메뉴 건너뛰기




Volumn 15, Issue 1, 2016, Pages

Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway

Author keywords

3 Hydroxypropionic acid; Metabolic engineering; Redox metabolism; Saccharomyces cerevisiae

Indexed keywords

ACETYL COENZYME A SYNTHASE; ALDEHYDE DEHYDROGENASE; GLUCOSE; GLYCERALDEHYDE 3 PHOSPHATE DEHYDROGENASE; GLYCEROL; HYDRACRYLIC ACID; MALONYL COENZYME A REDUCTASE; OXIDOREDUCTASE; PYRUVATE DECARBOXYLASE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; SYNTHETASE; UNCLASSIFIED DRUG; LACTIC ACID; MALONYL-COA REDUCTASE;

EID: 84960936931     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-016-0451-5     Document Type: Article
Times cited : (95)

References (34)
  • 1
    • 84899976199 scopus 로고    scopus 로고
    • Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals
    • Borodina I, Nielsen J. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J. 2014;9:609-20.
    • (2014) Biotechnol J , vol.9 , pp. 609-620
    • Borodina, I.1    Nielsen, J.2
  • 2
    • 84887622083 scopus 로고    scopus 로고
    • From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals
    • van Dien S. From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr Opin Biotechnol. 2013;24:1061-8.
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 1061-1068
    • Dien, S.1
  • 6
    • 84894040387 scopus 로고    scopus 로고
    • Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae
    • Chen Y, Bao J, Kim I-K, Siewers V, Nielsen J. Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab Eng. 2014;22:104-9.
    • (2014) Metab Eng , vol.22 , pp. 104-109
    • Chen, Y.1    Bao, J.2    Kim, I.-K.3    Siewers, V.4    Nielsen, J.5
  • 8
    • 84903976212 scopus 로고    scopus 로고
    • Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1
    • Shi S, Chen Y, Siewers V, Nielsen J. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio. 2014;5:e01130-14.
    • (2014) MBio. , vol.5 , pp. e01114-e01130
    • Shi, S.1    Chen, Y.2    Siewers, V.3    Nielsen, J.4
  • 11
    • 0034666431 scopus 로고    scopus 로고
    • Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli
    • Davis MS, Solbiati J, Cronan JE. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem. 2000;275:28593-8.
    • (2000) J Biol Chem , vol.275 , pp. 28593-28598
    • Davis, M.S.1    Solbiati, J.2    Cronan, J.E.3
  • 12
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    • Shiba Y, Paradise EM, Kirby J, Ro D-K, Keasling JD. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng. 2007;9:160-8.
    • (2007) Metab Eng , vol.9 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3    Ro, D.-K.4    Keasling, J.D.5
  • 14
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C, Regenberg B, Förster J, Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng. 2006;8:102-11.
    • (2006) Metab Eng , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3    Nielsen, J.4
  • 15
    • 78650548180 scopus 로고    scopus 로고
    • Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance
    • Guo Z, Zhang L, Ding Z, Shi G. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Metab Eng. 2011;13:49-59.
    • (2011) Metab Eng , vol.13 , pp. 49-59
    • Guo, Z.1    Zhang, L.2    Ding, Z.3    Shi, G.4
  • 16
    • 57049150799 scopus 로고    scopus 로고
    • Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways
    • Martínez I, Zhu J, Lin H, Bennett GN, San K-Y. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng. 2008;10:352-9.
    • (2008) Metab Eng , vol.10 , pp. 352-359
    • Martínez, I.1    Zhu, J.2    Lin, H.3    Bennett, G.N.4    San, K.-Y.5
  • 18
    • 27744491124 scopus 로고    scopus 로고
    • Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis
    • Frick O, Wittmann C. Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb Cell Fact. 2005;4:30.
    • (2005) Microb Cell Fact , vol.4 , pp. 30
    • Frick, O.1    Wittmann, C.2
  • 19
    • 0022412541 scopus 로고
    • Isolation and characterization of yeast strains carrying mutations in the glyceraldehyde-3-phosphate dehydrogenase genes
    • McAlister L, Holland MJ. Isolation and characterization of yeast strains carrying mutations in the glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem. 1985;260:15013-8.
    • (1985) J Biol Chem , vol.260 , pp. 15013-15018
    • McAlister, L.1    Holland, M.J.2
  • 20
    • 34547738108 scopus 로고    scopus 로고
    • Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae
    • Albers E, Larsson C, Andlid T, Walsh MC, Gustafsson L. Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae. Appl Environ Microbiol. 2007;73:4839-48.
    • (2007) Appl Environ Microbiol , vol.73 , pp. 4839-4848
    • Albers, E.1    Larsson, C.2    Andlid, T.3    Walsh, M.C.4    Gustafsson, L.5
  • 21
    • 84865574629 scopus 로고    scopus 로고
    • A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation
    • Celton M, Sanchez I, Goelzer A, Fromion V, Camarasa C, Dequin S. A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. BMC Genom. 2012;13:317.
    • (2012) BMC Genom , vol.13 , pp. 317
    • Celton, M.1    Sanchez, I.2    Goelzer, A.3    Fromion, V.4    Camarasa, C.5    Dequin, S.6
  • 22
    • 25444489844 scopus 로고    scopus 로고
    • FiatFlux-a software for metabolic flux analysis from 13C-glucose experiments
    • Zamboni N, Fischer E, Sauer U. FiatFlux-a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinform. 2005;6:209.
    • (2005) BMC Bioinform , vol.6 , pp. 209
    • Zamboni, N.1    Fischer, E.2    Sauer, U.3
  • 23
    • 84856777402 scopus 로고    scopus 로고
    • Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae
    • Ida Y, Furusawa C, Hirasawa T, Shimizu H. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J Biosci Bioeng. 2012;113:192-5.
    • (2012) J Biosci Bioeng , vol.113 , pp. 192-195
    • Ida, Y.1    Furusawa, C.2    Hirasawa, T.3    Shimizu, H.4
  • 24
    • 84866145291 scopus 로고    scopus 로고
    • An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
    • Oud B, Flores C-L, Gancedo C, Zhang X, Trueheart J, Daran J-M, Pronk JT, van Maris AJ. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact. 2012;11:131.
    • (2012) Microb Cell Fact , vol.11 , pp. 131
    • Oud, B.1    Flores, C.-L.2    Gancedo, C.3    Zhang, X.4    Trueheart, J.5    Daran, J.-M.6    Pronk, J.T.7    Maris, A.J.8
  • 25
    • 84908409797 scopus 로고    scopus 로고
    • Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae
    • Kozak BU, van Rossum HM, Luttik MAH, Akeroyd M, Benjamin KR, Wu L, de Vries S, Daran J-M, Pronk JT, van Maris AJA. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. MBio. 2014;5:e01696-14.
    • (2014) MBio , vol.5 , pp. e01614-e01696
    • Kozak, B.U.1    Rossum, H.M.2    Luttik, M.A.H.3    Akeroyd, M.4    Benjamin, K.R.5    Wu, L.6    Vries, S.7    Daran, J.-M.8    Pronk, J.T.9    Maris, A.J.A.10
  • 26
    • 80052705391 scopus 로고    scopus 로고
    • Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae
    • Hubmann G, Guillouet S, Nevoigt E. Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae. Appl Environ Microbiol. 2011;77:5857-67.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 5857-5867
    • Hubmann, G.1    Guillouet, S.2    Nevoigt, E.3
  • 27
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
    • Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87-96.
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 28
    • 33144472889 scopus 로고    scopus 로고
    • Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of Escherichia coli
    • Nanchen A, Schicker A, Sauer U. Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of Escherichia coli. Appl Environ Microbiol. 2006;72:1164-72.
    • (2006) Appl Environ Microbiol , vol.72 , pp. 1164-1172
    • Nanchen, A.1    Schicker, A.2    Sauer, U.3
  • 29
    • 25444467580 scopus 로고    scopus 로고
    • Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast
    • Blank LM, Kuepfer L, Sauer U. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol. 2005;6:R49.
    • (2005) Genome Biol , vol.6 , pp. R49
    • Blank, L.M.1    Kuepfer, L.2    Sauer, U.3
  • 30
    • 1942473105 scopus 로고    scopus 로고
    • TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates
    • Blank LM, Sauer U. TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology. 2004;150:1085-93.
    • (2004) Microbiology , vol.150 , pp. 1085-1093
    • Blank, L.M.1    Sauer, U.2
  • 33
    • 84876789665 scopus 로고    scopus 로고
    • Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling
    • Österlund T, Nookaew I, Bordel S, Nielsen J. Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol. 2013;7:36.
    • (2013) BMC Syst Biol , vol.7 , pp. 36
    • Österlund, T.1    Nookaew, I.2    Bordel, S.3    Nielsen, J.4
  • 34
    • 84940751701 scopus 로고    scopus 로고
    • Escher. A web application for building, sharing, and embedding data-rich visualizations of biological pathways
    • King ZA, Dräger A, Abghari A, Sonnenschein N, Lewis NE, Palsson BØ. Escher. A web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput Biol. 2015;11(8):e1004321.
    • (2015) PLoS Comput Biol , vol.11 , Issue.8
    • King, Z.A.1    Dräger, A.2    Abghari, A.3    Sonnenschein, N.4    Lewis, N.E.5    Palsson, B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.