메뉴 건너뛰기




Volumn 37, Issue 7, 2017, Pages 933-941

Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis

Author keywords

3 Hydroxypropionate; 3HP tolerance; acetyl CoA carboxylase; carbon flux; enzyme engineering; malonyl CoA pathway; malonyl CoA reductase; metabolic engineering; supply of energy and cofactor

Indexed keywords

AMINO ACIDS; BIOCHEMISTRY; BIODEGRADABLE POLYMERS; BIOSYNTHESIS; ENZYMES; ESCHERICHIA COLI; HYDROGELS; INDICATORS (CHEMICAL); METABOLIC ENGINEERING;

EID: 85009270975     PISSN: 07388551     EISSN: 15497801     Source Type: Journal    
DOI: 10.1080/07388551.2016.1272093     Document Type: Review
Times cited : (39)

References (88)
  • 1
    • 13244288422 scopus 로고    scopus 로고
    • Washington (DC): Office of Energy Efficiency and Renewable Energy, US Department of Energy
    • Werpy T, Petersen G., Top value added chemicals from biomass. Washington (DC):Office of Energy Efficiency and Renewable Energy, US Department of Energy; 2004.
    • (2004) Top value added chemicals from biomass
    • Werpy, T.1    Petersen, G.2
  • 2
    • 0000008274 scopus 로고
    • 2 and acetate
    • 2 and acetate. Arch Microbiol. 1989;151:252–256.
    • (1989) Arch Microbiol , vol.151 , pp. 252-256
    • Holo, H.1
  • 3
    • 33845383207 scopus 로고    scopus 로고
    • Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp
    • Alber B, Olinger M, Rieder A, et al. Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. J Bacteriol. 2006;188:8551–8559.
    • (2006) J Bacteriol , vol.188 , pp. 8551-8559
    • Alber, B.1    Olinger, M.2    Rieder, A.3
  • 4
    • 75849126252 scopus 로고    scopus 로고
    • 2 fixation: fait accompli
    • 2 fixation:fait accompli. Proc Natl Acad Sci USA. 2009;106:21015–21016.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 21015-21016
    • Tabita, F.R.1
  • 6
    • 0028948710 scopus 로고
    • Technological and economic potential of poly (lactic acid) and lactic acid derivatives
    • Datta R, Tsai SP, Bonsignore P, et al. Technological and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS Microbiol Rev. 1995;16:221–231.
    • (1995) FEMS Microbiol Rev , vol.16 , pp. 221-231
    • Datta, R.1    Tsai, S.P.2    Bonsignore, P.3
  • 7
    • 18744389531 scopus 로고    scopus 로고
    • A new synthetic route to poly [3-hydroxypropionic acid](P [3-HP]): ring-opening polymerization of 3-HP macrocyclic esters
    • Zhang D, Hillmyer MA, Tolman WB., A new synthetic route to poly [3-hydroxypropionic acid](P [3-HP]):ring-opening polymerization of 3-HP macrocyclic esters. Macromolecules. 2004;37:8198–8200.
    • (2004) Macromolecules , vol.37 , pp. 8198-8200
    • Zhang, D.1    Hillmyer, M.A.2    Tolman, W.B.3
  • 8
    • 84865783440 scopus 로고    scopus 로고
    • Biosynthetic pathway for poly(3-hydroxypropionate) in recombinant Escherichia coli
    • Wang Q, Liu C, Xian M, et al. Biosynthetic pathway for poly(3-hydroxypropionate) in recombinant Escherichia coli. J Microbiol. 2012;50:693–697.
    • (2012) J Microbiol , vol.50 , pp. 693-697
    • Wang, Q.1    Liu, C.2    Xian, M.3
  • 9
    • 0027697314 scopus 로고
    • Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxypropionate)
    • Hiramitsu M, Doi Y., Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxypropionate). Polymer. 1993;34:4782–4786.
    • (1993) Polymer , vol.34 , pp. 4782-4786
    • Hiramitsu, M.1    Doi, Y.2
  • 10
    • 79960244883 scopus 로고    scopus 로고
    • A green approach to chemical building blocks. The case of 3-hydroxypropanoic acid
    • Della Pina C, Falletta E, Rossi M., A green approach to chemical building blocks. The case of 3-hydroxypropanoic acid. Green Chem. 2011;13:1624–1632.
    • (2011) Green Chem , vol.13 , pp. 1624-1632
    • Della Pina, C.1    Falletta, E.2    Rossi, M.3
  • 11
    • 60549117589 scopus 로고    scopus 로고
    • Oxidation of allyl alcohol in the presence of a gold catalyst: a route to 3-hydroxypropionic acid
    • Della Pina C, Falletta E, Rossi M., Oxidation of allyl alcohol in the presence of a gold catalyst:a route to 3-hydroxypropionic acid. ChemSusChem. 2009;2:57–58.
    • (2009) ChemSusChem , vol.2 , pp. 57-58
    • Della Pina, C.1    Falletta, E.2    Rossi, M.3
  • 12
    • 63949083313 scopus 로고    scopus 로고
    • Biosynthetic pathways for 3-hydroxypropionic acid production
    • Jiang X, Meng X, Xian M., Biosynthetic pathways for 3-hydroxypropionic acid production. Appl Microbiol Biotechnol. 2009;82:995–1003.
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 995-1003
    • Jiang, X.1    Meng, X.2    Xian, M.3
  • 13
    • 53049107739 scopus 로고    scopus 로고
    • Biomass-based energy fuel through biochemical routes: a review
    • Saxena R, Adhikari D, Goyal H., Biomass-based energy fuel through biochemical routes:a review. Renew Sust Energ Rev. 2009;13:167–178.
    • (2009) Renew Sust Energ Rev , vol.13 , pp. 167-178
    • Saxena, R.1    Adhikari, D.2    Goyal, H.3
  • 14
    • 36248991352 scopus 로고    scopus 로고
    • Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change
    • Hermann B, Blok K, Patel MK., Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ Sci Technol. 2007;41:7915–7921.
    • (2007) Environ Sci Technol , vol.41 , pp. 7915-7921
    • Hermann, B.1    Blok, K.2    Patel, M.K.3
  • 15
    • 84857449564 scopus 로고    scopus 로고
    • Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains
    • Rathnasingh C, Raj SM, Lee Y, et al. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol. 2012;157:633–640.
    • (2012) J Biotechnol , vol.157 , pp. 633-640
    • Rathnasingh, C.1    Raj, S.M.2    Lee, Y.3
  • 16
    • 84914159667 scopus 로고    scopus 로고
    • Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials
    • Andreeßen B, Taylor N, Steinbuchel A., Poly(3-hydroxypropionate):a promising alternative to fossil fuel-based materials. Appl Environ Microbiol. 2014;80:6574–6582.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 6574-6582
    • Andreeßen, B.1    Taylor, N.2    Steinbuchel, A.3
  • 17
    • 84882643588 scopus 로고    scopus 로고
    • Recent advances in biological production of 3-hydroxypropionic acid
    • Kumar V, Ashok S, Park S., Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv. 2013;31:945–961.
    • (2013) Biotechnol Adv , vol.31 , pp. 945-961
    • Kumar, V.1    Ashok, S.2    Park, S.3
  • 18
    • 84909594451 scopus 로고    scopus 로고
    • Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiaevia β-alanine
    • Borodina I, Kildegaard KR, Jensen NB, et al. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiaevia β-alanine. Metab Eng. 2015;27:57–64.
    • (2015) Metab Eng , vol.27 , pp. 57-64
    • Borodina, I.1    Kildegaard, K.R.2    Jensen, N.B.3
  • 19
    • 84884472584 scopus 로고    scopus 로고
    • Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement
    • Liu C, Wang Q, Xian M, et al. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement. PLoS One. 2013;8:e75554.
    • (2013) PLoS One , vol.8 , pp. e75554
    • Liu, C.1    Wang, Q.2    Xian, M.3
  • 20
    • 84957727651 scopus 로고    scopus 로고
    • Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis
    • Liu C, Ding Y, Zhang R, et al. Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis. Metab Eng. 2016a;34:104–111.
    • (2016) Metab Eng , vol.34 , pp. 104-111
    • Liu, C.1    Ding, Y.2    Zhang, R.3
  • 21
    • 84894040387 scopus 로고    scopus 로고
    • Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae
    • Chen Y, Bao J, Kim IK, et al. Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab Eng. 2014;22:104–109.
    • (2014) Metab Eng , vol.22 , pp. 104-109
    • Chen, Y.1    Bao, J.2    Kim, I.K.3
  • 22
    • 84952897629 scopus 로고    scopus 로고
    • 2 in cyanobacterium Synechocystis sp. PCC 6803
    • 2 in cyanobacterium Synechocystis sp. PCC 6803. Metab Eng. 2016;34:60–70.
    • (2016) Metab Eng , vol.34 , pp. 60-70
    • Wang, Y.1    Sun, T.2    Gao, X.3
  • 23
    • 23944509003 scopus 로고    scopus 로고
    • Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery
    • Tong L., Acetyl-coenzyme A carboxylase:crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci. 2005;62:1784–1803.
    • (2005) Cell Mol Life Sci , vol.62 , pp. 1784-1803
    • Tong, L.1
  • 24
    • 84859532678 scopus 로고    scopus 로고
    • Acetyl-coenzyme A carboxylase–an attractive enzyme for biotechnology
    • Podkowinski J, Tworak A., Acetyl-coenzyme A carboxylase–an attractive enzyme for biotechnology. BTA. 2011;92:321–325.
    • (2011) BTA , vol.92 , pp. 321-325
    • Podkowinski, J.1    Tworak, A.2
  • 25
    • 0036227596 scopus 로고    scopus 로고
    • Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation
    • Hügler M, Menendez C, Schägger H, et al. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. J Bacteriol. 2002;184:2404–2410.
    • (2002) J Bacteriol , vol.184 , pp. 2404-2410
    • Hügler, M.1    Menendez, C.2    Schägger, H.3
  • 26
    • 37249052742 scopus 로고    scopus 로고
    • A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea
    • Berg IA, Kockelkorn D, Buckel W, et al. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science. 2007;318:1782–1786.
    • (2007) Science , vol.318 , pp. 1782-1786
    • Berg, I.A.1    Kockelkorn, D.2    Buckel, W.3
  • 28
    • 77954860039 scopus 로고    scopus 로고
    • Debottlenecking the 1,3-propanediol pathway by metabolic engineering
    • Celińska E. Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv. 2010;28:519–530.
    • (2010) Biotechnol Adv , vol.28 , pp. 519-530
    • Celińska, E.1
  • 29
    • 84920194778 scopus 로고    scopus 로고
    • Microbial acetyl-CoA metabolism and metabolic engineering
    • Krivoruchko A, Zhang Y, Siewers V, et al. Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng. 2015;28:28–42.
    • (2015) Metab Eng , vol.28 , pp. 28-42
    • Krivoruchko, A.1    Zhang, Y.2    Siewers, V.3
  • 30
    • 0025405421 scopus 로고
    • Simple constrained-optimization view of acetate overflow in E. coli
    • Majewski R, Domach M., Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol Bioeng. 1990;35:732–738.
    • (1990) Biotechnol Bioeng , vol.35 , pp. 732-738
    • Majewski, R.1    Domach, M.2
  • 31
    • 4544373143 scopus 로고    scopus 로고
    • Flux to acetate and lactate excretions in industrial fermentations: physiological and biochemical implications
    • El-Mansi M., Flux to acetate and lactate excretions in industrial fermentations:physiological and biochemical implications. J Ind Microbiol Biotechnol. 2004;31:295–300.
    • (2004) J Ind Microbiol Biotechnol , vol.31 , pp. 295-300
    • El-Mansi, M.1
  • 32
    • 23344450789 scopus 로고    scopus 로고
    • Characterization of the acetate-producing pathways in Escherichia coli
    • Dittrich CR, Bennett GN, San KY., Characterization of the acetate-producing pathways in Escherichia coli. Biotechnol Prog. 2005;21:1062–1067.
    • (2005) Biotechnol Prog , vol.21 , pp. 1062-1067
    • Dittrich, C.R.1    Bennett, G.N.2    San, K.Y.3
  • 33
    • 16344391449 scopus 로고    scopus 로고
    • Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate
    • Dittrich CR, Vadali RV, Bennett GN, et al. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnol Prog. 2005;21:627–631.
    • (2005) Biotechnol Prog , vol.21 , pp. 627-631
    • Dittrich, C.R.1    Vadali, R.V.2    Bennett, G.N.3
  • 34
    • 33746718715 scopus 로고    scopus 로고
    • Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering
    • Lin H, Castro NM, Bennett GN, et al. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation:a potential tool in metabolic engineering. Appl Microbiol Biotechnol. 2006;71:870–874.
    • (2006) Appl Microbiol Biotechnol , vol.71 , pp. 870-874
    • Lin, H.1    Castro, N.M.2    Bennett, G.N.3
  • 35
    • 84855905968 scopus 로고    scopus 로고
    • Metabolic engineering for acetate control in large scale fermentation
    • Tao Y, Cheng Q, Kopatsis AD., Metabolic engineering for acetate control in large scale fermentation. Methods Mol Biol. 2012;834:283–303.
    • (2012) Methods Mol Biol , vol.834 , pp. 283-303
    • Tao, Y.1    Cheng, Q.2    Kopatsis, A.D.3
  • 36
    • 84901685293 scopus 로고    scopus 로고
    • Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli
    • Peebo K, Valgepea K, Nahku R, et al. Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli. Appl Microbiol Biotechnol. 2014;98:5131–5143.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 5131-5143
    • Peebo, K.1    Valgepea, K.2    Nahku, R.3
  • 37
    • 84961626309 scopus 로고    scopus 로고
    • Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: pathway stoichiometry, free-energy conservation and redox-cofactor balancing
    • Van Rossum HM, Kozak BU, Pronk JT, et al. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae:pathway stoichiometry, free-energy conservation and redox-cofactor balancing. Metab Eng. 2016;36:99–115.
    • (2016) Metab Eng , vol.36 , pp. 99-115
    • Van Rossum, H.M.1    Kozak, B.U.2    Pronk, J.T.3
  • 38
    • 84960936931 scopus 로고    scopus 로고
    • Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway
    • Kildegaard KR, Jensen NB, Schneider K, et al. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Fact. 2016;15:53.
    • (2016) Microb Cell Fact , vol.15 , pp. 53
    • Kildegaard, K.R.1    Jensen, N.B.2    Schneider, K.3
  • 39
    • 84948380433 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli to improve recombinant protein production
    • Liu M, Feng X, Ding Y, et al. Metabolic engineering of Escherichia coli to improve recombinant protein production. Appl Microbiol Biotechnol. 2015;99:10367–10377.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 10367-10377
    • Liu, M.1    Feng, X.2    Ding, Y.3
  • 40
    • 0030841920 scopus 로고    scopus 로고
    • The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli
    • Liu MY, Gui G, Wei B, et al. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem. 1997;272:17502–17510.
    • (1997) J Biol Chem , vol.272 , pp. 17502-17510
    • Liu, M.Y.1    Gui, G.2    Wei, B.3
  • 41
    • 84872383524 scopus 로고    scopus 로고
    • Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS
    • Negrete A, Majdalani N, Phue JN, et al. Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS. N Biotechnol. 2013;30:269–273.
    • (2013) N Biotechnol , vol.30 , pp. 269-273
    • Negrete, A.1    Majdalani, N.2    Phue, J.N.3
  • 42
    • 17644369246 scopus 로고    scopus 로고
    • Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli
    • Perrenoud A, Sauer U., Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol. 2005;187:3171–3179.
    • (2005) J Bacteriol , vol.187 , pp. 3171-3179
    • Perrenoud, A.1    Sauer, U.2
  • 43
    • 84953638841 scopus 로고    scopus 로고
    • Deletion of arcA increased the production of acetyl-CoA-derived chemicals in recombinant Escherichia coli
    • Liu M, Yao L, Xian M, et al. Deletion of arcA increased the production of acetyl-CoA-derived chemicals in recombinant Escherichia coli. Biotechnol Lett. 2016;38:97–101.
    • (2016) Biotechnol Lett , vol.38 , pp. 97-101
    • Liu, M.1    Yao, L.2    Xian, M.3
  • 44
    • 84892182768 scopus 로고    scopus 로고
    • Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels
    • Janßen HJ, Steinbüchel A., Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels. 2014;7:7.
    • (2014) Biotechnol Biofuels , vol.7 , pp. 7
    • Janßen, H.J.1    Steinbüchel, A.2
  • 45
    • 63649137435 scopus 로고    scopus 로고
    • Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering
    • Zha W, Rubin-Pitel SB, Shao Z, et al. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng. 2009;11:192–198.
    • (2009) Metab Eng , vol.11 , pp. 192-198
    • Zha, W.1    Rubin-Pitel, S.B.2    Shao, Z.3
  • 46
    • 84898004722 scopus 로고    scopus 로고
    • Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor
    • Porrini L, Cybulski LE, Altabe SG, et al. Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor. Microbiologyopen. 2014;3:213–224.
    • (2014) Microbiologyopen , vol.3 , pp. 213-224
    • Porrini, L.1    Cybulski, L.E.2    Altabe, S.G.3
  • 47
    • 84901244868 scopus 로고    scopus 로고
    • Structural insights into bacterial resistance to cerulenin
    • Trajtenberg F, Altabe S, Larrieux N, et al. Structural insights into bacterial resistance to cerulenin. FEBS J. 2014;281:2324–2338.
    • (2014) FEBS J , vol.281 , pp. 2324-2338
    • Trajtenberg, F.1    Altabe, S.2    Larrieux, N.3
  • 48
    • 84959519771 scopus 로고    scopus 로고
    • Genetically encoded sensors enable real-time observation of metabolite production
    • Rogers JK, Church GM., Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci USA. 2016;113:2388–2393.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. 2388-2393
    • Rogers, J.K.1    Church, G.M.2
  • 49
    • 84928159353 scopus 로고    scopus 로고
    • Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products
    • Yang Y, Lin Y, Li L, et al. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng. 2015;29:217–226.
    • (2015) Metab Eng , vol.29 , pp. 217-226
    • Yang, Y.1    Lin, Y.2    Li, L.3
  • 50
    • 0015413178 scopus 로고
    • Mutant of Escherichia coli deficient in the synthesis of cis-vaccenic acid
    • Gelmann EP, Cronan JE., Mutant of Escherichia coli deficient in the synthesis of cis-vaccenic acid. J Bacteriol. 1972;112:381–387.
    • (1972) J Bacteriol , vol.112 , pp. 381-387
    • Gelmann, E.P.1    Cronan, J.E.2
  • 51
    • 0018969670 scopus 로고
    • Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis
    • Garwin JL, Klages AL, Cronan JE., Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem. 1980;255:3263–3265.
    • (1980) J Biol Chem , vol.255 , pp. 3263-3265
    • Garwin, J.L.1    Klages, A.L.2    Cronan, J.E.3
  • 52
    • 84876589041 scopus 로고    scopus 로고
    • Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis
    • Pirie CM, De Mey M, Prather KLJ, et al. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis. ACS Chem Biol. 2013;8:662–672.
    • (2013) ACS Chem Biol , vol.8 , pp. 662-672
    • Pirie, C.M.1    De Mey, M.2    Prather, K.L.J.3
  • 53
    • 0034666431 scopus 로고    scopus 로고
    • Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli
    • Davis MS, Solbiati J, Cronan JE., Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem. 2000;275:28593–28598.
    • (2000) J Biol Chem , vol.275 , pp. 28593-28598
    • Davis, M.S.1    Solbiati, J.2    Cronan, J.E.3
  • 54
    • 57049105699 scopus 로고    scopus 로고
    • Overproduction of free fatty acids in E. coli: implications for biodiesel production
    • Lu X, Vora H, Khosla C., Overproduction of free fatty acids in E. coli:implications for biodiesel production. Metab Eng. 2008;10:333–339.
    • (2008) Metab Eng , vol.10 , pp. 333-339
    • Lu, X.1    Vora, H.2    Khosla, C.3
  • 55
    • 77953022686 scopus 로고    scopus 로고
    • Quantitative analysis and engineering of fatty acid biosynthesis in E. coli
    • Liu T, Vora H, Khosla C., Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng. 2010;12:378–386.
    • (2010) Metab Eng , vol.12 , pp. 378-386
    • Liu, T.1    Vora, H.2    Khosla, C.3
  • 56
    • 0024065387 scopus 로고
    • Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12
    • Takamura Y, Nomura G., Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12. Microbiology. 1988;134:2249–2253.
    • (1988) Microbiology , vol.134 , pp. 2249-2253
    • Takamura, Y.1    Nomura, G.2
  • 57
    • 84945270373 scopus 로고    scopus 로고
    • Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening
    • Li S, Si T, Wang M, et al. Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening. ACS Synth Biol. 2015;4:1308–1315.
    • (2015) ACS Synth Biol , vol.4 , pp. 1308-1315
    • Li, S.1    Si, T.2    Wang, M.3
  • 58
    • 84947775954 scopus 로고    scopus 로고
    • Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli
    • Cheng Z, Jiang J, Wu H, et al. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli. Bioresour Technol. 2016;200:897–904.
    • (2016) Bioresour Technol , vol.200 , pp. 897-904
    • Cheng, Z.1    Jiang, J.2    Wu, H.3
  • 59
    • 84903976212 scopus 로고    scopus 로고
    • Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1
    • Shi S, Chen Y, Siewers V, et al. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio. 2014;5:e01130–e01114.
    • (2014) MBio , vol.5 , pp. e01114-e01130
    • Shi, S.1    Chen, Y.2    Siewers, V.3
  • 60
    • 79951580909 scopus 로고    scopus 로고
    • A spectrophotometric assay for measuring acetyl-coenzyme A carboxylase
    • Kroeger JK, Zarzycki J, Fuchs G., A spectrophotometric assay for measuring acetyl-coenzyme A carboxylase. Anal Biochem. 2011;411:100–105.
    • (2011) Anal Biochem , vol.411 , pp. 100-105
    • Kroeger, J.K.1    Zarzycki, J.2    Fuchs, G.3
  • 61
    • 84876029446 scopus 로고    scopus 로고
    • Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide
    • Keller MW, Schut GJ, Lipscomb GL, et al. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci USA. 2013;110:5840–5845.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 5840-5845
    • Keller, M.W.1    Schut, G.J.2    Lipscomb, G.L.3
  • 62
    • 84893443107 scopus 로고    scopus 로고
    • Deletion of acetyl-CoA synthetases I and II increases production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus
    • Thorgersen MP, Lipscomb GL, Schut GJ, et al. Deletion of acetyl-CoA synthetases I and II increases production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus. Metab Eng. 2014;22:83–88.
    • (2014) Metab Eng , vol.22 , pp. 83-88
    • Thorgersen, M.P.1    Lipscomb, G.L.2    Schut, G.J.3
  • 63
    • 84976897525 scopus 로고    scopus 로고
    • 2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus
    • 2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus. Biotechnol Bioeng. 2016;113:2652–2660.
    • (2016) Biotechnol Bioeng , vol.113 , pp. 2652-2660
    • Lian, H.1    Zeldes, B.M.2    Lipscomb, G.L.3
  • 67
    • 0034625143 scopus 로고    scopus 로고
    • The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities
    • Edwards J, Palsson B., The Escherichia coli MG1655 in silico metabolic genotype:its definition, characteristics, and capabilities. Proc Natl Acad Sci USA. 2000;97:5528–5533.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 5528-5533
    • Edwards, J.1    Palsson, B.2
  • 69
    • 84872131864 scopus 로고    scopus 로고
    • Activating transhydrogenase and NAD kinase in combination for improving isobutanol production
    • Shi A, Zhu X, Lu J, et al. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng. 2013;16:1–10.
    • (2013) Metab Eng , vol.16 , pp. 1-10
    • Shi, A.1    Zhu, X.2    Lu, J.3
  • 70
    • 77955429093 scopus 로고    scopus 로고
    • + ratio improves thymidine production by a metabolically engineered Escherichia coli strain
    • + ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol. 2010;149:24–32.
    • (2010) J Biotechnol , vol.149 , pp. 24-32
    • Lee, H.C.1    Kim, J.S.2    Jang, W.3
  • 71
    • 34247584154 scopus 로고    scopus 로고
    • Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation
    • Kabus A, Georgi T, Wendisch VF, et al. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl Microbiol Biotechnol. 2007;75:47–53.
    • (2007) Appl Microbiol Biotechnol , vol.75 , pp. 47-53
    • Kabus, A.1    Georgi, T.2    Wendisch, V.F.3
  • 72
    • 1342325419 scopus 로고    scopus 로고
    • The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli
    • Sauer U, Canonaco F, Heri S, et al. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem. 2004;279:6613–6619.
    • (2004) J Biol Chem , vol.279 , pp. 6613-6619
    • Sauer, U.1    Canonaco, F.2    Heri, S.3
  • 73
    • 84872321627 scopus 로고    scopus 로고
    • Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants
    • Siedler S, Lindner SN, Bringer S, et al. Reductive whole-cell biotransformation with Corynebacterium glutamicum:improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants. Appl Microbiol Biotechnol. 2013;97:143–152.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 143-152
    • Siedler, S.1    Lindner, S.N.2    Bringer, S.3
  • 74
    • 84876674407 scopus 로고    scopus 로고
    • Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation
    • Lee WH, Kim MD, Jin YS, et al. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl Microbiol Biotechnol. 2013;97:2761–2772.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 2761-2772
    • Lee, W.H.1    Kim, M.D.2    Jin, Y.S.3
  • 75
    • 57049150799 scopus 로고    scopus 로고
    • Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways
    • Martínez I, Zhu J, Lin H, et al. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng. 2008;10:352–359.
    • (2008) Metab Eng , vol.10 , pp. 352-359
    • Martínez, I.1    Zhu, J.2    Lin, H.3
  • 76
    • 84961778420 scopus 로고    scopus 로고
    • Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae
    • David F, Nielsen J, Siewers V., Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae. ACS Synth Biol. 2016;5:224–233.
    • (2016) ACS Synth Biol , vol.5 , pp. 224-233
    • David, F.1    Nielsen, J.2    Siewers, V.3
  • 77
    • 84977769722 scopus 로고    scopus 로고
    • Method for producing 3-hydroxypropionic acid and other products
    • Lynch MD, Gill RT, Warnecke-Lipscomb T., Method for producing 3-hydroxypropionic acid and other products. PCT Patent. 2011;038:364 A1.
    • (2011) PCT Patent , vol.38 , pp. 364 A1
    • Lynch, M.D.1    Gill, R.T.2    Warnecke-Lipscomb, T.3
  • 78
    • 84945904400 scopus 로고    scopus 로고
    • Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer
    • Wei J, Tong L., Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer. Nature. 2015;526:723–727.
    • (2015) Nature , vol.526 , pp. 723-727
    • Wei, J.1    Tong, L.2
  • 79
    • 84925490764 scopus 로고    scopus 로고
    • Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase
    • Tran TH, Hsiao YS, Jo J, et al. Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase. Nature. 2015;518:120–124.
    • (2015) Nature , vol.518 , pp. 120-124
    • Tran, T.H.1    Hsiao, Y.S.2    Jo, J.3
  • 80
    • 84875900345 scopus 로고    scopus 로고
    • The three-dimensional structure of the biotin carboxylase-biotin carboxyl carrier protein complex of E. coli acetyl-CoA carboxylase
    • Broussard TC, Kobe MJ, Pakhomova S, et al. The three-dimensional structure of the biotin carboxylase-biotin carboxyl carrier protein complex of E. coli acetyl-CoA carboxylase. Structure. 2013;21:650–657.
    • (2013) Structure , vol.21 , pp. 650-657
    • Broussard, T.C.1    Kobe, M.J.2    Pakhomova, S.3
  • 81
    • 84874761437 scopus 로고    scopus 로고
    • + and CoA binding site in an archaeal malonyl-coenzyme A reductase
    • + and CoA binding site in an archaeal malonyl-coenzyme A reductase. J Biol Chem. 2013;288:6363–6370.
    • (2013) J Biol Chem , vol.288 , pp. 6363-6370
    • Demmer, U.1    Warkentin, E.2    Srivastava, A.3
  • 82
    • 84896702596 scopus 로고    scopus 로고
    • Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli
    • Xu P, Wang W, Li L, et al. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. ACS Chem Biol. 2013;9:451–458.
    • (2013) ACS Chem Biol , vol.9 , pp. 451-458
    • Xu, P.1    Wang, W.2    Li, L.3
  • 83
    • 6044224979 scopus 로고    scopus 로고
    • Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes
    • Van Maris AJ, Konings WN, Van Dijken JP, et al. Microbial export of lactic and 3-hydroxypropanoic acid:implications for industrial fermentation processes. Metab Eng. 2004;6:245–255.
    • (2004) Metab Eng , vol.6 , pp. 245-255
    • Van Maris, A.J.1    Konings, W.N.2    Van Dijken, J.P.3
  • 84
    • 26944440137 scopus 로고    scopus 로고
    • Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications
    • Warnecke T, Gill RT., Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact. 2005;4:25.
    • (2005) Microb Cell Fact , vol.4 , pp. 25
    • Warnecke, T.1    Gill, R.T.2
  • 85
    • 77950962136 scopus 로고    scopus 로고
    • Rapid dissection of a complex phenotype through genomic-scale mapping of fitness altering genes
    • Warnecke T, Lynch M, Karimpour-Fard A, et al. Rapid dissection of a complex phenotype through genomic-scale mapping of fitness altering genes. Metab Eng. 2010;12:241–250.
    • (2010) Metab Eng , vol.12 , pp. 241-250
    • Warnecke, T.1    Lynch, M.2    Karimpour-Fard, A.3
  • 86
    • 84961653904 scopus 로고    scopus 로고
    • Development of a 3-hydroxypropionate resistant Escherichia coli strain
    • Liu M, Han X, Xian M, et al. Development of a 3-hydroxypropionate resistant Escherichia coli strain. Bioengineered. 2016;7:21–27.
    • (2016) Bioengineered , vol.7 , pp. 21-27
    • Liu, M.1    Han, X.2    Xian, M.3
  • 87
    • 44949106193 scopus 로고    scopus 로고
    • A genomics approach to improve the analysis and design of strain selections
    • Warnecke T, Lynch M, Karimpour-Fard A, et al. A genomics approach to improve the analysis and design of strain selections. Metab Eng. 2008;10:154–165.
    • (2008) Metab Eng , vol.10 , pp. 154-165
    • Warnecke, T.1    Lynch, M.2    Karimpour-Fard, A.3
  • 88
    • 84858441605 scopus 로고    scopus 로고
    • Identification of a 21 amino acid peptide conferring 3-hydroxypropionic acid stress-tolerance to Escherichia coli
    • Warnecke T, Lynch M, Lipscomb M, et al. Identification of a 21 amino acid peptide conferring 3-hydroxypropionic acid stress-tolerance to Escherichia coli. Biotechnol Bioeng. 2012;109:1347–1352.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 1347-1352
    • Warnecke, T.1    Lynch, M.2    Lipscomb, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.