–178.
-
(2009)
Renew Sust Energ Rev
, vol.13
, pp. 167-178
-
-
Saxena, R.1
Adhikari, D.2
Goyal, H.3
-
14
-
-
36248991352
-
Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change
-
Hermann B, Blok K, Patel MK., Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ Sci Technol. 2007;41:7915–7921.
-
(2007)
Environ Sci Technol
, vol.41
, pp. 7915-7921
-
-
Hermann, B.1
Blok, K.2
Patel, M.K.3
-
15
-
-
84857449564
-
Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains
-
Rathnasingh C, Raj SM, Lee Y, et al. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol. 2012;157:633–640.
-
(2012)
J Biotechnol
, vol.157
, pp. 633-640
-
-
Rathnasingh, C.1
Raj, S.M.2
Lee, Y.3
-
16
-
-
84914159667
-
Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials
-
Andreeßen B, Taylor N, Steinbuchel A., Poly(3-hydroxypropionate):a promising alternative to fossil fuel-based materials. Appl Environ Microbiol. 2014;80:6574–6582.
-
(2014)
Appl Environ Microbiol
, vol.80
, pp. 6574-6582
-
-
Andreeßen, B.1
Taylor, N.2
Steinbuchel, A.3
-
17
-
-
84882643588
-
Recent advances in biological production of 3-hydroxypropionic acid
-
Kumar V, Ashok S, Park S., Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv. 2013;31:945–961.
-
(2013)
Biotechnol Adv
, vol.31
, pp. 945-961
-
-
Kumar, V.1
Ashok, S.2
Park, S.3
-
18
-
-
84909594451
-
Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiaevia β-alanine
-
Borodina I, Kildegaard KR, Jensen NB, et al. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiaevia β-alanine. Metab Eng. 2015;27:57–64.
-
(2015)
Metab Eng
, vol.27
, pp. 57-64
-
-
Borodina, I.1
Kildegaard, K.R.2
Jensen, N.B.3
-
19
-
-
84884472584
-
Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement
-
Liu C, Wang Q, Xian M, et al. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement. PLoS One. 2013;8:e75554.
-
(2013)
PLoS One
, vol.8
, pp. e75554
-
-
Liu, C.1
Wang, Q.2
Xian, M.3
-
20
-
-
84957727651
-
Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis
-
Liu C, Ding Y, Zhang R, et al. Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis. Metab Eng. 2016a;34:104–111.
-
(2016)
Metab Eng
, vol.34
, pp. 104-111
-
-
Liu, C.1
Ding, Y.2
Zhang, R.3
-
21
-
-
84894040387
-
Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae
-
Chen Y, Bao J, Kim IK, et al. Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab Eng. 2014;22:104–109.
-
(2014)
Metab Eng
, vol.22
, pp. 104-109
-
-
Chen, Y.1
Bao, J.2
Kim, I.K.3
-
22
-
-
84952897629
-
2 in cyanobacterium Synechocystis sp. PCC 6803
-
2 in cyanobacterium Synechocystis sp. PCC 6803. Metab Eng. 2016;34:60–70.
-
(2016)
Metab Eng
, vol.34
, pp. 60-70
-
-
Wang, Y.1
Sun, T.2
Gao, X.3
-
23
-
-
23944509003
-
Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery
-
Tong L., Acetyl-coenzyme A carboxylase:crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci. 2005;62:1784–1803.
-
(2005)
Cell Mol Life Sci
, vol.62
, pp. 1784-1803
-
-
Tong, L.1
-
24
-
-
84859532678
-
Acetyl-coenzyme A carboxylase–an attractive enzyme for biotechnology
-
Podkowinski J, Tworak A., Acetyl-coenzyme A carboxylase–an attractive enzyme for biotechnology. BTA. 2011;92:321–325.
-
(2011)
BTA
, vol.92
, pp. 321-325
-
-
Podkowinski, J.1
Tworak, A.2
-
25
-
-
0036227596
-
Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation
-
Hügler M, Menendez C, Schägger H, et al. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. J Bacteriol. 2002;184:2404–2410.
-
(2002)
J Bacteriol
, vol.184
, pp. 2404-2410
-
-
Hügler, M.1
Menendez, C.2
Schägger, H.3
-
26
-
-
37249052742
-
A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea
-
Berg IA, Kockelkorn D, Buckel W, et al. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science. 2007;318:1782–1786.
-
(2007)
Science
, vol.318
, pp. 1782-1786
-
-
Berg, I.A.1
Kockelkorn, D.2
Buckel, W.3
-
28
-
-
77954860039
-
Debottlenecking the 1,3-propanediol pathway by metabolic engineering
-
Celińska E. Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv. 2010;28:519–530.
-
(2010)
Biotechnol Adv
, vol.28
, pp. 519-530
-
-
Celińska, E.1
-
29
-
-
84920194778
-
Microbial acetyl-CoA metabolism and metabolic engineering
-
Krivoruchko A, Zhang Y, Siewers V, et al. Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng. 2015;28:28–42.
-
(2015)
Metab Eng
, vol.28
, pp. 28-42
-
-
Krivoruchko, A.1
Zhang, Y.2
Siewers, V.3
-
30
-
-
0025405421
-
Simple constrained-optimization view of acetate overflow in E. coli
-
Majewski R, Domach M., Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol Bioeng. 1990;35:732–738.
-
(1990)
Biotechnol Bioeng
, vol.35
, pp. 732-738
-
-
Majewski, R.1
Domach, M.2
-
31
-
-
4544373143
-
Flux to acetate and lactate excretions in industrial fermentations: physiological and biochemical implications
-
El-Mansi M., Flux to acetate and lactate excretions in industrial fermentations:physiological and biochemical implications. J Ind Microbiol Biotechnol. 2004;31:295–300.
-
(2004)
J Ind Microbiol Biotechnol
, vol.31
, pp. 295-300
-
-
El-Mansi, M.1
-
32
-
-
23344450789
-
Characterization of the acetate-producing pathways in Escherichia coli
-
Dittrich CR, Bennett GN, San KY., Characterization of the acetate-producing pathways in Escherichia coli. Biotechnol Prog. 2005;21:1062–1067.
-
(2005)
Biotechnol Prog
, vol.21
, pp. 1062-1067
-
-
Dittrich, C.R.1
Bennett, G.N.2
San, K.Y.3
-
33
-
-
16344391449
-
Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate
-
Dittrich CR, Vadali RV, Bennett GN, et al. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnol Prog. 2005;21:627–631.
-
(2005)
Biotechnol Prog
, vol.21
, pp. 627-631
-
-
Dittrich, C.R.1
Vadali, R.V.2
Bennett, G.N.3
-
34
-
-
33746718715
-
Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering
-
Lin H, Castro NM, Bennett GN, et al. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation:a potential tool in metabolic engineering. Appl Microbiol Biotechnol. 2006;71:870–874.
-
(2006)
Appl Microbiol Biotechnol
, vol.71
, pp. 870-874
-
-
Lin, H.1
Castro, N.M.2
Bennett, G.N.3
-
35
-
-
84855905968
-
Metabolic engineering for acetate control in large scale fermentation
-
Tao Y, Cheng Q, Kopatsis AD., Metabolic engineering for acetate control in large scale fermentation. Methods Mol Biol. 2012;834:283–303.
-
(2012)
Methods Mol Biol
, vol.834
, pp. 283-303
-
-
Tao, Y.1
Cheng, Q.2
Kopatsis, A.D.3
-
36
-
-
84901685293
-
Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli
-
Peebo K, Valgepea K, Nahku R, et al. Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli. Appl Microbiol Biotechnol. 2014;98:5131–5143.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 5131-5143
-
-
Peebo, K.1
Valgepea, K.2
Nahku, R.3
-
37
-
-
84961626309
-
Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: pathway stoichiometry, free-energy conservation and redox-cofactor balancing
-
Van Rossum HM, Kozak BU, Pronk JT, et al. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae:pathway stoichiometry, free-energy conservation and redox-cofactor balancing. Metab Eng. 2016;36:99–115.
-
(2016)
Metab Eng
, vol.36
, pp. 99-115
-
-
Van Rossum, H.M.1
Kozak, B.U.2
Pronk, J.T.3
-
38
-
-
84960936931
-
Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway
-
Kildegaard KR, Jensen NB, Schneider K, et al. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Fact. 2016;15:53.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 53
-
-
Kildegaard, K.R.1
Jensen, N.B.2
Schneider, K.3
-
39
-
-
84948380433
-
Metabolic engineering of Escherichia coli to improve recombinant protein production
-
Liu M, Feng X, Ding Y, et al. Metabolic engineering of Escherichia coli to improve recombinant protein production. Appl Microbiol Biotechnol. 2015;99:10367–10377.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 10367-10377
-
-
Liu, M.1
Feng, X.2
Ding, Y.3
-
40
-
-
0030841920
-
The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli
-
Liu MY, Gui G, Wei B, et al. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem. 1997;272:17502–17510.
-
(1997)
J Biol Chem
, vol.272
, pp. 17502-17510
-
-
Liu, M.Y.1
Gui, G.2
Wei, B.3
-
41
-
-
84872383524
-
Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS
-
Negrete A, Majdalani N, Phue JN, et al. Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS. N Biotechnol. 2013;30:269–273.
-
(2013)
N Biotechnol
, vol.30
, pp. 269-273
-
-
Negrete, A.1
Majdalani, N.2
Phue, J.N.3
-
42
-
-
17644369246
-
Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli
-
Perrenoud A, Sauer U., Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol. 2005;187:3171–3179.
-
(2005)
J Bacteriol
, vol.187
, pp. 3171-3179
-
-
Perrenoud, A.1
Sauer, U.2
-
43
-
-
84953638841
-
Deletion of arcA increased the production of acetyl-CoA-derived chemicals in recombinant Escherichia coli
-
Liu M, Yao L, Xian M, et al. Deletion of arcA increased the production of acetyl-CoA-derived chemicals in recombinant Escherichia coli. Biotechnol Lett. 2016;38:97–101.
-
(2016)
Biotechnol Lett
, vol.38
, pp. 97-101
-
-
Liu, M.1
Yao, L.2
Xian, M.3
-
44
-
-
84892182768
-
Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels
-
Janßen HJ, Steinbüchel A., Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels. 2014;7:7.
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 7
-
-
Janßen, H.J.1
Steinbüchel, A.2
-
45
-
-
63649137435
-
Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering
-
Zha W, Rubin-Pitel SB, Shao Z, et al. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng. 2009;11:192–198.
-
(2009)
Metab Eng
, vol.11
, pp. 192-198
-
-
Zha, W.1
Rubin-Pitel, S.B.2
Shao, Z.3
-
46
-
-
84898004722
-
Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor
-
Porrini L, Cybulski LE, Altabe SG, et al. Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor. Microbiologyopen. 2014;3:213–224.
-
(2014)
Microbiologyopen
, vol.3
, pp. 213-224
-
-
Porrini, L.1
Cybulski, L.E.2
Altabe, S.G.3
-
47
-
-
84901244868
-
Structural insights into bacterial resistance to cerulenin
-
Trajtenberg F, Altabe S, Larrieux N, et al. Structural insights into bacterial resistance to cerulenin. FEBS J. 2014;281:2324–2338.
-
(2014)
FEBS J
, vol.281
, pp. 2324-2338
-
-
Trajtenberg, F.1
Altabe, S.2
Larrieux, N.3
-
48
-
-
84959519771
-
Genetically encoded sensors enable real-time observation of metabolite production
-
Rogers JK, Church GM., Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci USA. 2016;113:2388–2393.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 2388-2393
-
-
Rogers, J.K.1
Church, G.M.2
-
49
-
-
84928159353
-
Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products
-
Yang Y, Lin Y, Li L, et al. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng. 2015;29:217–226.
-
(2015)
Metab Eng
, vol.29
, pp. 217-226
-
-
Yang, Y.1
Lin, Y.2
Li, L.3
-
50
-
-
0015413178
-
Mutant of Escherichia coli deficient in the synthesis of cis-vaccenic acid
-
Gelmann EP, Cronan JE., Mutant of Escherichia coli deficient in the synthesis of cis-vaccenic acid. J Bacteriol. 1972;112:381–387.
-
(1972)
J Bacteriol
, vol.112
, pp. 381-387
-
-
Gelmann, E.P.1
Cronan, J.E.2
-
51
-
-
0018969670
-
Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis
-
Garwin JL, Klages AL, Cronan JE., Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem. 1980;255:3263–3265.
-
(1980)
J Biol Chem
, vol.255
, pp. 3263-3265
-
-
Garwin, J.L.1
Klages, A.L.2
Cronan, J.E.3
-
52
-
-
84876589041
-
Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis
-
Pirie CM, De Mey M, Prather KLJ, et al. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis. ACS Chem Biol. 2013;8:662–672.
-
(2013)
ACS Chem Biol
, vol.8
, pp. 662-672
-
-
Pirie, C.M.1
De Mey, M.2
Prather, K.L.J.3
-
53
-
-
0034666431
-
Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli
-
Davis MS, Solbiati J, Cronan JE., Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem. 2000;275:28593–28598.
-
(2000)
J Biol Chem
, vol.275
, pp. 28593-28598
-
-
Davis, M.S.1
Solbiati, J.2
Cronan, J.E.3
-
54
-
-
57049105699
-
Overproduction of free fatty acids in E. coli: implications for biodiesel production
-
Lu X, Vora H, Khosla C., Overproduction of free fatty acids in E. coli:implications for biodiesel production. Metab Eng. 2008;10:333–339.
-
(2008)
Metab Eng
, vol.10
, pp. 333-339
-
-
Lu, X.1
Vora, H.2
Khosla, C.3
-
55
-
-
77953022686
-
Quantitative analysis and engineering of fatty acid biosynthesis in E. coli
-
Liu T, Vora H, Khosla C., Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng. 2010;12:378–386.
-
(2010)
Metab Eng
, vol.12
, pp. 378-386
-
-
Liu, T.1
Vora, H.2
Khosla, C.3
-
56
-
-
0024065387
-
Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12
-
Takamura Y, Nomura G., Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12. Microbiology. 1988;134:2249–2253.
-
(1988)
Microbiology
, vol.134
, pp. 2249-2253
-
-
Takamura, Y.1
Nomura, G.2
-
57
-
-
84945270373
-
Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening
-
Li S, Si T, Wang M, et al. Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening. ACS Synth Biol. 2015;4:1308–1315.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1308-1315
-
-
Li, S.1
Si, T.2
Wang, M.3
-
58
-
-
84947775954
-
Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli
-
Cheng Z, Jiang J, Wu H, et al. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli. Bioresour Technol. 2016;200:897–904.
-
(2016)
Bioresour Technol
, vol.200
, pp. 897-904
-
-
Cheng, Z.1
Jiang, J.2
Wu, H.3
-
59
-
-
84903976212
-
Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1
-
Shi S, Chen Y, Siewers V, et al. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio. 2014;5:e01130–e01114.
-
(2014)
MBio
, vol.5
, pp. e01114-e01130
-
-
Shi, S.1
Chen, Y.2
Siewers, V.3
-
60
-
-
79951580909
-
A spectrophotometric assay for measuring acetyl-coenzyme A carboxylase
-
Kroeger JK, Zarzycki J, Fuchs G., A spectrophotometric assay for measuring acetyl-coenzyme A carboxylase. Anal Biochem. 2011;411:100–105.
-
(2011)
Anal Biochem
, vol.411
, pp. 100-105
-
-
Kroeger, J.K.1
Zarzycki, J.2
Fuchs, G.3
-
61
-
-
84876029446
-
Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide
-
Keller MW, Schut GJ, Lipscomb GL, et al. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci USA. 2013;110:5840–5845.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 5840-5845
-
-
Keller, M.W.1
Schut, G.J.2
Lipscomb, G.L.3
-
62
-
-
84893443107
-
Deletion of acetyl-CoA synthetases I and II increases production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus
-
Thorgersen MP, Lipscomb GL, Schut GJ, et al. Deletion of acetyl-CoA synthetases I and II increases production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus. Metab Eng. 2014;22:83–88.
-
(2014)
Metab Eng
, vol.22
, pp. 83-88
-
-
Thorgersen, M.P.1
Lipscomb, G.L.2
Schut, G.J.3
-
63
-
-
84976897525
-
2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus
-
2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus. Biotechnol Bioeng. 2016;113:2652–2660.
-
(2016)
Biotechnol Bioeng
, vol.113
, pp. 2652-2660
-
-
Lian, H.1
Zeldes, B.M.2
Lipscomb, G.L.3
-
67
-
-
0034625143
-
The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities
-
Edwards J, Palsson B., The Escherichia coli MG1655 in silico metabolic genotype:its definition, characteristics, and capabilities. Proc Natl Acad Sci USA. 2000;97:5528–5533.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 5528-5533
-
-
Edwards, J.1
Palsson, B.2
-
69
-
-
84872131864
-
Activating transhydrogenase and NAD kinase in combination for improving isobutanol production
-
Shi A, Zhu X, Lu J, et al. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng. 2013;16:1–10.
-
(2013)
Metab Eng
, vol.16
, pp. 1-10
-
-
Shi, A.1
Zhu, X.2
Lu, J.3
-
70
-
-
77955429093
-
+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain
-
+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol. 2010;149:24–32.
-
(2010)
J Biotechnol
, vol.149
, pp. 24-32
-
-
Lee, H.C.1
Kim, J.S.2
Jang, W.3
-
71
-
-
34247584154
-
Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation
-
Kabus A, Georgi T, Wendisch VF, et al. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl Microbiol Biotechnol. 2007;75:47–53.
-
(2007)
Appl Microbiol Biotechnol
, vol.75
, pp. 47-53
-
-
Kabus, A.1
Georgi, T.2
Wendisch, V.F.3
-
72
-
-
1342325419
-
The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli
-
Sauer U, Canonaco F, Heri S, et al. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem. 2004;279:6613–6619.
-
(2004)
J Biol Chem
, vol.279
, pp. 6613-6619
-
-
Sauer, U.1
Canonaco, F.2
Heri, S.3
-
73
-
-
84872321627
-
Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants
-
Siedler S, Lindner SN, Bringer S, et al. Reductive whole-cell biotransformation with Corynebacterium glutamicum:improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants. Appl Microbiol Biotechnol. 2013;97:143–152.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, pp. 143-152
-
-
Siedler, S.1
Lindner, S.N.2
Bringer, S.3
-
74
-
-
84876674407
-
Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation
-
Lee WH, Kim MD, Jin YS, et al. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl Microbiol Biotechnol. 2013;97:2761–2772.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, pp. 2761-2772
-
-
Lee, W.H.1
Kim, M.D.2
Jin, Y.S.3
-
75
-
-
57049150799
-
Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways
-
Martínez I, Zhu J, Lin H, et al. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng. 2008;10:352–359.
-
(2008)
Metab Eng
, vol.10
, pp. 352-359
-
-
Martínez, I.1
Zhu, J.2
Lin, H.3
-
76
-
-
84961778420
-
Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae
-
David F, Nielsen J, Siewers V., Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae. ACS Synth Biol. 2016;5:224–233.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 224-233
-
-
David, F.1
Nielsen, J.2
Siewers, V.3
-
77
-
-
84977769722
-
Method for producing 3-hydroxypropionic acid and other products
-
Lynch MD, Gill RT, Warnecke-Lipscomb T., Method for producing 3-hydroxypropionic acid and other products. PCT Patent. 2011;038:364 A1.
-
(2011)
PCT Patent
, vol.38
, pp. 364 A1
-
-
Lynch, M.D.1
Gill, R.T.2
Warnecke-Lipscomb, T.3
-
78
-
-
84945904400
-
Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer
-
Wei J, Tong L., Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer. Nature. 2015;526:723–727.
-
(2015)
Nature
, vol.526
, pp. 723-727
-
-
Wei, J.1
Tong, L.2
-
79
-
-
84925490764
-
Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase
-
Tran TH, Hsiao YS, Jo J, et al. Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase. Nature. 2015;518:120–124.
-
(2015)
Nature
, vol.518
, pp. 120-124
-
-
Tran, T.H.1
Hsiao, Y.S.2
Jo, J.3
-
80
-
-
84875900345
-
The three-dimensional structure of the biotin carboxylase-biotin carboxyl carrier protein complex of E. coli acetyl-CoA carboxylase
-
Broussard TC, Kobe MJ, Pakhomova S, et al. The three-dimensional structure of the biotin carboxylase-biotin carboxyl carrier protein complex of E. coli acetyl-CoA carboxylase. Structure. 2013;21:650–657.
-
(2013)
Structure
, vol.21
, pp. 650-657
-
-
Broussard, T.C.1
Kobe, M.J.2
Pakhomova, S.3
-
81
-
-
84874761437
-
+ and CoA binding site in an archaeal malonyl-coenzyme A reductase
-
+ and CoA binding site in an archaeal malonyl-coenzyme A reductase. J Biol Chem. 2013;288:6363–6370.
-
(2013)
J Biol Chem
, vol.288
, pp. 6363-6370
-
-
Demmer, U.1
Warkentin, E.2
Srivastava, A.3
-
82
-
-
84896702596
-
Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli
-
Xu P, Wang W, Li L, et al. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. ACS Chem Biol. 2013;9:451–458.
-
(2013)
ACS Chem Biol
, vol.9
, pp. 451-458
-
-
Xu, P.1
Wang, W.2
Li, L.3
-
83
-
-
6044224979
-
Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes
-
Van Maris AJ, Konings WN, Van Dijken JP, et al. Microbial export of lactic and 3-hydroxypropanoic acid:implications for industrial fermentation processes. Metab Eng. 2004;6:245–255.
-
(2004)
Metab Eng
, vol.6
, pp. 245-255
-
-
Van Maris, A.J.1
Konings, W.N.2
Van Dijken, J.P.3
-
84
-
-
26944440137
-
Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications
-
Warnecke T, Gill RT., Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact. 2005;4:25.
-
(2005)
Microb Cell Fact
, vol.4
, pp. 25
-
-
Warnecke, T.1
Gill, R.T.2
-
85
-
-
77950962136
-
Rapid dissection of a complex phenotype through genomic-scale mapping of fitness altering genes
-
Warnecke T, Lynch M, Karimpour-Fard A, et al. Rapid dissection of a complex phenotype through genomic-scale mapping of fitness altering genes. Metab Eng. 2010;12:241–250.
-
(2010)
Metab Eng
, vol.12
, pp. 241-250
-
-
Warnecke, T.1
Lynch, M.2
Karimpour-Fard, A.3
-
86
-
-
84961653904
-
Development of a 3-hydroxypropionate resistant Escherichia coli strain
-
Liu M, Han X, Xian M, et al. Development of a 3-hydroxypropionate resistant Escherichia coli strain. Bioengineered. 2016;7:21–27.
-
(2016)
Bioengineered
, vol.7
, pp. 21-27
-
-
Liu, M.1
Han, X.2
Xian, M.3
-
87
-
-
44949106193
-
A genomics approach to improve the analysis and design of strain selections
-
Warnecke T, Lynch M, Karimpour-Fard A, et al. A genomics approach to improve the analysis and design of strain selections. Metab Eng. 2008;10:154–165.
-
(2008)
Metab Eng
, vol.10
, pp. 154-165
-
-
Warnecke, T.1
Lynch, M.2
Karimpour-Fard, A.3
-
88
-
-
84858441605
-
Identification of a 21 amino acid peptide conferring 3-hydroxypropionic acid stress-tolerance to Escherichia coli
-
Warnecke T, Lynch M, Lipscomb M, et al. Identification of a 21 amino acid peptide conferring 3-hydroxypropionic acid stress-tolerance to Escherichia coli. Biotechnol Bioeng. 2012;109:1347–1352.
-
(2012)
Biotechnol Bioeng
, vol.109
, pp. 1347-1352
-
-
Warnecke, T.1
Lynch, M.2
Lipscomb, M.3
|