-
1
-
-
51249194645
-
A logical calculus of the ideas immanent in nervous activity
-
W.S.McCulloch, W.Pitts A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5:115–133. doi:10.1007/BF02478259.
-
(1943)
Bull Math Biophys
, vol.5
, pp. 115-133
-
-
McCulloch, W.S.1
Pitts, W.2
-
2
-
-
11144273669
-
The perceptron: a probabilistic model for information storage and organization in the brain
-
F.Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386–408.
-
(1958)
Psychol Rev
, vol.65
, Issue.6
, pp. 386-408
-
-
Rosenblatt, F.1
-
3
-
-
0022471098
-
Learning internal representations by back-propagating errors
-
D.E.Rumelhart, G.E.Hinton, R.J.Williams. Learning internal representations by back-propagating errors. Nature. 1986;33:533–536. doi:10.1038/323533a0.•• The main reference for backpropagation neural networks.
-
(1986)
Nature
, vol.33
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
4
-
-
0019152630
-
Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
K.Fukushima. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybernetics. 1980;36:193–202. doi:10.1007/BF00344251.
-
(1980)
Biol Cybernetics
, vol.36
, pp. 193-202
-
-
Fukushima, K.1
-
5
-
-
0003410791
-
-
Berlin: Springer
-
T.Kohonen. Self-organizing maps. Berlin: Springer; 2001.•• The main reference on self-organizing maps.
-
(2001)
Self-organizing maps
-
-
Kohonen, T.1
-
6
-
-
0020118274
-
Neural networks and physical systems with emergent collective computational abilities
-
J.J.Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A. 1982;79(8):2554–2558.
-
(1982)
Proc Natl Acad Sci U S A
, vol.79
, Issue.8
, pp. 2554-2558
-
-
Hopfield, J.J.1
-
7
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G.E.Hinton, R.R.Salakhutdinov. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–507. doi:10.1126/science.1127647.•• First publication on deep learning.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
8
-
-
69349090197
-
Learning deep architectures for AI
-
Y.Bengio. Learning deep architectures for AI. Foundations Trends Machine Learning. 2009;2(1):1–127. doi:10.1561/2200000006.
-
(2009)
Foundations Trends Machine Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
9
-
-
84930630277
-
Deep learning
-
Y.LeCun, Y.Bengio, G.Hinton. Deep learning. Nature. 2015;521(7553):436–444. doi:10.1038/nature14539.•• Important recent review on deep learning.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
10
-
-
0015692850
-
Cybernetic methods of drug design. I. Statement of the problem – the perceptron approach
-
S.A.Hiller, V.E.Golender, A.B.Rosenblit, et al. Cybernetic methods of drug design. I. Statement of the problem – the perceptron approach. Comput Biomed Res. 1973;6(5):411–421.• First publication on the use of neural networks in drug discovery.
-
(1973)
Comput Biomed Res
, vol.6
, Issue.5
, pp. 411-421
-
-
Hiller, S.A.1
Golender, V.E.2
Rosenblit, A.B.3
-
11
-
-
0025219602
-
Neural networks applied to structure-activity relationships
-
T.Aoyama, Y.Suzuki, H.Ichikawa. Neural networks applied to structure-activity relationships. J Med Chem. 1990;33(3):905–908.
-
(1990)
J Med Chem
, vol.33
, Issue.3
, pp. 905-908
-
-
Aoyama, T.1
Suzuki, Y.2
Ichikawa, H.3
-
12
-
-
0036368719
-
Application of neural networks to large dataset QSAR, virtual screening, and library design
-
D.A.Winkler, F.R.Burden. Application of neural networks to large dataset QSAR, virtual screening, and library design. Methods Mol Biol. 2002;201:325–367. doi:10.1385/1-59259-285-6:325.
-
(2002)
Methods Mol Biol
, vol.201
, pp. 325-367
-
-
Winkler, D.A.1
Burden, F.R.2
-
13
-
-
33748373826
-
Neural networks as a method for elucidating structure-property relationships for organic compounds
-
N.M.Halberstam, I.I.Baskin, V.A.Palyulin, et al. Neural networks as a method for elucidating structure-property relationships for organic compounds. Russian Chem Rev. 2003;72(7):629–649. doi:10.1070/RC2003v072n07ABEH000754.
-
(2003)
Russian Chem Rev
, vol.72
, Issue.7
, pp. 629-649
-
-
Halberstam, N.M.1
Baskin, I.I.2
Palyulin, V.A.3
-
16
-
-
84917690958
-
Use of artificial neural networks in the QSAR prediction of physicochemical properties and toxicities for REACH legislation
-
J.C.Dearden, P.H.Rowe. Use of artificial neural networks in the QSAR prediction of physicochemical properties and toxicities for REACH legislation. Methods Mol Biol (Clifton, NJ). 2015;1260:65–88.
-
(2015)
Methods Mol Biol (Clifton, NJ)
, vol.1260
, pp. 65-88
-
-
Dearden, J.C.1
Rowe, P.H.2
-
18
-
-
0037287399
-
Artificial neural network and fragmental approach in prediction of physicochemical properties of organic compounds
-
N.V.Artemenko, I.I.Baskin, V.A.Palyulin, et al. Artificial neural network and fragmental approach in prediction of physicochemical properties of organic compounds. Russian Chem Bull. 2003;52(1):20–29. doi:10.1023/A:1022467508832.
-
(2003)
Russian Chem Bull
, vol.52
, Issue.1
, pp. 20-29
-
-
Artemenko, N.V.1
Baskin, I.I.2
Palyulin, V.A.3
-
19
-
-
0000646059
-
Learning internal representation by error propagation
-
Rumelhart D.E., McClelland J.L., (eds), Cambridge (MA): MIT Press
-
D.E.Rumelhart, G.E.Hinton, R.J.Williams. Learning internal representation by error propagation. In: D.E.Rumelhart, J.L.McClelland, editors. Parallel distributed processing: explorations in the microstructure of cognition, volume 1: foundations. Cambridge (MA): MIT Press; 1986. p. 318–362.
-
(1986)
Parallel distributed processing: explorations in the microstructure of cognition, volume 1: foundations
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
20
-
-
84943274699
-
A direct adaptive method for faster backpropagation learning: the RPROP algorithm
-
M.Riedmiller, H.Braun. A direct adaptive method for faster backpropagation learning: the RPROP algorithm. Proc IEEE Int Conf Neural Networks. 1993;586–591.
-
(1993)
Proc IEEE Int Conf Neural Networks
, pp. 586-591
-
-
Riedmiller, M.1
Braun, H.2
-
21
-
-
0028543366
-
Training feedforward networks with the Marquardt algorithm
-
M.T.Hagan, M.Menhaj. Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Networks. 1994;5(6):989–993. doi:10.1109/72.329697.
-
(1994)
IEEE Trans Neural Networks
, vol.5
, Issue.6
, pp. 989-993
-
-
Hagan, M.T.1
Menhaj, M.2
-
22
-
-
0001447184
-
Neural network studies. 1. Comparison of overfitting and overtraining
-
I.V.Tetko, D.J.Livingstone, A.I.Luik. Neural network studies. 1. Comparison of overfitting and overtraining. J Chem Inf Comput Sci. 1995;35(5):826–833.•• Method to avoid overfitting of neural networks, notwithstanding of their complexity, by early stopping.
-
(1995)
J Chem Inf Comput Sci
, vol.35
, Issue.5
, pp. 826-833
-
-
Tetko, I.V.1
Livingstone, D.J.2
Luik, A.I.3
-
23
-
-
24944527668
-
Rank, trace-norm and max-norm
-
Berlin: Springer
-
N.Srebro, A.Shraibman. Rank, trace-norm and max-norm. In: Learning theory. Berlin: Springer; 2005. p. 545–560.
-
(2005)
Learning theory
, pp. 545-560
-
-
Srebro, N.1
Shraibman, A.2
-
24
-
-
58149381237
-
Bayesian regularization of neural networks
-
F.Burden, D.Winkler. Bayesian regularization of neural networks. Methods Mol Biol. 2008;458:25–44.
-
(2008)
Methods Mol Biol
, vol.458
, pp. 25-44
-
-
Burden, F.1
Winkler, D.2
-
25
-
-
0033549850
-
Robust QSAR models using Bayesian regularized neural networks
-
F.R.Burden, D.A.Winkler. Robust QSAR models using Bayesian regularized neural networks. J Med Chem. 1999;42(16):3183–3187. doi:10.1021/jm980697n.•• First application of Bayesian regularized neural networks in QSAR modeling.
-
(1999)
J Med Chem
, vol.42
, Issue.16
, pp. 3183-3187
-
-
Burden, F.R.1
Winkler, D.A.2
-
26
-
-
76749109588
-
An optimal self-pruning neural network and nonlinear descriptor selection in QSAR
-
F.R.Burden, D.A.Winkler. An optimal self-pruning neural network and nonlinear descriptor selection in QSAR. QSAR Comb Sci. 2009;28(10):1092–1097. doi:10.1002/qsar.v28:10.
-
(2009)
QSAR Comb Sci
, vol.28
, Issue.10
, pp. 1092-1097
-
-
Burden, F.R.1
Winkler, D.A.2
-
27
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
N.Srivastava, G.Hinton, A.Krizhevsky, et al. Dropout: a simple way to prevent neural networks from overfitting. J Machine Learn Res. 2014;15(1):1929–1958.• Important method to avoid overfitting used in deep-learning neural network.
-
(2014)
J Machine Learn Res
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
-
28
-
-
61949280507
-
Inductive transfer of knowledge: application of multi-task learning and feature net approaches to model tissue-air partition coefficients
-
A.Varnek, C.Gaudin, G.Marcou, et al. Inductive transfer of knowledge: application of multi-task learning and feature net approaches to model tissue-air partition coefficients. J Chem Inf Model. 2009;49(1):133–144. doi:10.1021/ci8002914.
-
(2009)
J Chem Inf Model
, vol.49
, Issue.1
, pp. 133-144
-
-
Varnek, A.1
Gaudin, C.2
Marcou, G.3
-
29
-
-
0031189914
-
Multitask learning
-
R.Caruana. Multitask learning. Mach Learn. 1997;28(1):41–75. doi:10.1023/A:1007379606734.
-
(1997)
Mach Learn
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
30
-
-
0035226195
-
The learned symmetry concept in revealing quantitative structure-activity relationships with artificial neural networks
-
I.I.Baskin, N.M.Halberstam, T.V.Mukhina, et al. The learned symmetry concept in revealing quantitative structure-activity relationships with artificial neural networks. SAR QSAR Environ Res. 2001;12(4):401–416. doi:10.1080/10629360108033247.
-
(2001)
SAR QSAR Environ Res
, vol.12
, Issue.4
, pp. 401-416
-
-
Baskin, I.I.1
Halberstam, N.M.2
Mukhina, T.V.3
-
32
-
-
0036490199
-
An approach to the interpretation of backpropagation neural network models in QSAR studies
-
I.I.Baskin, A.O.Ait, N.M.Halberstam, et al. An approach to the interpretation of backpropagation neural network models in QSAR studies. SAR QSAR Environ Res. 2002;13(1):35–41. doi:10.1080/10629360290002073.
-
(2002)
SAR QSAR Environ Res
, vol.13
, Issue.1
, pp. 35-41
-
-
Baskin, I.I.1
Ait, A.O.2
Halberstam, N.M.3
-
33
-
-
0142126712
-
Novelty detection: a review – part 2: neural network based approaches
-
M.Markou, S.Singh. Novelty detection: a review – part 2: neural network based approaches. Signal Process. 2003;83(12):2499–2521. doi:10.1016/j.sigpro.2003.07.019.
-
(2003)
Signal Process
, vol.83
, Issue.12
, pp. 2499-2521
-
-
Markou, M.1
Singh, S.2
-
34
-
-
80054751602
-
One-class classification as a novel method of ligand-based virtual screening: the case of glycogen synthase kinase 3ОІ inhibitors
-
P.V.Karpov, D.I.Osolodkin, I.I.Baskin, et al. One-class classification as a novel method of ligand-based virtual screening: the case of glycogen synthase kinase 3ОІ inhibitors. Bioorg Med Chem Lett. 2011;21(22):6728–6731. doi:10.1016/j.bmcl.2011.09.051.
-
(2011)
Bioorg Med Chem Lett
, vol.21
, Issue.22
, pp. 6728-6731
-
-
Karpov, P.V.1
Osolodkin, D.I.2
Baskin, I.I.3
-
36
-
-
0001245212
-
Use of automatic relevance determination in QSAR studies using Bayesian neural networks
-
F.R.Burden, M.G.Ford, D.C.Whitley, et al. Use of automatic relevance determination in QSAR studies using Bayesian neural networks. J Chem Inf Comput Sci. 2000;40(6):1423–1430.
-
(2000)
J Chem Inf Comput Sci
, vol.40
, Issue.6
, pp. 1423-1430
-
-
Burden, F.R.1
Ford, M.G.2
Whitley, D.C.3
-
37
-
-
67949124727
-
Optimal sparse descriptor selection for QSAR using Bayesian methods
-
F.R.Burden, D.A.Winkler. Optimal sparse descriptor selection for QSAR using Bayesian methods. QSAR Comb Sci. 2009;28(6–7):645–653. doi:10.1002/qsar.v28:6/7.• First description of the use of feature selection using sparse Bayesian priors.
-
(2009)
QSAR Comb Sci
, vol.28
, Issue.6-7
, pp. 645-653
-
-
Burden, F.R.1
Winkler, D.A.2
-
38
-
-
12444281776
-
Bayesian neural nets for modeling in drug discovery
-
D.A.Winkler, F.R.Burden. Bayesian neural nets for modeling in drug discovery. Drug Discovery Today BIOSILICO. 2004;2(3):104–111. doi:10.1016/S1741-8364(04)02393-5.
-
(2004)
Drug Discovery Today BIOSILICO
, vol.2
, Issue.3
, pp. 104-111
-
-
Winkler, D.A.1
Burden, F.R.2
-
39
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
D.J.C.Mackay. A practical Bayesian framework for backpropagation networks. Neural Comput. 1992;4(3):448–472. doi:10.1162/neco.1992.4.3.448.
-
(1992)
Neural Comput
, vol.4
, Issue.3
, pp. 448-472
-
-
Mackay, D.J.C.1
-
41
-
-
0141836275
-
Adaptive sparseness for supervised learning
-
M.A.T.Figueiredo. Adaptive sparseness for supervised learning. IEEE Trans Pattern Anal. 2003;25(9):1150–1159. doi:10.1109/TPAMI.2003.1227989.• Describes the mathematics involved in Bayesian regularization for regression.
-
(2003)
IEEE Trans Pattern Anal
, vol.25
, Issue.9
, pp. 1150-1159
-
-
Figueiredo, M.A.T.1
-
42
-
-
0035526164
-
Search for predictive generic model of aqueous solubility using Bayesian neural nets
-
P.Bruneau. Search for predictive generic model of aqueous solubility using Bayesian neural nets. J Chem Inf Comput Sci. 2001;41(6):1605–1616.
-
(2001)
J Chem Inf Comput Sci
, vol.41
, Issue.6
, pp. 1605-1616
-
-
Bruneau, P.1
-
43
-
-
33745383499
-
logD(7.4) modeling using Bayesian regularized neural networks. Assessment and correction of the errors of prediction
-
P.Bruneau, N.R.McElroy. logD(7.4) modeling using Bayesian regularized neural networks. Assessment and correction of the errors of prediction. J Chem Inf Model. 2006;46(3):1379–1387. doi:10.1021/ci0504014.
-
(2006)
J Chem Inf Model
, vol.46
, Issue.3
, pp. 1379-1387
-
-
Bruneau, P.1
McElroy, N.R.2
-
44
-
-
0034094124
-
A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks
-
F.R.Burden, D.A.Winkler. A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks. Chem Res Toxicol. 2000;13(6):436–440.
-
(2000)
Chem Res Toxicol
, vol.13
, Issue.6
, pp. 436-440
-
-
Burden, F.R.1
Winkler, D.A.2
-
45
-
-
20444386168
-
Predictive Bayesian neural network models of MHC class II peptide binding
-
F.R.Burden, D.A.Winkler. Predictive Bayesian neural network models of MHC class II peptide binding. J Mol Graph Model. 2005;23(6):481–489. doi:10.1016/j.jmgm.2005.03.001.
-
(2005)
J Mol Graph Model
, vol.23
, Issue.6
, pp. 481-489
-
-
Burden, F.R.1
Winkler, D.A.2
-
46
-
-
77955107970
-
Modelling inhalational anaesthetics using Bayesian feature selection and QSAR modelling methods
-
D.T.Manallack, F.R.Burden, D.A.Winkler. Modelling inhalational anaesthetics using Bayesian feature selection and QSAR modelling methods. ChemMedChem. 2010;5(8):1318–1323. doi:10.1002/cmdc.201000056.
-
(2010)
ChemMedChem
, vol.5
, Issue.8
, pp. 1318-1323
-
-
Manallack, D.T.1
Burden, F.R.2
Winkler, D.A.3
-
47
-
-
84923367417
-
Deep neural nets as a method for quantitative structure-activity relationships
-
J.Ma, R.P.Sheridan, A.Liaw, et al. Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model. 2015;55(2):263–274. doi:10.1021/ci500747n.
-
(2015)
J Chem Inf Model
, vol.55
, Issue.2
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
-
48
-
-
84879698395
-
Aqueous solubility prediction: do crystal lattice interactions help?
-
M.Salahinejad, T.C.Le, D.A.Winkler. Aqueous solubility prediction: do crystal lattice interactions help? Mol Pharmaceut. 2013;10(7):2757–2766. doi:10.1021/mp4001958.
-
(2013)
Mol Pharmaceut
, vol.10
, Issue.7
, pp. 2757-2766
-
-
Salahinejad, M.1
Le, T.C.2
Winkler, D.A.3
-
49
-
-
33746258556
-
Bayesian neural networks used to find adverse drug combinations and drug related syndromes
-
R.Orre, A.Bate, M.Lindquist. Bayesian neural networks used to find adverse drug combinations and drug related syndromes. Persp Neural Comp. 2000;215–220. doi:10.1007/978-1-4471-0513-8_32.
-
(2000)
Persp Neural Comp
, pp. 215-220
-
-
Orre, R.1
Bate, A.2
Lindquist, M.3
-
50
-
-
2942538155
-
Modelling blood-brain barrier partitioning using Bayesian neural nets
-
D.A.Winkler, F.R.Burden. Modelling blood-brain barrier partitioning using Bayesian neural nets. J Mol Graph Model. 2004;22(6):499–505. doi:10.1016/j.jmgm.2004.03.010.
-
(2004)
J Mol Graph Model
, vol.22
, Issue.6
, pp. 499-505
-
-
Winkler, D.A.1
Burden, F.R.2
-
51
-
-
29144484633
-
Predictive human intestinal absorption QSAR models using Bayesian regularized neural networks
-
M.J.Polley, F.R.Burden, D.A.Winkler. Predictive human intestinal absorption QSAR models using Bayesian regularized neural networks. Aust J Chem. 2005;58(12):859–863. doi:10.1071/CH05202.
-
(2005)
Aust J Chem
, vol.58
, Issue.12
, pp. 859-863
-
-
Polley, M.J.1
Burden, F.R.2
Winkler, D.A.3
-
52
-
-
9744267439
-
Broad-based quantitative structure-activity relationship modeling of potency and selectivity of farnesyltransferase inhibitors using a Bayesian regularized neural network
-
M.J.Polley, D.A.Winkler, F.R.Burden. Broad-based quantitative structure-activity relationship modeling of potency and selectivity of farnesyltransferase inhibitors using a Bayesian regularized neural network. J Med Chem. 2004;47(25):6230–6238. doi:10.1021/jm049621j.
-
(2004)
J Med Chem
, vol.47
, Issue.25
, pp. 6230-6238
-
-
Polley, M.J.1
Winkler, D.A.2
Burden, F.R.3
-
53
-
-
33644549129
-
2+-activated K+ channel by some triarylmethanes using topological charge indexes descriptors
-
2+-activated K+ channel by some triarylmethanes using topological charge indexes descriptors. J Comput Aid Mol Des. 2005;19(11):771–789. doi:10.1007/s10822-005-9025-z.
-
(2005)
J Comput Aid Mol Des
, vol.19
, Issue.11
, pp. 771-789
-
-
Caballero, J.1
Garriga, M.2
Fernandez, M.3
-
54
-
-
79953327578
-
Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM)
-
M.Fernandez, J.Caballero, L.Fernandez, et al. Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM). Mol Divers. 2011;15(1):269–289. doi:10.1007/s11030-010-9234-9.
-
(2011)
Mol Divers
, vol.15
, Issue.1
, pp. 269-289
-
-
Fernandez, M.1
Caballero, J.2
Fernandez, L.3
-
55
-
-
84869164498
-
Modeling biological activities of nanoparticles
-
V.C.Epa, F.R.Burden, C.Tassa, et al. Modeling biological activities of nanoparticles. Nano Lett. 2012;12(11):5808–5812. doi:10.1021/nl303144k.
-
(2012)
Nano Lett
, vol.12
, Issue.11
, pp. 5808-5812
-
-
Epa, V.C.1
Burden, F.R.2
Tassa, C.3
-
56
-
-
84885757504
-
Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential
-
D.A.Winkler, E.Mombelli, A.Pietroiusti, et al. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential. Toxicol. 2013;313(1):15–23. doi:10.1016/j.tox.2012.11.005.
-
(2013)
Toxicol
, vol.313
, Issue.1
, pp. 15-23
-
-
Winkler, D.A.1
Mombelli, E.2
Pietroiusti, A.3
-
57
-
-
84948441062
-
Robust prediction of personalized cell recognition from a cancer population by a dual targeting nanoparticle library
-
T.C.Le, B.Yan, D.A.Winkler. Robust prediction of personalized cell recognition from a cancer population by a dual targeting nanoparticle library. Adv Funct Mater. 2015;25(44):6927–6935. doi:10.1002/adfm.201502811.
-
(2015)
Adv Funct Mater
, vol.25
, Issue.44
, pp. 6927-6935
-
-
Le, T.C.1
Yan, B.2
Winkler, D.A.3
-
58
-
-
0027513960
-
Applications of neural networks in structure-activity relationships of a small number of molecules
-
I.V.Tetko, A.I.Luik, G.I.Poda. Applications of neural networks in structure-activity relationships of a small number of molecules. J Med Chem. 1993;36(7):811–814.• First use of neural network ensembles in drug discovery.
-
(1993)
J Med Chem
, vol.36
, Issue.7
, pp. 811-814
-
-
Tetko, I.V.1
Luik, A.I.2
Poda, G.I.3
-
59
-
-
0035478854
-
Random forests
-
L.Breiman. Random forests. Machine Learn. 2001;45(1):5–32. doi:10.1023/A:1010933404324.
-
(2001)
Machine Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
60
-
-
6444224986
-
Three new consensus QSAR models for the prediction of Ames genotoxicity
-
J.R.Votano, M.Parham, L.H.Hall, et al. Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis. 2004;19(5):365–377. doi:10.1093/mutage/geh043.
-
(2004)
Mutagenesis
, vol.19
, Issue.5
, pp. 365-377
-
-
Votano, J.R.1
Parham, M.2
Hall, L.H.3
-
61
-
-
84962355454
-
Exploiting multiple descriptor sets in QSAR studies
-
J.H.Tomal, W.J.Welch, R.H.Zamar. Exploiting multiple descriptor sets in QSAR studies. J Chem Inf Model. 2016;56(3):501–509. doi:10.1021/acs.jcim.5b00663.
-
(2016)
J Chem Inf Model
, vol.56
, Issue.3
, pp. 501-509
-
-
Tomal, J.H.1
Welch, W.J.2
Zamar, R.H.3
-
62
-
-
79959722205
-
A comparison of different QSAR approaches to modeling CYP450 1A2 inhibition
-
S.Novotarskyi, I.Sushko, R.Korner, et al. A comparison of different QSAR approaches to modeling CYP450 1A2 inhibition. J Chem Inf Model. 2011;51(6):1271–1280. doi:10.1021/ci200091h.
-
(2011)
J Chem Inf Model
, vol.51
, Issue.6
, pp. 1271-1280
-
-
Novotarskyi, S.1
Sushko, I.2
Korner, R.3
-
63
-
-
84944212427
-
QSAR models and scaffold-based analysis of non-nucleoside HIV RT inhibitors
-
B.Nizami, I.V.Tetko, N.A.Koorbanally, et al. QSAR models and scaffold-based analysis of non-nucleoside HIV RT inhibitors. Chemometrics Intell Lab Syst. 2015;148:134–144. doi:10.1016/j.chemolab.2015.09.011.
-
(2015)
Chemometrics Intell Lab Syst
, vol.148
, pp. 134-144
-
-
Nizami, B.1
Tetko, I.V.2
Koorbanally, N.A.3
-
64
-
-
84977138622
-
CERAPP: collaborative estrogen receptor activity prediction project
-
K.Mansouri, A.Abdelaziz, A.Rybacka, et al. CERAPP: collaborative estrogen receptor activity prediction project. Environ Health Perspect. 2016. doi:10.1289/ehp.1510267.
-
(2016)
Environ Health Perspect
-
-
Mansouri, K.1
Abdelaziz, A.2
Rybacka, A.3
-
65
-
-
54249125512
-
Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection
-
I.V.Tetko, I.Sushko, A.K.Pandey, et al. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. J Chem Inf Model. 2008;48(9):1733–1746. doi:10.1021/ci800151m.
-
(2008)
J Chem Inf Model
, vol.48
, Issue.9
, pp. 1733-1746
-
-
Tetko, I.V.1
Sushko, I.2
Pandey, A.K.3
-
66
-
-
77951080733
-
Applicability domain for in silico models to achieve accuracy of experimental measurements
-
I.Sushko, S.Novotarskyi, R.Körner, et al. Applicability domain for in silico models to achieve accuracy of experimental measurements. J Chemom. 2010;24(3–4):202–208. doi:10.1002/cem.1296.
-
(2010)
J Chemom
, vol.24
, Issue.3-4
, pp. 202-208
-
-
Sushko, I.1
Novotarskyi, S.2
Körner, R.3
-
67
-
-
0032894478
-
Corticofugal modulation of functional connectivity within the auditory thalamus of rat, guinea pig and cat revealed by cooling deactivation
-
A.E.Villa, I.V.Tetko, P.Dutoit, et al. Corticofugal modulation of functional connectivity within the auditory thalamus of rat, guinea pig and cat revealed by cooling deactivation. J Neurosci Methods. 1999;86(2):161–178.
-
(1999)
J Neurosci Methods
, vol.86
, Issue.2
, pp. 161-178
-
-
Villa, A.E.1
Tetko, I.V.2
Dutoit, P.3
-
68
-
-
0036757804
-
Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program
-
I.V.Tetko, V.Y.Tanchuk. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J Chem Inf Comput Sci. 2002;42(5):1136–1145.
-
(2002)
J Chem Inf Comput Sci
, vol.42
, Issue.5
, pp. 1136-1145
-
-
Tetko, I.V.1
Tanchuk, V.Y.2
-
69
-
-
44649190610
-
Calculation of lipophilicity for Pt(II) complexes: experimental comparison of several methods
-
I.V.Tetko, I.Jaroszewicz, J.A.Platts, et al. Calculation of lipophilicity for Pt(II) complexes: experimental comparison of several methods. J Inorg Biochem. 2008;102(7):1424–1437. doi:10.1016/j.jinorgbio.2007.12.029.
-
(2008)
J Inorg Biochem
, vol.102
, Issue.7
, pp. 1424-1437
-
-
Tetko, I.V.1
Jaroszewicz, I.2
Platts, J.A.3
-
70
-
-
7444258512
-
Application of ALOGPS 2.1 to predict log D distribution coefficient for Pfizer proprietary compounds
-
I.V.Tetko, G.I.Poda. Application of ALOGPS 2.1 to predict log D distribution coefficient for Pfizer proprietary compounds. J Med Chem. 2004;47(23):5601–5604. doi:10.1021/jm049509l.
-
(2004)
J Med Chem
, vol.47
, Issue.23
, pp. 5601-5604
-
-
Tetko, I.V.1
Poda, G.I.2
-
71
-
-
72449148696
-
Large-scale evaluation of log P predictors: local corrections may compensate insufficient accuracy and need of experimentally testing every other compound
-
I.V.Tetko, G.I.Poda, C.Ostermann, et al. Large-scale evaluation of log P predictors: local corrections may compensate insufficient accuracy and need of experimentally testing every other compound. Chem Biodivers. 2009;6(11):1837–1844. doi:10.1002/cbdv.200900075.
-
(2009)
Chem Biodivers
, vol.6
, Issue.11
, pp. 1837-1844
-
-
Tetko, I.V.1
Poda, G.I.2
Ostermann, C.3
-
72
-
-
84919628756
-
How accurately can we predict the melting points of drug-like compounds?
-
I.V.Tetko, Y.Sushko, S.Novotarskyi, et al. How accurately can we predict the melting points of drug-like compounds? J Chem Inf Model. 2014;54(12):3320–3329. doi:10.1021/ci5005288.
-
(2014)
J Chem Inf Model
, vol.54
, Issue.12
, pp. 3320-3329
-
-
Tetko, I.V.1
Sushko, Y.2
Novotarskyi, S.3
-
73
-
-
84954494338
-
Prediction of logP for Pt(II) and Pt(IV) complexes: Comparison of statistical and quantum-chemistry based approaches
-
I.V.Tetko, H.P.Varbanov, M.Galanski, et al. Prediction of logP for Pt(II) and Pt(IV) complexes: Comparison of statistical and quantum-chemistry based approaches. J Inorg Biochem. 2016;156:1–13. doi:10.1016/j.jinorgbio.2015.12.006.
-
(2016)
J Inorg Biochem
, vol.156
, pp. 1-13
-
-
Tetko, I.V.1
Varbanov, H.P.2
Galanski, M.3
-
74
-
-
84969816544
-
ToxCast EPA in vitro to in vivo challenge: insight into the Rank-i model
-
S.Novotarskyi, A.Abdelaziz, Y.Sushko, et al. ToxCast EPA in vitro to in vivo challenge: insight into the Rank-i model. Chem Res Toxicol. 2016;29(5):768–775. doi:10.1021/acs.chemrestox.5b00481.
-
(2016)
Chem Res Toxicol
, vol.29
, Issue.5
, pp. 768-775
-
-
Novotarskyi, S.1
Abdelaziz, A.2
Sushko, Y.3
-
75
-
-
85063821675
-
Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge
-
A.Abdelaziz, H.Spahn-Langguth, K.Werner-Schramm, et al. Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge. Frontiers Environ Sci. 2016;4(2). doi:10.3389/fenvs.2016.00002.
-
(2016)
Frontiers Environ Sci
, vol.4
, Issue.2
-
-
Abdelaziz, A.1
Spahn-Langguth, H.2
Werner-Schramm, K.3
-
76
-
-
1542424391
-
The use of self-organizing neural networks in drug design
-
S.Anzali, J.Gasteiger, U.Holzgrabe, et al. The use of self-organizing neural networks in drug design. Perspect Drug Discov Des. 1998;9:273–299. doi:10.1023/A:1027276425268.
-
(1998)
Perspect Drug Discov Des
, vol.9
, pp. 273-299
-
-
Anzali, S.1
Gasteiger, J.2
Holzgrabe, U.3
-
77
-
-
0036522888
-
The comparative molecular surface analysis (COMSA) – a nongrid 3D QSAR method by a coupled neural network and PLS system: predicting pKa values of benzoic and alkanoic acids
-
J.Polanski, R.Gieleciak, A.Bak. The comparative molecular surface analysis (COMSA) – a nongrid 3D QSAR method by a coupled neural network and PLS system: predicting pKa values of benzoic and alkanoic acids. J Chem Inf Comput Sci. 2002;42(2):184–191.
-
(2002)
J Chem Inf Comput Sci
, vol.42
, Issue.2
, pp. 184-191
-
-
Polanski, J.1
Gieleciak, R.2
Bak, A.3
-
78
-
-
0035913053
-
Volume learning algorithm artificial neural networks for 3D QSAR studies
-
I.V.Tetko, V.V.Kovalishyn, D.J.Livingstone. Volume learning algorithm artificial neural networks for 3D QSAR studies. J Med Chem. 2001;44(15):2411–2420.
-
(2001)
J Med Chem
, vol.44
, Issue.15
, pp. 2411-2420
-
-
Tetko, I.V.1
Kovalishyn, V.V.2
Livingstone, D.J.3
-
79
-
-
84953897016
-
Classification of mixtures of Chinese herbal medicines based on a Self-Organizing Map (SOM)
-
M.Wang, L.Li, C.Yu, et al. Classification of mixtures of Chinese herbal medicines based on a Self-Organizing Map (SOM). Mol Inform. 2016. doi:10.1002/minf.201500115.
-
(2016)
Mol Inform
-
-
Wang, M.1
Li, L.2
Yu, C.3
-
80
-
-
84960539870
-
Hybrid network model for “deep learning” of chemical data: application to antimicrobial peptides
-
P.Schneider, A.T.Mueller, G.Gabernet, et al. Hybrid network model for “deep learning” of chemical data: application to antimicrobial peptides. Mol Inform. 2016. doi:10.1002/minf.201600011.
-
(2016)
Mol Inform
-
-
Schneider, P.1
Mueller, A.T.2
Gabernet, G.3
-
81
-
-
84921689992
-
Chemical data visualization and analysis with incremental generative topographic mapping: big data challenge
-
H.A.Gaspar, I.I.Baskin, G.Marcou, et al. Chemical data visualization and analysis with incremental generative topographic mapping: big data challenge. J Chem Inf Model. 2015;55(1):84–94. doi:10.1021/ci500575y.
-
(2015)
J Chem Inf Model
, vol.55
, Issue.1
, pp. 84-94
-
-
Gaspar, H.A.1
Baskin, I.I.2
Marcou, G.3
-
82
-
-
84933512956
-
GTM-based QSAR models and their applicability domains
-
H.A.Gaspar, I.I.Baskin, G.Marcou, et al. GTM-based QSAR models and their applicability domains. Mol Inform. 2015;34(6–7):348–356. doi:10.1002/minf.201400153.
-
(2015)
Mol Inform
, vol.34
, Issue.6-7
, pp. 348-356
-
-
Gaspar, H.A.1
Baskin, I.I.2
Marcou, G.3
-
83
-
-
84896519769
-
Generative topographic mapping-based classification models and their applicability domain: application to the Biopharmaceutics Drug Disposition Classification System (BDDCS)
-
H.A.Gaspar, G.Marcou, D.Horvath, et al. Generative topographic mapping-based classification models and their applicability domain: application to the Biopharmaceutics Drug Disposition Classification System (BDDCS). J Chem Inf Model. 2013;53(12):3318–3325. doi:10.1021/ci400423c.
-
(2013)
J Chem Inf Model
, vol.53
, Issue.12
, pp. 3318-3325
-
-
Gaspar, H.A.1
Marcou, G.2
Horvath, D.3
-
84
-
-
84947930825
-
Stargate GTM: bridging descriptor and activity spaces
-
H.A.Gaspar, I.I.Baskin, G.Marcou, et al. Stargate GTM: bridging descriptor and activity spaces. J Chem Inf Model. 2015;55(11):2403–2410. doi:10.1021/acs.jcim.5b00398.
-
(2015)
J Chem Inf Model
, vol.55
, Issue.11
, pp. 2403-2410
-
-
Gaspar, H.A.1
Baskin, I.I.2
Marcou, G.3
-
85
-
-
0001022357
-
A neural device for searching direct correlations between structures and properties of chemical compounds
-
I.I.Baskin, V.A.Palyulin, N.S.Zefirov. A neural device for searching direct correlations between structures and properties of chemical compounds. J Chem Inf Comput Sci. 1997;37(4):715–721. doi:10.1021/ci940128y.• First neural network with discrete convolutional architecture for searching direct correlations between structures and properties of chemical compounds.
-
(1997)
J Chem Inf Comput Sci
, vol.37
, Issue.4
, pp. 715-721
-
-
Baskin, I.I.1
Palyulin, V.A.2
Zefirov, N.S.3
-
86
-
-
0035221306
-
Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-activity relationship studies of benzodiazepines
-
A.Micheli, A.Sperduti, A.Starita, et al. Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-activity relationship studies of benzodiazepines. J Chem Inf Comput Sci. 2001;41(1):202–218.
-
(2001)
J Chem Inf Comput Sci
, vol.41
, Issue.1
, pp. 202-218
-
-
Micheli, A.1
Sperduti, A.2
Starita, A.3
-
87
-
-
33847047522
-
Predicting activities without computing descriptors: graph machines for QSAR
-
A.Goulon, T.Picot, A.Duprat, et al. Predicting activities without computing descriptors: graph machines for QSAR. SAR QSAR Environ Res. 2007;18(1–2):141–153. doi:10.1080/10629360601054313.
-
(2007)
SAR QSAR Environ Res
, vol.18
, Issue.1-2
, pp. 141-153
-
-
Goulon, A.1
Picot, T.2
Duprat, A.3
-
88
-
-
84876898784
-
Computational modeling and prediction of the complex time-dependent phase behavior of lyotropic liquid crystals under in meso crystallization conditions
-
T.C.Le, C.E.Conn, B.Fr, et al. Computational modeling and prediction of the complex time-dependent phase behavior of lyotropic liquid crystals under in meso crystallization conditions. Cryst Growth Des. 2013;13(3):1267–1276. doi:10.1021/cg301730z.
-
(2013)
Cryst Growth Des
, vol.13
, Issue.3
, pp. 1267-1276
-
-
Le, T.C.1
Conn, C.E.2
Fr, B.3
-
89
-
-
32944456867
-
A Bayesian recurrent neural network for unsupervised pattern recognition in large incomplete data sets
-
R.Orre, A.Bate, G.N.Noren, et al. A Bayesian recurrent neural network for unsupervised pattern recognition in large incomplete data sets. Int J Neural Syst. 2005;15(3):207–222. doi:10.1142/S0129065705000219.
-
(2005)
Int J Neural Syst
, vol.15
, Issue.3
, pp. 207-222
-
-
Orre, R.1
Bate, A.2
Noren, G.N.3
-
90
-
-
23044533713
-
Application of a recurrent neural network to prediction of drug dissolution profiles
-
W.Y.Goh, C.P.Lim, K.K.Peh, et al. Application of a recurrent neural network to prediction of drug dissolution profiles. Neural Comput Appl. 2002;10(4):311–317. doi:10.1007/s005210200003.
-
(2002)
Neural Comput Appl
, vol.10
, Issue.4
, pp. 311-317
-
-
Goh, W.Y.1
Lim, C.P.2
Peh, K.K.3
-
91
-
-
38149129421
-
Predicting human immunodeficiency virus (HIV) drug resistance using recurrent neural networks
-
Mira J., Alvarez J.R., (eds), Berlin: Springer
-
I.Bonet, M.M.Garcia, Y.Saeys, et al. Predicting human immunodeficiency virus (HIV) drug resistance using recurrent neural networks. In: J.Mira, J.R.Alvarez, editors. Bio-inspired modeling of cognitive tasks, pt 1, proceedings. 2007. Berlin: Springer. p. 234–243.
-
(2007)
Bio-inspired modeling of cognitive tasks, pt 1, proceedings
, pp. 234-243
-
-
Bonet, I.1
Garcia, M.M.2
Saeys, Y.3
-
92
-
-
84879854889
-
Representation learning: a review and new perspectives
-
Y.Bengio, A.Courville, P.Vincent. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1798–1828. doi:10.1109/TPAMI.2013.50.• Important review on representation learning.
-
(2013)
IEEE Trans Pattern Anal Mach Intell
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
94
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y.LeCun, L.Bottou, Y.Bengio, et al. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–2324. doi:10.1109/5.726791.
-
(1998)
Proc IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
-
95
-
-
77956031473
-
A survey on transfer learning
-
S.J.Pan, Q.Yang. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–1359. doi:10.1109/TKDE.2009.191.
-
(2010)
IEEE Trans Knowl Data Eng
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
97
-
-
79954511288
-
Chemoinformatics as a theoretical chemistry discipline
-
A.Varnek, I.I.Baskin. Chemoinformatics as a theoretical chemistry discipline. Mol Inform. 2011;30(1):20–32. doi:10.1002/minf.v30.1.• An important review on the use of machine learning in structure–activity modeling
-
(2011)
Mol Inform
, vol.30
, Issue.1
, pp. 20-32
-
-
Varnek, A.1
Baskin, I.I.2
-
98
-
-
84862848391
-
Machine learning methods for property prediction in chemoinformatics: quo vadis?
-
A.Varnek, I.Baskin. Machine learning methods for property prediction in chemoinformatics: quo vadis? J Chem Inf Model. 2012;52(6):1413–1437. doi:10.1021/ci200409x.
-
(2012)
J Chem Inf Model
, vol.52
, Issue.6
, pp. 1413-1437
-
-
Varnek, A.1
Baskin, I.2
-
99
-
-
84899881824
-
QSAR modeling: where have you been? Where are you going to?
-
A.Cherkasov, E.N.Muratov, D.Fourches, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2015;57(12):4977–5010. doi:10.1021/jm4004285.•• Comprehensive review on QSAR modeling
-
(2015)
J Med Chem
, vol.57
, Issue.12
, pp. 4977-5010
-
-
Cherkasov, A.1
Muratov, E.N.2
Fourches, D.3
-
100
-
-
84880542260
-
Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules
-
A.Lusci, G.Pollastri, P.Baldi Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2013;53(7):1563–1575.
-
(2013)
J Chem Inf Model
, vol.53
, Issue.7
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
102
-
-
84954372459
-
Deep learning in drug discovery
-
E.Gawehn, J.A.Hiss, G.Schneider. Deep learning in drug discovery. Mol Inf. 2016;35(1):3–14. doi:10.1002/minf.v35.1.
-
(2016)
Mol Inf
, vol.35
, Issue.1
, pp. 3-14
-
-
Gawehn, E.1
Hiss, J.A.2
Schneider, G.3
-
103
-
-
84903700854
-
Scientists see promise in deep-learning programs
-
Nov
-
J.Markoff Scientists see promise in deep-learning programs. The New York Times. 2012 Nov 23.
-
(2012)
The New York Times
-
-
Markoff, J.1
-
107
-
-
84919928142
-
Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process
-
Y.Sushko, S.Novotarskyi, R.Korner, et al. Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process. J Cheminform. 2014;6(1):48. doi:10.1186/1758-2946-6-6.
-
(2014)
J Cheminform
, vol.6
, Issue.1
, pp. 48
-
-
Sushko, Y.1
Novotarskyi, S.2
Korner, R.3
-
108
-
-
84978913253
-
BIGCHEM: challenges and opportunities for Big Data analysis in chemistry
-
I.V.Tetko, O.Engkvist, U.Koch, et al. BIGCHEM: challenges and opportunities for Big Data analysis in chemistry. Mol Inf. 2016.•• An important review on Big Data in chemistry.
-
(2016)
Mol Inf
-
-
Tetko, I.V.1
Engkvist, O.2
Koch, U.3
-
109
-
-
84906303709
-
Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde?
-
M.Cruz-Monteagudo, J.Medina-Franco, Y.Pérez-Castillo, et al. Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde? Drug Discov Today. 2014;19(8):1069–1080. doi:10.1016/j.drudis.2014.02.003.
-
(2014)
Drug Discov Today
, vol.19
, Issue.8
, pp. 1069-1080
-
-
Cruz-Monteagudo, M.1
Medina-Franco, J.2
Pérez-Castillo, Y.3
-
110
-
-
84898814974
-
Impact of distance-based metric learning on classification and visualization model performance and structure-activity landscapes
-
N.V.Kireeva, S.I.Ovchinnikova, S.L.Kuznetsov, et al. Impact of distance-based metric learning on classification and visualization model performance and structure-activity landscapes. J Comput Aid Mol Des. 2014;28(2):61–73. doi:10.1007/s10822-014-9719-1.
-
(2014)
J Comput Aid Mol Des
, vol.28
, Issue.2
, pp. 61-73
-
-
Kireeva, N.V.1
Ovchinnikova, S.I.2
Kuznetsov, S.L.3
|