-
1
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-76.
-
(2006)
Cell
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
2
-
-
36749043230
-
Induced pluripotent stem cell lines derived from human somatic cells
-
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917-20.
-
(2007)
Science.
, vol.318
, pp. 1917-1920
-
-
Yu, J.1
Vodyanik, M.A.2
Smuga-Otto, K.3
Antosiewicz-Bourget, J.4
Frane, J.L.5
Tian, S.6
-
3
-
-
36248966518
-
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
-
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861-72.
-
(2007)
Cell.
, vol.131
, pp. 861-872
-
-
Takahashi, K.1
Tanabe, K.2
Ohnuki, M.3
Narita, M.4
Ichisaka, T.5
Tomoda, K.6
-
4
-
-
84886407915
-
Clinical therapy using iPSCs: hopes and challenges
-
Lu X, Zhao T. Clinical therapy using iPSCs: hopes and challenges. Genomics Proteomics Bioinformatics. 2013;11:294-8.
-
(2013)
Genomics Proteomics Bioinformatics
, vol.11
, pp. 294-298
-
-
Lu, X.1
Zhao, T.2
-
5
-
-
34249908901
-
In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state
-
Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448:318-24.
-
(2007)
Nature.
, vol.448
, pp. 318-324
-
-
Wernig, M.1
Meissner, A.2
Foreman, R.3
Brambrink, T.4
Ku, M.5
Hochedlinger, K.6
-
6
-
-
84891783949
-
Induced pluripotent stem cell (iPSCs) and their application in immunotherapy
-
Jiang Z, Han Y, Cao X. Induced pluripotent stem cell (iPSCs) and their application in immunotherapy. Cell Mol Immunol. 2014;11:17-24.
-
(2014)
Cell Mol Immunol
, vol.11
, pp. 17-24
-
-
Jiang, Z.1
Han, Y.2
Cao, X.3
-
7
-
-
84894078264
-
Nonstochastic reprogramming from a privileged somatic cell state
-
Guo S, Zi X, Schulz VP, Cheng J, Zhong M, Koochaki SH, et al. Nonstochastic reprogramming from a privileged somatic cell state. Cell. 2014;156:649-62.
-
(2014)
Cell.
, vol.156
, pp. 649-662
-
-
Guo, S.1
Zi, X.2
Schulz, V.P.3
Cheng, J.4
Zhong, M.5
Koochaki, S.H.6
-
8
-
-
84879968102
-
NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells
-
Luo M, Ling T, Xie W, Sun H, Zhou Y, Zhu Q, et al. NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells. Stem Cells. 2013;31:1278-86.
-
(2013)
Stem Cells.
, vol.31
, pp. 1278-1286
-
-
Luo, M.1
Ling, T.2
Xie, W.3
Sun, H.4
Zhou, Y.5
Zhu, Q.6
-
9
-
-
84885619736
-
Deterministic direct reprogramming of somatic cells to pluripotency
-
Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature. 2013;502:65-70.
-
(2013)
Nature.
, vol.502
, pp. 65-70
-
-
Rais, Y.1
Zviran, A.2
Geula, S.3
Gafni, O.4
Chomsky, E.5
Viukov, S.6
-
10
-
-
84891742725
-
The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes
-
Worringer KA, Rand TA, Hayashi Y, Sami S, Takahashi K, Tanabe K, et al. The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell. 2014;14:40-52.
-
(2014)
Cell Stem Cell.
, vol.14
, pp. 40-52
-
-
Worringer, K.A.1
Rand, T.A.2
Hayashi, Y.3
Sami, S.4
Takahashi, K.5
Tanabe, K.6
-
11
-
-
70349093119
-
Senescence impairs successful reprogramming to pluripotent stem cells
-
Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I, et al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev. 2009;23:2134-9.
-
(2009)
Genes Dev.
, vol.23
, pp. 2134-2139
-
-
Banito, A.1
Rashid, S.T.2
Acosta, J.C.3
Li, S.4
Pereira, C.F.5
Geti, I.6
-
12
-
-
84893969121
-
C/EBPalpha poises B cells for rapid reprogramming into induced pluripotent stem cells
-
Di Stefano B, Sardina JL, van Oevelen C, Collombet S, Kallin EM, Vicent GP, et al. C/EBPalpha poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature. 2014;506:235-9.
-
(2014)
Nature.
, vol.506
, pp. 235-239
-
-
Stefano, B.1
Sardina, J.L.2
Oevelen, C.3
Collombet, S.4
Kallin, E.M.5
Vicent, G.P.6
-
13
-
-
84904050254
-
MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner
-
dos Santos RL, Tosti L, Radzisheuskaya A, Caballero Isabel M, Kaji K, Hendrich B, et al. MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner. Cell Stem Cell. 2014;15:102-10.
-
(2014)
Cell Stem Cell.
, vol.15
, pp. 102-110
-
-
Santos, R.L.1
Tosti, L.2
Radzisheuskaya, A.3
Caballero Isabel, M.4
Kaji, K.5
Hendrich, B.6
-
14
-
-
84903131662
-
CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes
-
Hasegawa Y, Tang D, Takahashi N, Hayashizaki Y, Forrest AR, The Fantom C, et al. CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes. Sci Report. 2014;4:5228.
-
(2014)
Sci Report.
, vol.4
, pp. 5228
-
-
Hasegawa, Y.1
Tang, D.2
Takahashi, N.3
Hayashizaki, Y.4
Forrest, A.R.5
-
15
-
-
84899742411
-
INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development
-
Wang L, Du Y, Ward JM, Shimbo T, Lackford B, Zheng X, et al. INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development. Cell Stem Cell. 2014;14:575-91.
-
(2014)
Cell Stem Cell.
, vol.14
, pp. 575-591
-
-
Wang, L.1
Du, Y.2
Ward, J.M.3
Shimbo, T.4
Lackford, B.5
Zheng, X.6
-
16
-
-
77955818622
-
Robust activation of the human but not mouse telomerase gene during the induction of pluripotency
-
Mathew R, Jia W, Sharma A, Zhao Y, Clarke LE, Cheng X, et al. Robust activation of the human but not mouse telomerase gene during the induction of pluripotency. Faseb J. 2010;24:2702-15.
-
(2010)
Faseb J.
, vol.24
, pp. 2702-2715
-
-
Mathew, R.1
Jia, W.2
Sharma, A.3
Zhao, Y.4
Clarke, L.E.5
Cheng, X.6
-
17
-
-
65649116572
-
Slukvin, et al. Human induced pluripotent stem cells free of vector and transgene sequences
-
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324:797-801.
-
(2009)
Science
, vol.324
, pp. 797-801
-
-
Yu, J.1
Hu, K.2
Smuga-Otto, K.3
Tian, S.4
Stewart, R.5
-
18
-
-
81055141362
-
Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1
-
Wang W, Yang J, Liu H, Lu D, Chen X, Zenonos Z, et al. Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc Natl Acad Sci. 2011;108:18283-8.
-
(2011)
Proc Natl Acad Sci.
, vol.108
, pp. 18283-18288
-
-
Wang, W.1
Yang, J.2
Liu, H.3
Lu, D.4
Chen, X.5
Zenonos, Z.6
-
19
-
-
78650752402
-
Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells
-
Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010;28:848-55.
-
(2010)
Nat Biotechnol.
, vol.28
, pp. 848-855
-
-
Polo, J.M.1
Liu, S.2
Figueroa, M.E.3
Kulalert, W.4
Eminli, S.5
Tan, K.Y.6
-
20
-
-
84908031698
-
Combinatorial modulation of signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC reprogramming
-
Vidal SE, Amlani B, Chen T, Tsirigos A, Stadtfeld M. Combinatorial modulation of signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC reprogramming. Stem Cell Reports. 2014;3:574-84.
-
(2014)
Stem Cell Reports.
, vol.3
, pp. 574-584
-
-
Vidal, S.E.1
Amlani, B.2
Chen, T.3
Tsirigos, A.4
Stadtfeld, M.5
-
21
-
-
84884131429
-
Reprogramming of human fibroblasts to pluripotency with lineage specifiers
-
Montserrat N, Nivet E, Sancho-Martinez I, Hishida T, Kumar S, Miquel L, et al. Reprogramming of human fibroblasts to pluripotency with lineage specifiers. Cell Stem Cell. 2013;13:341-50.
-
(2013)
Cell Stem Cell.
, vol.13
, pp. 341-350
-
-
Montserrat, N.1
Nivet, E.2
Sancho-Martinez, I.3
Hishida, T.4
Kumar, S.5
Miquel, L.6
-
22
-
-
84878273239
-
Induction of pluripotency in mouse somatic cells with lineage specifiers
-
Shu J, Wu C, Wu Y, Li Z, Shao S, Zhao W, et al. Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell. 2013;153:963-75.
-
(2013)
Cell.
, vol.153
, pp. 963-975
-
-
Shu, J.1
Wu, C.2
Wu, Y.3
Li, Z.4
Shao, S.5
Zhao, W.6
-
23
-
-
84892565523
-
Bright/Arid3A acts as a barrier to somatic cell reprogramming through direct regulation of Oct4, Sox2, and Nanog
-
Popowski M, Templeton TD, Lee B-K, Rhee C, Li H, Miner C, et al. Bright/Arid3A acts as a barrier to somatic cell reprogramming through direct regulation of Oct4, Sox2, and Nanog. Stem Cell Reports. 2014;2:26-35.
-
(2014)
Stem Cell Reports.
, vol.2
, pp. 26-35
-
-
Popowski, M.1
Templeton, T.D.2
Lee, B.-K.3
Rhee, C.4
Li, H.5
Miner, C.6
-
24
-
-
79958292714
-
Direct reprogramming of somatic cells is promoted by maternal transcription factor GLIS1
-
Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, et al. Direct reprogramming of somatic cells is promoted by maternal transcription factor GLIS1. Nature. 2011;474:225-9.
-
(2011)
Nature.
, vol.474
, pp. 225-229
-
-
Maekawa, M.1
Yamaguchi, K.2
Nakamura, T.3
Shibukawa, R.4
Kodanaka, I.5
Ichisaka, T.6
-
25
-
-
84899478048
-
Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm
-
Takahashi K, Tanabe K, Ohnuki M, Narita M, Sasaki A, Yamamoto M, et al. Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm. Nat Commun. 2014;5:3678.
-
(2014)
Nat Commun.
, vol.5
, pp. 3678
-
-
Takahashi, K.1
Tanabe, K.2
Ohnuki, M.3
Narita, M.4
Sasaki, A.5
Yamamoto, M.6
-
26
-
-
0029610034
-
The immunoglobulin heavy-chain matrix-associating regions are bound by Bright: a B cell-specific trans-activator that describes a new DNA-binding protein family
-
Herrscher RF, Kaplan MH, Lelsz DL, Das C, Scheuermann R, Tucker PW. The immunoglobulin heavy-chain matrix-associating regions are bound by Bright: a B cell-specific trans-activator that describes a new DNA-binding protein family. Genes Dev. 1995;9:3067-82.
-
(1995)
Genes Dev.
, vol.9
, pp. 3067-3082
-
-
Herrscher, R.F.1
Kaplan, M.H.2
Lelsz, D.L.3
Das, C.4
Scheuermann, R.5
Tucker, P.W.6
-
27
-
-
0036250668
-
ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development
-
Wilsker D, Patsialou A, Dallas PB, Moran E. ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth Differ. 2002;13:95-106.
-
(2002)
Cell Growth Differ.
, vol.13
, pp. 95-106
-
-
Wilsker, D.1
Patsialou, A.2
Dallas, P.B.3
Moran, E.4
-
28
-
-
77958126497
-
Loss of Bright/ARID3a function promotes developmental plasticity
-
An G, Miner CA, Nixon JC, Kincade PW, Bryant J, Tucker PW, et al. Loss of Bright/ARID3a function promotes developmental plasticity. Stem Cells. 2010;28:1560-7.
-
(2010)
Stem Cells.
, vol.28
, pp. 1560-1567
-
-
An, G.1
Miner, C.A.2
Nixon, J.C.3
Kincade, P.W.4
Bryant, J.5
Tucker, P.W.6
-
29
-
-
84913530834
-
Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage
-
Rasmussen Mikkel A, Holst B, Tümer Z, Johnsen Mads G, Zhou S, Stummann Tina C, et al. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage. Stem Cell Reports. 2014;3:404-13.
-
(2014)
Stem Cell Reports.
, vol.3
, pp. 404-413
-
-
Rasmussen Mikkel, A.1
Holst, B.2
Tümer, Z.3
Johnsen Mads, G.4
Zhou, S.5
Stummann Tina, C.6
-
30
-
-
55749104227
-
Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2
-
Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008;26:1269-75.
-
(2008)
Nat Biotechnol.
, vol.26
, pp. 1269-1275
-
-
Huangfu, D.1
Osafune, K.2
Maehr, R.3
Guo, W.4
Eijkelenboom, A.5
Chen, S.6
-
31
-
-
84881366676
-
Pluripotency-regulating networks provide basis for reprogramming
-
Aksoy I, Stanton LW. Pluripotency-regulating networks provide basis for reprogramming. Curr Mol Med. 2013;13:695-706.
-
(2013)
Curr Mol Med
, vol.13
, pp. 695-706
-
-
Aksoy, I.1
Stanton, L.W.2
-
33
-
-
84890476828
-
Chng W-bA, Chen J, Divakar U, et al. Sox transcription factors require selective interactions with Oct4 and specific transactivation functions to mediate reprogramming
-
Aksoy I, Jauch R, Eras V, Chng W-bA, Chen J, Divakar U, et al. Sox transcription factors require selective interactions with Oct4 and specific transactivation functions to mediate reprogramming. Stem Cells. 2013;31:2632-46.
-
(2013)
Stem Cells
, vol.31
, pp. 2632-2646
-
-
Aksoy, I.1
Jauch, R.2
Eras, V.3
-
34
-
-
84858329386
-
Deciphering the Sox-Oct partner code by quantitative cooperativity measurements
-
Ng CK, Li NX, Chee S, Prabhakar S, Kolatkar PR, Jauch R. Deciphering the Sox-Oct partner code by quantitative cooperativity measurements. Nucleic Acids Res. 2012;40:4933-41.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 4933-4941
-
-
Ng, C.K.1
Li, N.X.2
Chee, S.3
Prabhakar, S.4
Kolatkar, P.R.5
Jauch, R.6
-
35
-
-
79953323442
-
Reprogramming of mouse and human somatic cells by high-performance engineered factors
-
Wang Y, Chen J, Hu JL, Wei XX, Qin D, Gao J, et al. Reprogramming of mouse and human somatic cells by high-performance engineered factors. EMBO Rep. 2011;12:373-8.
-
(2011)
EMBO Rep.
, vol.12
, pp. 373-378
-
-
Wang, Y.1
Chen, J.2
Hu, J.L.3
Wei, X.X.4
Qin, D.5
Gao, J.6
-
36
-
-
79957592228
-
Conversion of Sox17 into a pluripotency reprogramming factor by reengineering its association with Oct4 on DNA
-
Jauch R, Aksoy I, Hutchins AP, Ng CK, Tian XF, Chen J, et al. Conversion of Sox17 into a pluripotency reprogramming factor by reengineering its association with Oct4 on DNA. Stem Cells. 2011;29:940-51.
-
(2011)
Stem Cells.
, vol.29
, pp. 940-951
-
-
Jauch, R.1
Aksoy, I.2
Hutchins, A.P.3
Ng, C.K.4
Tian, X.F.5
Chen, J.6
-
37
-
-
84894593599
-
Molecular mechanisms of epithelial-mesenchymal transition
-
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178-96.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 178-196
-
-
Lamouille, S.1
Xu, J.2
Derynck, R.3
-
38
-
-
77957551870
-
A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
-
Li R, Liang J, Ni S, Zhou T, Qing X, Li H, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell. 2010;7:51-63.
-
(2010)
Cell Stem Cell.
, vol.7
, pp. 51-63
-
-
Li, R.1
Liang, J.2
Ni, S.3
Zhou, T.4
Qing, X.5
Li, H.6
-
39
-
-
84898769454
-
Kinome-wide functional analysis highlights the role of cytoskeletal remodeling in somatic cell reprogramming
-
Sakurai K, Talukdar I, Patil Veena S, Dang J, Li Z, Chang K-Y, et al. Kinome-wide functional analysis highlights the role of cytoskeletal remodeling in somatic cell reprogramming. Cell Stem Cell. 2014;14:523-34.
-
(2014)
Cell Stem Cell.
, vol.14
, pp. 523-534
-
-
Sakurai, K.1
Talukdar, I.2
Patil Veena, S.3
Dang, J.4
Li, Z.5
Chang, K.-Y.6
-
40
-
-
77956320116
-
Sung H-k, Beyer TA, Datti A, et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
-
Samavarchi-Tehrani P, Golipour A, David L, Sung H-k, Beyer TA, Datti A, et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell. 2010;7:64-77.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 64-77
-
-
Samavarchi-Tehrani, P.1
Golipour, A.2
David, L.3
-
41
-
-
70350571742
-
Tgfβ signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc
-
Maherali N, Hochedlinger K. Tgfβ signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr Biol. 2009;19:1718-23.
-
(2009)
Curr Biol
, vol.19
, pp. 1718-1723
-
-
Maherali, N.1
Hochedlinger, K.2
-
42
-
-
70350536767
-
A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog
-
Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, et al. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell. 2009;5:491-503.
-
(2009)
Cell Stem Cell.
, vol.5
, pp. 491-503
-
-
Ichida, J.K.1
Blanchard, J.2
Lam, K.3
Son, E.Y.4
Chung, J.E.5
Egli, D.6
-
43
-
-
70350732790
-
A chemical platform for improved induction of human iPSCs
-
Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, et al. A chemical platform for improved induction of human iPSCs. Nat Methods. 2009;6:805-8.
-
(2009)
Nat Methods.
, vol.6
, pp. 805-808
-
-
Lin, T.1
Ambasudhan, R.2
Yuan, X.3
Li, W.4
Hilcove, S.5
Abujarour, R.6
-
44
-
-
84872309358
-
p53 counteracts reprogramming by inhibiting mesenchymal-to-epithelial transition
-
Brosh R, Assia-Alroy Y, Molchadsky A, Bornstein C, Dekel E, Madar S, et al. p53 counteracts reprogramming by inhibiting mesenchymal-to-epithelial transition. Cell Death Differ. 2013;20:312-20.
-
(2013)
Cell Death Differ.
, vol.20
, pp. 312-320
-
-
Brosh, R.1
Assia-Alroy, Y.2
Molchadsky, A.3
Bornstein, C.4
Dekel, E.5
Madar, S.6
-
45
-
-
84922606875
-
The epithelial-mesenchymal transition factor SNAIL paradoxically enhances reprogramming
-
Unternaehrer Juli J, Zhao R, Kim K, Cesana M, Powers John T, Ratanasirintrawoot S, et al. The epithelial-mesenchymal transition factor SNAIL paradoxically enhances reprogramming. Stem Cell Reports. 2014;3:691-8.
-
(2014)
Stem Cell Reports.
, vol.3
, pp. 691-698
-
-
Unternaehrer Juli, J.1
Zhao, R.2
Kim, K.3
Cesana, M.4
Powers John, T.5
Ratanasirintrawoot, S.6
-
46
-
-
44349170450
-
The ground state of embryonic stem cell self-renewal
-
Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, et al. The ground state of embryonic stem cell self-renewal. Nature. 2008;453:519-23.
-
(2008)
Nature.
, vol.453
, pp. 519-523
-
-
Ying, Q.L.1
Wray, J.2
Nichols, J.3
Batlle-Morera, L.4
Doble, B.5
Woodgett, J.6
-
47
-
-
54949105021
-
Promotion of reprogramming to ground state pluripotency by signal inhibition
-
Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 2008;6:e253.
-
(2008)
PLoS Biol.
, vol.6
-
-
Silva, J.1
Barrandon, O.2
Nichols, J.3
Kawaguchi, J.4
Theunissen, T.W.5
Smith, A.6
-
48
-
-
79151477522
-
Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions
-
Theunissen TW, van Oosten AL, Castelo-Branco G, Hall J, Smith A, Silva JC. Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions. Curr Biol. 2011;21:65-71.
-
(2011)
Curr Biol.
, vol.21
, pp. 65-71
-
-
Theunissen, T.W.1
Oosten, A.L.2
Castelo-Branco, G.3
Hall, J.4
Smith, A.5
Silva, J.C.6
-
49
-
-
84908074395
-
Resetting transcription factor control circuitry toward ground-state pluripotency in human
-
Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell. 2014;158:1254-69.
-
(2014)
Cell.
, vol.158
, pp. 1254-1269
-
-
Takashima, Y.1
Guo, G.2
Loos, R.3
Nichols, J.4
Ficz, G.5
Krueger, F.6
-
50
-
-
84866992567
-
A kinase inhibitor screen identifies small-molecule enhancers of reprogramming and iPS cell generation
-
Li Z, Rana TM. A kinase inhibitor screen identifies small-molecule enhancers of reprogramming and iPS cell generation. Nat Commun. 2012;3:1085.
-
(2012)
Nat Commun
, vol.3
, pp. 1085
-
-
Li, Z.1
Rana, T.M.2
-
51
-
-
0034703742
-
p53: death star
-
Vousden KH. p53: death star. Cell. 2000;103:691-4.
-
(2000)
Cell
, vol.103
, pp. 691-694
-
-
Vousden, K.H.1
-
52
-
-
69349100455
-
Linking the p53 tumour suppressor pathway to somatic cell reprogramming
-
Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature. 2009;460:1140-4.
-
(2009)
Nature.
, vol.460
, pp. 1140-1144
-
-
Kawamura, T.1
Suzuki, J.2
Wang, Y.V.3
Menendez, S.4
Morera, L.B.5
Raya, A.6
-
53
-
-
54949136146
-
Two supporting factors greatly improve the efficiency of human iPSC generation
-
Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, et al. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell. 2008;3:475-9.
-
(2008)
Cell Stem Cell.
, vol.3
, pp. 475-479
-
-
Zhao, Y.1
Yin, X.2
Qin, H.3
Zhu, F.4
Liu, H.5
Yang, W.6
-
54
-
-
84879819875
-
Efficient generation of induced pluripotent stem cells from human bone marrow mesenchymal stem cells
-
Yulin X, Lizhen L, Lifei Z, Shan F, Ru L, Kaimin H, et al. Efficient generation of induced pluripotent stem cells from human bone marrow mesenchymal stem cells. Folia Biol. 2012;58:221-30.
-
(2012)
Folia Biol.
, vol.58
, pp. 221-230
-
-
Yulin, X.1
Lizhen, L.2
Lifei, Z.3
Shan, F.4
Ru, L.5
Kaimin, H.6
-
55
-
-
69349094006
-
A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity
-
Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature. 2009;460:1149-53.
-
(2009)
Nature.
, vol.460
, pp. 1149-1153
-
-
Marion, R.M.1
Strati, K.2
Li, H.3
Murga, M.4
Blanco, R.5
Ortega, S.6
-
56
-
-
69349100179
-
Suppression of induced pluripotent stem cell generation by the p53-p21 pathway
-
Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature. 2009;460:1132-5.
-
(2009)
Nature.
, vol.460
, pp. 1132-1135
-
-
Hong, H.1
Takahashi, K.2
Ichisaka, T.3
Aoi, T.4
Kanagawa, O.5
Nakagawa, M.6
-
57
-
-
69349103956
-
The Ink4/Arf locus is a barrier for iPS cell reprogramming
-
Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M, et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature. 2009;460:1136-9.
-
(2009)
Nature.
, vol.460
, pp. 1136-1139
-
-
Li, H.1
Collado, M.2
Villasante, A.3
Strati, K.4
Ortega, S.5
Canamero, M.6
-
58
-
-
69349098273
-
Immortalization eliminates a roadblock during cellular reprogramming into iPS cells
-
Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature. 2009;460:1145-8.
-
(2009)
Nature.
, vol.460
, pp. 1145-1148
-
-
Utikal, J.1
Polo, J.M.2
Stadtfeld, M.3
Maherali, N.4
Kulalert, W.5
Walsh, R.M.6
-
59
-
-
71449109765
-
Direct cell reprogramming is a stochastic process amenable to acceleration
-
Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP, et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature. 2009;462:595-601.
-
(2009)
Nature.
, vol.462
, pp. 595-601
-
-
Hanna, J.1
Saha, K.2
Pando, B.3
Zon, J.4
Lengner, C.J.5
Creyghton, M.P.6
-
60
-
-
84904788014
-
Genome-wide functional analysis reveals factors needed at the transition steps of induced reprogramming
-
Yang CS, Chang KY, Rana TM. Genome-wide functional analysis reveals factors needed at the transition steps of induced reprogramming. Cell Rep. 2014;8:327-37.
-
(2014)
Cell Rep
, vol.8
, pp. 327-337
-
-
Yang, C.S.1
Chang, K.Y.2
Rana, T.M.3
-
61
-
-
77249176666
-
p53 and stem cells: new developments and new concerns
-
Zhao T, Xu Y. p53 and stem cells: new developments and new concerns. Trends Cell Biol. 2010;20:170-5.
-
(2010)
Trends Cell Biol
, vol.20
, pp. 170-175
-
-
Zhao, T.1
Xu, Y.2
-
62
-
-
79955634826
-
A more efficient method to generate integration-free human iPS cells
-
Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409-12.
-
(2011)
Nat Methods.
, vol.8
, pp. 409-412
-
-
Okita, K.1
Matsumura, Y.2
Sato, Y.3
Okada, A.4
Morizane, A.5
Okamoto, S.6
-
63
-
-
84874817493
-
An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells
-
Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31:458-66.
-
(2013)
Stem Cells.
, vol.31
, pp. 458-466
-
-
Okita, K.1
Yamakawa, T.2
Matsumura, Y.3
Sato, Y.4
Amano, N.5
Watanabe, A.6
-
64
-
-
84862881056
-
The genomic stability of induced pluripotent stem cells
-
Chen Z, Zhao T, Xu Y. The genomic stability of induced pluripotent stem cells. Protein & cell. 2012;3:271-7.
-
(2012)
Protein & cell
, vol.3
, pp. 271-277
-
-
Chen, Z.1
Zhao, T.2
Xu, Y.3
-
65
-
-
84860540374
-
Context-dependent enhancement of induced pluripotent stem cell reprogramming by silencing Puma
-
Lake BB, Fink J, Klemetsaune L, Fu X, Jeffers JR, Zambetti GP, et al. Context-dependent enhancement of induced pluripotent stem cell reprogramming by silencing Puma. Stem Cells. 2012;30:888-97.
-
(2012)
Stem Cells.
, vol.30
, pp. 888-897
-
-
Lake, B.B.1
Fink, J.2
Klemetsaune, L.3
Fu, X.4
Jeffers, J.R.5
Zambetti, G.P.6
-
67
-
-
0033543728
-
A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy
-
Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science. 1999;285:1733-7.
-
(1999)
Science.
, vol.285
, pp. 1733-1737
-
-
Komarov, P.G.1
Komarova, E.A.2
Kondratov, R.V.3
Christov-Tselkov, K.4
Coon, J.S.5
Chernov, M.V.6
-
68
-
-
54949127934
-
Periodic activation of Wnt/beta-catenin signaling enhances somatic cell reprogramming mediated by cell fusion
-
Lluis F, Pedone E, Pepe S, Cosma MP. Periodic activation of Wnt/beta-catenin signaling enhances somatic cell reprogramming mediated by cell fusion. Cell Stem Cell. 2008;3:493-507.
-
(2008)
Cell Stem Cell.
, vol.3
, pp. 493-507
-
-
Lluis, F.1
Pedone, E.2
Pepe, S.3
Cosma, M.P.4
-
69
-
-
84879793960
-
Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins
-
Ho R, Papp B, Hoffman JA, Merrill BJ, Plath K. Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins. Cell Rep. 2013;3:2113-26.
-
(2013)
Cell Rep.
, vol.3
, pp. 2113-2126
-
-
Ho, R.1
Papp, B.2
Hoffman, J.A.3
Merrill, B.J.4
Plath, K.5
-
70
-
-
84899897543
-
Temporal perturbation of the Wnt signaling pathway in the control of cell reprogramming is modulated by TCF1
-
Aulicino F, Theka I, Ombrato L, Lluis F, Cosma MP. Temporal perturbation of the Wnt signaling pathway in the control of cell reprogramming is modulated by TCF1. Stem Cell Reports. 2014;2:707-20.
-
(2014)
Stem Cell Reports.
, vol.2
, pp. 707-720
-
-
Aulicino, F.1
Theka, I.2
Ombrato, L.3
Lluis, F.4
Cosma, M.P.5
-
71
-
-
84897399472
-
Regulation of iPS cell induction by Wnt/β-catenin signaling
-
Zhang P, Chang W-H, Fong B, Gao F, Liu C, Al Alam D, et al. Regulation of iPS cell induction by Wnt/β-catenin signaling. J Biol Chem. 2014;289:9221.
-
(2014)
J Biol Chem.
, vol.289
, pp. 9221
-
-
Zhang, P.1
Chang, W.-H.2
Fong, B.3
Gao, F.4
Liu, C.5
Al Alam, D.6
-
72
-
-
84863560929
-
Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling
-
Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci USA. 2012;109:E1848-57.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. E1848-E1857
-
-
Lian, X.1
Hsiao, C.2
Wilson, G.3
Zhu, K.4
Hazeltine, L.B.5
Azarin, S.M.6
-
73
-
-
84872016692
-
Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions
-
Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc. 2013;8:162-75.
-
(2013)
Nat Protoc.
, vol.8
, pp. 162-175
-
-
Lian, X.1
Zhang, J.2
Azarin, S.M.3
Zhu, K.4
Hazeltine, L.B.5
Bao, X.6
-
74
-
-
84920758332
-
Successful reprogramming of epiblast stem cells by blocking nuclear localization of β-catenin
-
Murayama H, Masaki H, Sato H, Hayama T, Yamaguchi T, Nakauchi H. Successful reprogramming of epiblast stem cells by blocking nuclear localization of β-catenin. Stem Cell Reports. 2014;4:103-13.
-
(2014)
Stem Cell Reports.
, vol.4
, pp. 103-113
-
-
Murayama, H.1
Masaki, H.2
Sato, H.3
Hayama, T.4
Yamaguchi, T.5
Nakauchi, H.6
-
75
-
-
84891748709
-
The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment
-
Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 2014;13:63-79.
-
(2014)
Nat Rev Drug Discov
, vol.13
, pp. 63-79
-
-
Johnson, R.1
Halder, G.2
-
76
-
-
77953040994
-
The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation
-
Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 2010;24:1106-18.
-
(2010)
Genes Dev.
, vol.24
, pp. 1106-1118
-
-
Lian, I.1
Kim, J.2
Okazawa, H.3
Zhao, J.4
Zhao, B.5
Yu, J.6
-
77
-
-
84859235472
-
Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming
-
Qin H, Blaschke K, Wei G, Ohi Y, Blouin L, Qi Z, et al. Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum Mol Genet. 2012;21:2054-67.
-
(2012)
Hum Mol Genet.
, vol.21
, pp. 2054-2067
-
-
Qin, H.1
Blaschke, K.2
Wei, G.3
Ohi, Y.4
Blouin, L.5
Qi, Z.6
-
78
-
-
84870945375
-
Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system
-
Buckley SM, Aranda-Orgilles B, Strikoudis A, Apostolou E, Loizou E, Moran-Crusio K, et al. Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell. 2012;11:783-98.
-
(2012)
Cell Stem Cell.
, vol.11
, pp. 783-798
-
-
Buckley, S.M.1
Aranda-Orgilles, B.2
Strikoudis, A.3
Apostolou, E.4
Loizou, E.5
Moran-Crusio, K.6
-
79
-
-
84866167976
-
Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
-
Vilchez D, Boyer L, Morantte I, Lutz M, Merkwirth C, Joyce D, et al. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature. 2012;489:304-8.
-
(2012)
Nature.
, vol.489
, pp. 304-308
-
-
Vilchez, D.1
Boyer, L.2
Morantte, I.3
Lutz, M.4
Merkwirth, C.5
Joyce, D.6
-
80
-
-
84904559751
-
Systematic identification of barriers to human iPSC generation
-
Qin H, Diaz A, Blouin L, Lebbink RJ, Patena W, Tanbun P, et al. Systematic identification of barriers to human iPSC generation. Cell. 2014;158:449-61.
-
(2014)
Cell.
, vol.158
, pp. 449-461
-
-
Qin, H.1
Diaz, A.2
Blouin, L.3
Lebbink, R.J.4
Patena, W.5
Tanbun, P.6
-
81
-
-
84871990064
-
H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs
-
Chen JK, Liu H, Liu J, Qi J, Wei B, Yang JQ, et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet. 2013;45:34-U62.
-
(2013)
Nat Genet.
, vol.45
, pp. 34-U62
-
-
Chen, J.K.1
Liu, H.2
Liu, J.3
Qi, J.4
Wei, B.5
Yang, J.Q.6
-
82
-
-
84859218238
-
Chromatin-modifying enzymes as modulators of reprogramming
-
Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature. 2012;483:598-602.
-
(2012)
Nature.
, vol.483
, pp. 598-602
-
-
Onder, T.T.1
Kara, N.2
Cherry, A.3
Sinha, A.U.4
Zhu, N.5
Bernt, K.M.6
-
83
-
-
41949098160
-
Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency
-
Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008;133:250-64.
-
(2008)
Cell.
, vol.133
, pp. 250-264
-
-
Hanna, J.1
Markoulaki, S.2
Schorderet, P.3
Carey, B.W.4
Beard, C.5
Wernig, M.6
-
84
-
-
46449094276
-
Dissecting direct reprogramming through integrative genomic analysis
-
Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, et al. Dissecting direct reprogramming through integrative genomic analysis. Nature. 2008;454:49-55.
-
(2008)
Nature.
, vol.454
, pp. 49-55
-
-
Mikkelsen, T.S.1
Hanna, J.2
Zhang, X.3
Ku, M.4
Wernig, M.5
Schorderet, P.6
-
85
-
-
84872442222
-
Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency
-
Pasque V, Radzisheuskaya A, Gillich A, Halley-Stott RP, Panamarova M, Zernicka-Goetz M, et al. Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J Cell Sci. 2012;125:6094-104.
-
(2012)
J Cell Sci.
, vol.125
, pp. 6094-6104
-
-
Pasque, V.1
Radzisheuskaya, A.2
Gillich, A.3
Halley-Stott, R.P.4
Panamarova, M.5
Zernicka-Goetz, M.6
-
86
-
-
84875887547
-
MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency
-
Gaspar-Maia A, Qadeer ZA, Hasson D, Ratnakumar K, Leu NA, Leroy G, et al. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat Commun. 2013;4:1565.
-
(2013)
Nat Commun.
, vol.4
, pp. 1565
-
-
Gaspar-Maia, A.1
Qadeer, Z.A.2
Hasson, D.3
Ratnakumar, K.4
Leu, N.A.5
Leroy, G.6
-
87
-
-
82755187396
-
The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner
-
Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell. 2011;9:575-87.
-
(2011)
Cell Stem Cell.
, vol.9
, pp. 575-587
-
-
Wang, T.1
Chen, K.2
Zeng, X.3
Yang, J.4
Wu, Y.5
Shi, X.6
-
88
-
-
55549147132
-
The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b)
-
He J, Kallin EM, Tsukada Y, Zhang Y. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol. 2008;15:1169-75.
-
(2008)
Nat Struct Mol Biol.
, vol.15
, pp. 1169-1175
-
-
He, J.1
Kallin, E.M.2
Tsukada, Y.3
Zhang, Y.4
-
89
-
-
62449276460
-
Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the Ink4a/Arf locus
-
Tzatsos A, Pfau R, Kampranis SC, Tsichlis PN. Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the Ink4a/Arf locus. Proc Natl Acad Sci USA. 2009;106:2641-6.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 2641-2646
-
-
Tzatsos, A.1
Pfau, R.2
Kampranis, S.C.3
Tsichlis, P.N.4
-
90
-
-
79955755007
-
MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition
-
Liao B, Bao X, Liu L, Feng S, Zovoilis A, Liu W, et al. MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem. 2011;286:17359-64.
-
(2011)
J Biol Chem.
, vol.286
, pp. 17359-17364
-
-
Liao, B.1
Bao, X.2
Liu, L.3
Feng, S.4
Zovoilis, A.5
Liu, W.6
-
91
-
-
79955780736
-
Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells
-
Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 2011;29:443-8.
-
(2011)
Nat Biotechnol.
, vol.29
, pp. 443-448
-
-
Subramanyam, D.1
Lamouille, S.2
Judson, R.L.3
Liu, J.Y.4
Bucay, N.5
Derynck, R.6
-
92
-
-
77955501968
-
Butyrate promotes induced pluripotent stem cell generation
-
Liang G, Taranova O, Xia K, Zhang Y. Butyrate promotes induced pluripotent stem cell generation. J Biol Chem. 2010;285:25516-21.
-
(2010)
J Biol Chem.
, vol.285
, pp. 25516-25521
-
-
Liang, G.1
Taranova, O.2
Xia, K.3
Zhang, Y.4
-
93
-
-
77950965653
-
Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes
-
Mali P, Chou BK, Yen J, Ye Z, Zou J, Dowey S, et al. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells. 2010;28:713-20.
-
(2010)
Stem Cells.
, vol.28
, pp. 713-720
-
-
Mali, P.1
Chou, B.K.2
Yen, J.3
Ye, Z.4
Zou, J.5
Dowey, S.6
-
94
-
-
46949085597
-
Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds
-
Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotech. 2008;26:795-7.
-
(2008)
Nat Biotech.
, vol.26
, pp. 795-797
-
-
Huangfu, D.1
Maehr, R.2
Guo, W.3
Eijkelenboom, A.4
Snitow, M.5
Chen, A.E.6
-
95
-
-
84881172661
-
Sodium butyrate promotes generation of human induced pluripotent stem cells through induction of the miR302/367 cluster
-
Zhang Z, Wu WS. Sodium butyrate promotes generation of human induced pluripotent stem cells through induction of the miR302/367 cluster. Stem Cells Dev. 2013;22:2268-77.
-
(2013)
Stem Cells Dev
, vol.22
, pp. 2268-2277
-
-
Zhang, Z.1
Wu, W.S.2
-
96
-
-
84864601941
-
The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network
-
Li X, Li L, Pandey R, Byun JS, Gardner K, Qin Z, et al. The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network. Cell Stem Cell. 2012;11:163-78.
-
(2012)
Cell Stem Cell.
, vol.11
, pp. 163-178
-
-
Li, X.1
Li, L.2
Pandey, R.3
Byun, J.S.4
Gardner, K.5
Qin, Z.6
-
97
-
-
84938677672
-
The histone acetyltransferase MOF promotes induces generation of pluripotent stem cells
-
Mu X, Yan S, Fu C, Wei A. The histone acetyltransferase MOF promotes induces generation of pluripotent stem cells. Cell Reprogram. 2015;17:259-67.
-
(2015)
Cell Reprogram.
, vol.17
, pp. 259-267
-
-
Mu, X.1
Yan, S.2
Fu, C.3
Wei, A.4
-
98
-
-
84877978530
-
Mechanisms and models of somatic cell reprogramming
-
Buganim Y, Faddah DA, Jaenisch R. Mechanisms and models of somatic cell reprogramming. Nat Rev Genet. 2013;14:427-39.
-
(2013)
Nat Rev Genet
, vol.14
, pp. 427-439
-
-
Buganim, Y.1
Faddah, D.A.2
Jaenisch, R.3
-
100
-
-
84902185617
-
Chromatin repressive complexes in stem cells, development, and cancer
-
Laugesen A, Helin K. Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell. 2014;14:735-51.
-
(2014)
Cell Stem Cell
, vol.14
, pp. 735-751
-
-
Laugesen, A.1
Helin, K.2
-
101
-
-
77649162059
-
Direct conversion of fibroblasts to functional neurons by defined factors
-
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035-41.
-
(2010)
Nature
, vol.463
, pp. 1035-1041
-
-
Vierbuchen, T.1
Ostermeier, A.2
Pang, Z.P.3
Kokubu, Y.4
Sudhof, T.C.5
Wernig, M.6
-
102
-
-
77955321344
-
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors
-
Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375-86.
-
(2010)
Cell.
, vol.142
, pp. 375-386
-
-
Ieda, M.1
Fu, J.D.2
Delgado-Olguin, P.3
Vedantham, V.4
Hayashi, Y.5
Bruneau, B.G.6
-
103
-
-
84867054759
-
Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming
-
Fidalgo M, Faiola F, Pereira C-F, Ding J, Saunders A, Gingold J, et al. Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming. Proc Natl Acad Sci. 2012;109:16202-7.
-
(2012)
Proc Natl Acad Sci.
, vol.109
, pp. 16202-16207
-
-
Fidalgo, M.1
Faiola, F.2
Pereira, C.-F.3
Ding, J.4
Saunders, A.5
Gingold, J.6
-
105
-
-
84994856468
-
Mbd3/NuRD is a key inhibitory module during the induction and maintenance of naïve pluripotency
-
Zviran A, Rais Y, Mor N, Novershtern N, Hanna JH. Mbd3/NuRD is a key inhibitory module during the induction and maintenance of naïve pluripotency. biorxiv. 2015. doi: 10.1101/013961.
-
(2015)
biorxiv
-
-
Zviran, A.1
Rais, Y.2
Mor, N.3
Novershtern, N.4
Hanna, J.H.5
-
106
-
-
84930224978
-
Early reprogramming regulators identified by prospective isolation and mass cytometry
-
Lujan E, Zunder ER, Ng YH, Goronzy IN, Nolan GP, Wernig M. Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature. 2015;521:352-6.
-
(2015)
Nature.
, vol.521
, pp. 352-356
-
-
Lujan, E.1
Zunder, E.R.2
Ng, Y.H.3
Goronzy, I.N.4
Nolan, G.P.5
Wernig, M.6
-
107
-
-
84874063703
-
A hierarchy in reprogramming capacity in different tissue microenvironments: what we know and what we need to know
-
Liebau S, Mahaddalkar PU, Kestler HA, Illing A, Seufferlein T, Kleger A. A hierarchy in reprogramming capacity in different tissue microenvironments: what we know and what we need to know. Stem Cells Dev. 2013;22:695-706.
-
(2013)
Stem Cells Dev.
, vol.22
, pp. 695-706
-
-
Liebau, S.1
Mahaddalkar, P.U.2
Kestler, H.A.3
Illing, A.4
Seufferlein, T.5
Kleger, A.6
-
108
-
-
84875997644
-
Proliferation rate of somatic cells affects reprogramming efficiency
-
Xu Y, Wei X, Wang M, Zhang R, Fu Y, Xing M, et al. Proliferation rate of somatic cells affects reprogramming efficiency. J Biol Chem. 2013;288:9767-78.
-
(2013)
J Biol Chem.
, vol.288
, pp. 9767-9778
-
-
Xu, Y.1
Wei, X.2
Wang, M.3
Zhang, R.4
Fu, Y.5
Xing, M.6
-
109
-
-
84938400166
-
Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors
-
Maza I, Caspi I, Zviran A, Chomsky E, Rais Y, Viukov S, et al. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat Biotech. 2015;33:769-74.
-
(2015)
Nat Biotech.
, vol.33
, pp. 769-774
-
-
Maza, I.1
Caspi, I.2
Zviran, A.3
Chomsky, E.4
Rais, Y.5
Viukov, S.6
-
110
-
-
84938324710
-
Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage
-
Bar-Nur O, Verheul C, Sommer AG, Brumbaugh J, Schwarz BA, Lipchina I, et al. Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat Biotech. 2015;33:761-8.
-
(2015)
Nat Biotech.
, vol.33
, pp. 761-768
-
-
Bar-Nur, O.1
Verheul, C.2
Sommer, A.G.3
Brumbaugh, J.4
Schwarz, B.A.5
Lipchina, I.6
-
112
-
-
34249863603
-
Strategies and new developments in the generation of patient-specific pluripotent stem cells
-
Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell. 2007;1:39-49.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 39-49
-
-
Yamanaka, S.1
-
113
-
-
79960046168
-
Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics
-
Chen J, Liu J, Chen Y, Yang J, Chen J, Liu H, et al. Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics. Cell Res. 2011;21:884-94.
-
(2011)
Cell Res.
, vol.21
, pp. 884-894
-
-
Chen, J.1
Liu, J.2
Chen, Y.3
Yang, J.4
Chen, J.5
Liu, H.6
-
114
-
-
77958539137
-
Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation
-
Masip M, Veiga A, Izpisua Belmonte JC, Simon C. Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation. Mol Hum Reprod. 2010;16:856-68.
-
(2010)
Mol Hum Reprod.
, vol.16
, pp. 856-868
-
-
Masip, M.1
Veiga, A.2
Izpisua Belmonte, J.C.3
Simon, C.4
-
115
-
-
84906233788
-
A transient disruption of fibroblastic transcriptional regulatory network facilitates trans-differentiation
-
Tomaru Y, Hasegawa R, Suzuki T, Sato T, Kubosaki A, Suzuki M, et al. A transient disruption of fibroblastic transcriptional regulatory network facilitates trans-differentiation. Nucleic Acids Res. 2014;42:8905.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 8905
-
-
Tomaru, Y.1
Hasegawa, R.2
Suzuki, T.3
Sato, T.4
Kubosaki, A.5
Suzuki, M.6
-
116
-
-
78649467088
-
Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells
-
Loewer S, Cabili MN, Guttman M, Loh Y-H, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42:1113-7.
-
(2010)
Nat Genet.
, vol.42
, pp. 1113-1117
-
-
Loewer, S.1
Cabili, M.N.2
Guttman, M.3
Loh, Y.-H.4
Thomas, K.5
Park, I.H.6
-
117
-
-
78649644924
-
MicroRNA profiling reveals two distinct p53-related human pluripotent stem cell states
-
Neveu P, Kye MJ, Qi S, Buchholz DE, Clegg DO, Sahin M, et al. MicroRNA profiling reveals two distinct p53-related human pluripotent stem cell states. Cell Stem Cell. 2010;7:671-81.
-
(2010)
Cell Stem Cell.
, vol.7
, pp. 671-681
-
-
Neveu, P.1
Kye, M.J.2
Qi, S.3
Buchholz, D.E.4
Clegg, D.O.5
Sahin, M.6
-
118
-
-
79952899995
-
Methods for making induced pluripotent stem cells: reprogramming à la carte
-
González F, Boué S, Belmonte JCI. Methods for making induced pluripotent stem cells: reprogramming à la carte. Nat Rev Genet. 2011;12:231-42.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 231-242
-
-
González, F.1
Boué, S.2
Belmonte, J.C.I.3
-
119
-
-
84872495808
-
Pivots of pluripotency: the roles of non-coding RNA in regulating embryonic and induced pluripotent stem cells
-
Huo JS, Zambidis ET. Pivots of pluripotency: the roles of non-coding RNA in regulating embryonic and induced pluripotent stem cells. Biochim Biophys Acta Gen Subj. 2013;1830:2385-94.
-
(2013)
Biochim Biophys Acta Gen Subj
, vol.1830
, pp. 2385-2394
-
-
Huo, J.S.1
Zambidis, E.T.2
-
120
-
-
84886400950
-
The functions of microRNAs and long non-coding RNAs in embryonic and induced pluripotent stem cells
-
Jia W, Chen W, Kang J. The functions of microRNAs and long non-coding RNAs in embryonic and induced pluripotent stem cells. Genomics Proteomics Bioinformatics. 2013;11:275-83.
-
(2013)
Genomics Proteomics Bioinformatics
, vol.11
, pp. 275-283
-
-
Jia, W.1
Chen, W.2
Kang, J.3
-
121
-
-
84855393039
-
Concise review: a chemical approach to control cell fate and function
-
Li W, Jiang K, Ding S. Concise review: a chemical approach to control cell fate and function. Stem Cells. 2012;30:61-8.
-
(2012)
Stem Cells
, vol.30
, pp. 61-68
-
-
Li, W.1
Jiang, K.2
Ding, S.3
-
122
-
-
84872037359
-
Chemical approaches to studying stem cell biology
-
Li W, Jiang K, Wei W, Shi Y, Ding S. Chemical approaches to studying stem cell biology. Cell Res. 2013;23:81-91.
-
(2013)
Cell Res.
, vol.23
, pp. 81-91
-
-
Li, W.1
Jiang, K.2
Wei, W.3
Shi, Y.4
Ding, S.5
-
123
-
-
84884152388
-
Chemical approaches to stem cell biology and therapeutics
-
Li W, Li K, Wei W, Ding S. Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell. 2013;13:270-83.
-
(2013)
Cell Stem Cell.
, vol.13
, pp. 270-283
-
-
Li, W.1
Li, K.2
Wei, W.3
Ding, S.4
-
124
-
-
84908446782
-
Lummertz da Rocha E, Daley George Q, Collins James J. Cell net: network biology applied to stem cell engineering
-
Cahan P, Li H, Morris Samantha A, Lummertz da Rocha E, Daley George Q, Collins James J. Cell net: network biology applied to stem cell engineering. Cell. 2014;158:903-15.
-
(2014)
Cell
, vol.158
, pp. 903-915
-
-
Cahan, P.1
Li, H.2
Morris Samantha, A.3
-
125
-
-
84908431507
-
Dissecting engineered cell types and enhancing cell fate conversion via cell net
-
Morris Samantha A, Cahan P, Li H, Zhao Anna M, San Roman Adrianna K, Shivdasani Ramesh A, et al. Dissecting engineered cell types and enhancing cell fate conversion via cell net. Cell. 2014;158:889-902.
-
(2014)
Cell
, vol.158
, pp. 889-902
-
-
Morris Samantha, A.1
Cahan, P.2
Li, H.3
Zhao Anna, M.4
San Roman Adrianna, K.5
Shivdasani Ramesh, A.6
|