메뉴 건너뛰기




Volumn 11, Issue 8, 2016, Pages 785-795

A renaissance of neural networks in drug discovery

Author keywords

Deep learning; neural network ensembles; neural networks; overfitting; structure activity relationships

Indexed keywords

1,4 DIHYDROPYRIDINE DERIVATIVE; CALCIUM CHANNEL BLOCKING AGENT; CLOTRIMAZOLE; ENDOCRINE DISRUPTOR; INHALATION ANESTHETIC AGENT; NONNUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITOR; PROTEIN FARNESYLTRANSFERASE INHIBITOR; DRUG;

EID: 84978792062     PISSN: 17460441     EISSN: 1746045X     Source Type: Journal    
DOI: 10.1080/17460441.2016.1201262     Document Type: Review
Times cited : (201)

References (110)
  • 1
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • W.S.McCulloch, W.Pitts A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5:115–133. doi:10.1007/BF02478259.
    • (1943) Bull Math Biophys , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 2
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • F.Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386–408.
    • (1958) Psychol Rev , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 3
    • 0022471098 scopus 로고
    • Learning internal representations by back-propagating errors
    • D.E.Rumelhart, G.E.Hinton, R.J.Williams. Learning internal representations by back-propagating errors. Nature. 1986;33:533–536. doi:10.1038/323533a0.•• The main reference for backpropagation neural networks.
    • (1986) Nature , vol.33 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 4
    • 0019152630 scopus 로고
    • Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K.Fukushima. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybernetics. 1980;36:193–202. doi:10.1007/BF00344251.
    • (1980) Biol Cybernetics , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 5
    • 0003410791 scopus 로고    scopus 로고
    • Berlin: Springer
    • T.Kohonen. Self-organizing maps. Berlin: Springer; 2001.•• The main reference on self-organizing maps.
    • (2001) Self-organizing maps
    • Kohonen, T.1
  • 6
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • J.J.Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A. 1982;79(8):2554–2558.
    • (1982) Proc Natl Acad Sci U S A , vol.79 , Issue.8 , pp. 2554-2558
    • Hopfield, J.J.1
  • 7
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G.E.Hinton, R.R.Salakhutdinov. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–507. doi:10.1126/science.1127647.•• First publication on deep learning.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 8
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y.Bengio. Learning deep architectures for AI. Foundations Trends Machine Learning. 2009;2(1):1–127. doi:10.1561/2200000006.
    • (2009) Foundations Trends Machine Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 9
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y.LeCun, Y.Bengio, G.Hinton. Deep learning. Nature. 2015;521(7553):436–444. doi:10.1038/nature14539.•• Important recent review on deep learning.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 10
    • 0015692850 scopus 로고
    • Cybernetic methods of drug design. I. Statement of the problem – the perceptron approach
    • S.A.Hiller, V.E.Golender, A.B.Rosenblit, et al. Cybernetic methods of drug design. I. Statement of the problem – the perceptron approach. Comput Biomed Res. 1973;6(5):411–421.• First publication on the use of neural networks in drug discovery.
    • (1973) Comput Biomed Res , vol.6 , Issue.5 , pp. 411-421
    • Hiller, S.A.1    Golender, V.E.2    Rosenblit, A.B.3
  • 11
    • 0025219602 scopus 로고
    • Neural networks applied to structure-activity relationships
    • T.Aoyama, Y.Suzuki, H.Ichikawa. Neural networks applied to structure-activity relationships. J Med Chem. 1990;33(3):905–908.
    • (1990) J Med Chem , vol.33 , Issue.3 , pp. 905-908
    • Aoyama, T.1    Suzuki, Y.2    Ichikawa, H.3
  • 12
    • 0036368719 scopus 로고    scopus 로고
    • Application of neural networks to large dataset QSAR, virtual screening, and library design
    • D.A.Winkler, F.R.Burden. Application of neural networks to large dataset QSAR, virtual screening, and library design. Methods Mol Biol. 2002;201:325–367. doi:10.1385/1-59259-285-6:325.
    • (2002) Methods Mol Biol , vol.201 , pp. 325-367
    • Winkler, D.A.1    Burden, F.R.2
  • 13
    • 33748373826 scopus 로고    scopus 로고
    • Neural networks as a method for elucidating structure-property relationships for organic compounds
    • N.M.Halberstam, I.I.Baskin, V.A.Palyulin, et al. Neural networks as a method for elucidating structure-property relationships for organic compounds. Russian Chem Rev. 2003;72(7):629–649. doi:10.1070/RC2003v072n07ABEH000754.
    • (2003) Russian Chem Rev , vol.72 , Issue.7 , pp. 629-649
    • Halberstam, N.M.1    Baskin, I.I.2    Palyulin, V.A.3
  • 14
    • 58149386885 scopus 로고    scopus 로고
    • Neural networks in building QSAR models
    • I.I.Baskin, V.A.Palyulin, N.S.Zefirov. Neural networks in building QSAR models. Methods Mol Biol (Clifton, NJ). 2008;458:137–158.• Review concerning the use of neural network in QSAR modeling.
    • (2008) Methods Mol Biol (Clifton, NJ) , vol.458 , pp. 137-158
    • Baskin, I.I.1    Palyulin, V.A.2    Zefirov, N.S.3
  • 16
    • 84917690958 scopus 로고    scopus 로고
    • Use of artificial neural networks in the QSAR prediction of physicochemical properties and toxicities for REACH legislation
    • J.C.Dearden, P.H.Rowe. Use of artificial neural networks in the QSAR prediction of physicochemical properties and toxicities for REACH legislation. Methods Mol Biol (Clifton, NJ). 2015;1260:65–88.
    • (2015) Methods Mol Biol (Clifton, NJ) , vol.1260 , pp. 65-88
    • Dearden, J.C.1    Rowe, P.H.2
  • 18
    • 0037287399 scopus 로고    scopus 로고
    • Artificial neural network and fragmental approach in prediction of physicochemical properties of organic compounds
    • N.V.Artemenko, I.I.Baskin, V.A.Palyulin, et al. Artificial neural network and fragmental approach in prediction of physicochemical properties of organic compounds. Russian Chem Bull. 2003;52(1):20–29. doi:10.1023/A:1022467508832.
    • (2003) Russian Chem Bull , vol.52 , Issue.1 , pp. 20-29
    • Artemenko, N.V.1    Baskin, I.I.2    Palyulin, V.A.3
  • 20
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: the RPROP algorithm
    • M.Riedmiller, H.Braun. A direct adaptive method for faster backpropagation learning: the RPROP algorithm. Proc IEEE Int Conf Neural Networks. 1993;586–591.
    • (1993) Proc IEEE Int Conf Neural Networks , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 21
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • M.T.Hagan, M.Menhaj. Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Networks. 1994;5(6):989–993. doi:10.1109/72.329697.
    • (1994) IEEE Trans Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 22
    • 0001447184 scopus 로고
    • Neural network studies. 1. Comparison of overfitting and overtraining
    • I.V.Tetko, D.J.Livingstone, A.I.Luik. Neural network studies. 1. Comparison of overfitting and overtraining. J Chem Inf Comput Sci. 1995;35(5):826–833.•• Method to avoid overfitting of neural networks, notwithstanding of their complexity, by early stopping.
    • (1995) J Chem Inf Comput Sci , vol.35 , Issue.5 , pp. 826-833
    • Tetko, I.V.1    Livingstone, D.J.2    Luik, A.I.3
  • 23
    • 24944527668 scopus 로고    scopus 로고
    • Rank, trace-norm and max-norm
    • Berlin: Springer
    • N.Srebro, A.Shraibman. Rank, trace-norm and max-norm. In: Learning theory. Berlin: Springer; 2005. p. 545–560.
    • (2005) Learning theory , pp. 545-560
    • Srebro, N.1    Shraibman, A.2
  • 24
    • 58149381237 scopus 로고    scopus 로고
    • Bayesian regularization of neural networks
    • F.Burden, D.Winkler. Bayesian regularization of neural networks. Methods Mol Biol. 2008;458:25–44.
    • (2008) Methods Mol Biol , vol.458 , pp. 25-44
    • Burden, F.1    Winkler, D.2
  • 25
    • 0033549850 scopus 로고    scopus 로고
    • Robust QSAR models using Bayesian regularized neural networks
    • F.R.Burden, D.A.Winkler. Robust QSAR models using Bayesian regularized neural networks. J Med Chem. 1999;42(16):3183–3187. doi:10.1021/jm980697n.•• First application of Bayesian regularized neural networks in QSAR modeling.
    • (1999) J Med Chem , vol.42 , Issue.16 , pp. 3183-3187
    • Burden, F.R.1    Winkler, D.A.2
  • 26
    • 76749109588 scopus 로고    scopus 로고
    • An optimal self-pruning neural network and nonlinear descriptor selection in QSAR
    • F.R.Burden, D.A.Winkler. An optimal self-pruning neural network and nonlinear descriptor selection in QSAR. QSAR Comb Sci. 2009;28(10):1092–1097. doi:10.1002/qsar.v28:10.
    • (2009) QSAR Comb Sci , vol.28 , Issue.10 , pp. 1092-1097
    • Burden, F.R.1    Winkler, D.A.2
  • 27
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: a simple way to prevent neural networks from overfitting
    • N.Srivastava, G.Hinton, A.Krizhevsky, et al. Dropout: a simple way to prevent neural networks from overfitting. J Machine Learn Res. 2014;15(1):1929–1958.• Important method to avoid overfitting used in deep-learning neural network.
    • (2014) J Machine Learn Res , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.2    Krizhevsky, A.3
  • 28
    • 61949280507 scopus 로고    scopus 로고
    • Inductive transfer of knowledge: application of multi-task learning and feature net approaches to model tissue-air partition coefficients
    • A.Varnek, C.Gaudin, G.Marcou, et al. Inductive transfer of knowledge: application of multi-task learning and feature net approaches to model tissue-air partition coefficients. J Chem Inf Model. 2009;49(1):133–144. doi:10.1021/ci8002914.
    • (2009) J Chem Inf Model , vol.49 , Issue.1 , pp. 133-144
    • Varnek, A.1    Gaudin, C.2    Marcou, G.3
  • 29
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R.Caruana. Multitask learning. Mach Learn. 1997;28(1):41–75. doi:10.1023/A:1007379606734.
    • (1997) Mach Learn , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 30
    • 0035226195 scopus 로고    scopus 로고
    • The learned symmetry concept in revealing quantitative structure-activity relationships with artificial neural networks
    • I.I.Baskin, N.M.Halberstam, T.V.Mukhina, et al. The learned symmetry concept in revealing quantitative structure-activity relationships with artificial neural networks. SAR QSAR Environ Res. 2001;12(4):401–416. doi:10.1080/10629360108033247.
    • (2001) SAR QSAR Environ Res , vol.12 , Issue.4 , pp. 401-416
    • Baskin, I.I.1    Halberstam, N.M.2    Mukhina, T.V.3
  • 32
    • 0036490199 scopus 로고    scopus 로고
    • An approach to the interpretation of backpropagation neural network models in QSAR studies
    • I.I.Baskin, A.O.Ait, N.M.Halberstam, et al. An approach to the interpretation of backpropagation neural network models in QSAR studies. SAR QSAR Environ Res. 2002;13(1):35–41. doi:10.1080/10629360290002073.
    • (2002) SAR QSAR Environ Res , vol.13 , Issue.1 , pp. 35-41
    • Baskin, I.I.1    Ait, A.O.2    Halberstam, N.M.3
  • 33
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: a review – part 2: neural network based approaches
    • M.Markou, S.Singh. Novelty detection: a review – part 2: neural network based approaches. Signal Process. 2003;83(12):2499–2521. doi:10.1016/j.sigpro.2003.07.019.
    • (2003) Signal Process , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 34
    • 80054751602 scopus 로고    scopus 로고
    • One-class classification as a novel method of ligand-based virtual screening: the case of glycogen synthase kinase 3ОІ inhibitors
    • P.V.Karpov, D.I.Osolodkin, I.I.Baskin, et al. One-class classification as a novel method of ligand-based virtual screening: the case of glycogen synthase kinase 3ОІ inhibitors. Bioorg Med Chem Lett. 2011;21(22):6728–6731. doi:10.1016/j.bmcl.2011.09.051.
    • (2011) Bioorg Med Chem Lett , vol.21 , Issue.22 , pp. 6728-6731
    • Karpov, P.V.1    Osolodkin, D.I.2    Baskin, I.I.3
  • 36
    • 0001245212 scopus 로고    scopus 로고
    • Use of automatic relevance determination in QSAR studies using Bayesian neural networks
    • F.R.Burden, M.G.Ford, D.C.Whitley, et al. Use of automatic relevance determination in QSAR studies using Bayesian neural networks. J Chem Inf Comput Sci. 2000;40(6):1423–1430.
    • (2000) J Chem Inf Comput Sci , vol.40 , Issue.6 , pp. 1423-1430
    • Burden, F.R.1    Ford, M.G.2    Whitley, D.C.3
  • 37
    • 67949124727 scopus 로고    scopus 로고
    • Optimal sparse descriptor selection for QSAR using Bayesian methods
    • F.R.Burden, D.A.Winkler. Optimal sparse descriptor selection for QSAR using Bayesian methods. QSAR Comb Sci. 2009;28(6–7):645–653. doi:10.1002/qsar.v28:6/7.• First description of the use of feature selection using sparse Bayesian priors.
    • (2009) QSAR Comb Sci , vol.28 , Issue.6-7 , pp. 645-653
    • Burden, F.R.1    Winkler, D.A.2
  • 38
    • 12444281776 scopus 로고    scopus 로고
    • Bayesian neural nets for modeling in drug discovery
    • D.A.Winkler, F.R.Burden. Bayesian neural nets for modeling in drug discovery. Drug Discovery Today BIOSILICO. 2004;2(3):104–111. doi:10.1016/S1741-8364(04)02393-5.
    • (2004) Drug Discovery Today BIOSILICO , vol.2 , Issue.3 , pp. 104-111
    • Winkler, D.A.1    Burden, F.R.2
  • 39
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • D.J.C.Mackay. A practical Bayesian framework for backpropagation networks. Neural Comput. 1992;4(3):448–472. doi:10.1162/neco.1992.4.3.448.
    • (1992) Neural Comput , vol.4 , Issue.3 , pp. 448-472
    • Mackay, D.J.C.1
  • 41
    • 0141836275 scopus 로고    scopus 로고
    • Adaptive sparseness for supervised learning
    • M.A.T.Figueiredo. Adaptive sparseness for supervised learning. IEEE Trans Pattern Anal. 2003;25(9):1150–1159. doi:10.1109/TPAMI.2003.1227989.• Describes the mathematics involved in Bayesian regularization for regression.
    • (2003) IEEE Trans Pattern Anal , vol.25 , Issue.9 , pp. 1150-1159
    • Figueiredo, M.A.T.1
  • 42
    • 0035526164 scopus 로고    scopus 로고
    • Search for predictive generic model of aqueous solubility using Bayesian neural nets
    • P.Bruneau. Search for predictive generic model of aqueous solubility using Bayesian neural nets. J Chem Inf Comput Sci. 2001;41(6):1605–1616.
    • (2001) J Chem Inf Comput Sci , vol.41 , Issue.6 , pp. 1605-1616
    • Bruneau, P.1
  • 43
    • 33745383499 scopus 로고    scopus 로고
    • logD(7.4) modeling using Bayesian regularized neural networks. Assessment and correction of the errors of prediction
    • P.Bruneau, N.R.McElroy. logD(7.4) modeling using Bayesian regularized neural networks. Assessment and correction of the errors of prediction. J Chem Inf Model. 2006;46(3):1379–1387. doi:10.1021/ci0504014.
    • (2006) J Chem Inf Model , vol.46 , Issue.3 , pp. 1379-1387
    • Bruneau, P.1    McElroy, N.R.2
  • 44
    • 0034094124 scopus 로고    scopus 로고
    • A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks
    • F.R.Burden, D.A.Winkler. A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks. Chem Res Toxicol. 2000;13(6):436–440.
    • (2000) Chem Res Toxicol , vol.13 , Issue.6 , pp. 436-440
    • Burden, F.R.1    Winkler, D.A.2
  • 45
    • 20444386168 scopus 로고    scopus 로고
    • Predictive Bayesian neural network models of MHC class II peptide binding
    • F.R.Burden, D.A.Winkler. Predictive Bayesian neural network models of MHC class II peptide binding. J Mol Graph Model. 2005;23(6):481–489. doi:10.1016/j.jmgm.2005.03.001.
    • (2005) J Mol Graph Model , vol.23 , Issue.6 , pp. 481-489
    • Burden, F.R.1    Winkler, D.A.2
  • 46
    • 77955107970 scopus 로고    scopus 로고
    • Modelling inhalational anaesthetics using Bayesian feature selection and QSAR modelling methods
    • D.T.Manallack, F.R.Burden, D.A.Winkler. Modelling inhalational anaesthetics using Bayesian feature selection and QSAR modelling methods. ChemMedChem. 2010;5(8):1318–1323. doi:10.1002/cmdc.201000056.
    • (2010) ChemMedChem , vol.5 , Issue.8 , pp. 1318-1323
    • Manallack, D.T.1    Burden, F.R.2    Winkler, D.A.3
  • 47
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • J.Ma, R.P.Sheridan, A.Liaw, et al. Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model. 2015;55(2):263–274. doi:10.1021/ci500747n.
    • (2015) J Chem Inf Model , vol.55 , Issue.2 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3
  • 48
    • 84879698395 scopus 로고    scopus 로고
    • Aqueous solubility prediction: do crystal lattice interactions help?
    • M.Salahinejad, T.C.Le, D.A.Winkler. Aqueous solubility prediction: do crystal lattice interactions help? Mol Pharmaceut. 2013;10(7):2757–2766. doi:10.1021/mp4001958.
    • (2013) Mol Pharmaceut , vol.10 , Issue.7 , pp. 2757-2766
    • Salahinejad, M.1    Le, T.C.2    Winkler, D.A.3
  • 49
    • 33746258556 scopus 로고    scopus 로고
    • Bayesian neural networks used to find adverse drug combinations and drug related syndromes
    • R.Orre, A.Bate, M.Lindquist. Bayesian neural networks used to find adverse drug combinations and drug related syndromes. Persp Neural Comp. 2000;215–220. doi:10.1007/978-1-4471-0513-8_32.
    • (2000) Persp Neural Comp , pp. 215-220
    • Orre, R.1    Bate, A.2    Lindquist, M.3
  • 50
    • 2942538155 scopus 로고    scopus 로고
    • Modelling blood-brain barrier partitioning using Bayesian neural nets
    • D.A.Winkler, F.R.Burden. Modelling blood-brain barrier partitioning using Bayesian neural nets. J Mol Graph Model. 2004;22(6):499–505. doi:10.1016/j.jmgm.2004.03.010.
    • (2004) J Mol Graph Model , vol.22 , Issue.6 , pp. 499-505
    • Winkler, D.A.1    Burden, F.R.2
  • 51
    • 29144484633 scopus 로고    scopus 로고
    • Predictive human intestinal absorption QSAR models using Bayesian regularized neural networks
    • M.J.Polley, F.R.Burden, D.A.Winkler. Predictive human intestinal absorption QSAR models using Bayesian regularized neural networks. Aust J Chem. 2005;58(12):859–863. doi:10.1071/CH05202.
    • (2005) Aust J Chem , vol.58 , Issue.12 , pp. 859-863
    • Polley, M.J.1    Burden, F.R.2    Winkler, D.A.3
  • 52
    • 9744267439 scopus 로고    scopus 로고
    • Broad-based quantitative structure-activity relationship modeling of potency and selectivity of farnesyltransferase inhibitors using a Bayesian regularized neural network
    • M.J.Polley, D.A.Winkler, F.R.Burden. Broad-based quantitative structure-activity relationship modeling of potency and selectivity of farnesyltransferase inhibitors using a Bayesian regularized neural network. J Med Chem. 2004;47(25):6230–6238. doi:10.1021/jm049621j.
    • (2004) J Med Chem , vol.47 , Issue.25 , pp. 6230-6238
    • Polley, M.J.1    Winkler, D.A.2    Burden, F.R.3
  • 53
    • 33644549129 scopus 로고    scopus 로고
    • 2+-activated K+ channel by some triarylmethanes using topological charge indexes descriptors
    • 2+-activated K+ channel by some triarylmethanes using topological charge indexes descriptors. J Comput Aid Mol Des. 2005;19(11):771–789. doi:10.1007/s10822-005-9025-z.
    • (2005) J Comput Aid Mol Des , vol.19 , Issue.11 , pp. 771-789
    • Caballero, J.1    Garriga, M.2    Fernandez, M.3
  • 54
    • 79953327578 scopus 로고    scopus 로고
    • Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM)
    • M.Fernandez, J.Caballero, L.Fernandez, et al. Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM). Mol Divers. 2011;15(1):269–289. doi:10.1007/s11030-010-9234-9.
    • (2011) Mol Divers , vol.15 , Issue.1 , pp. 269-289
    • Fernandez, M.1    Caballero, J.2    Fernandez, L.3
  • 55
    • 84869164498 scopus 로고    scopus 로고
    • Modeling biological activities of nanoparticles
    • V.C.Epa, F.R.Burden, C.Tassa, et al. Modeling biological activities of nanoparticles. Nano Lett. 2012;12(11):5808–5812. doi:10.1021/nl303144k.
    • (2012) Nano Lett , vol.12 , Issue.11 , pp. 5808-5812
    • Epa, V.C.1    Burden, F.R.2    Tassa, C.3
  • 56
    • 84885757504 scopus 로고    scopus 로고
    • Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential
    • D.A.Winkler, E.Mombelli, A.Pietroiusti, et al. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential. Toxicol. 2013;313(1):15–23. doi:10.1016/j.tox.2012.11.005.
    • (2013) Toxicol , vol.313 , Issue.1 , pp. 15-23
    • Winkler, D.A.1    Mombelli, E.2    Pietroiusti, A.3
  • 57
    • 84948441062 scopus 로고    scopus 로고
    • Robust prediction of personalized cell recognition from a cancer population by a dual targeting nanoparticle library
    • T.C.Le, B.Yan, D.A.Winkler. Robust prediction of personalized cell recognition from a cancer population by a dual targeting nanoparticle library. Adv Funct Mater. 2015;25(44):6927–6935. doi:10.1002/adfm.201502811.
    • (2015) Adv Funct Mater , vol.25 , Issue.44 , pp. 6927-6935
    • Le, T.C.1    Yan, B.2    Winkler, D.A.3
  • 58
    • 0027513960 scopus 로고
    • Applications of neural networks in structure-activity relationships of a small number of molecules
    • I.V.Tetko, A.I.Luik, G.I.Poda. Applications of neural networks in structure-activity relationships of a small number of molecules. J Med Chem. 1993;36(7):811–814.• First use of neural network ensembles in drug discovery.
    • (1993) J Med Chem , vol.36 , Issue.7 , pp. 811-814
    • Tetko, I.V.1    Luik, A.I.2    Poda, G.I.3
  • 59
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L.Breiman. Random forests. Machine Learn. 2001;45(1):5–32. doi:10.1023/A:1010933404324.
    • (2001) Machine Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 60
    • 6444224986 scopus 로고    scopus 로고
    • Three new consensus QSAR models for the prediction of Ames genotoxicity
    • J.R.Votano, M.Parham, L.H.Hall, et al. Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis. 2004;19(5):365–377. doi:10.1093/mutage/geh043.
    • (2004) Mutagenesis , vol.19 , Issue.5 , pp. 365-377
    • Votano, J.R.1    Parham, M.2    Hall, L.H.3
  • 61
    • 84962355454 scopus 로고    scopus 로고
    • Exploiting multiple descriptor sets in QSAR studies
    • J.H.Tomal, W.J.Welch, R.H.Zamar. Exploiting multiple descriptor sets in QSAR studies. J Chem Inf Model. 2016;56(3):501–509. doi:10.1021/acs.jcim.5b00663.
    • (2016) J Chem Inf Model , vol.56 , Issue.3 , pp. 501-509
    • Tomal, J.H.1    Welch, W.J.2    Zamar, R.H.3
  • 62
    • 79959722205 scopus 로고    scopus 로고
    • A comparison of different QSAR approaches to modeling CYP450 1A2 inhibition
    • S.Novotarskyi, I.Sushko, R.Korner, et al. A comparison of different QSAR approaches to modeling CYP450 1A2 inhibition. J Chem Inf Model. 2011;51(6):1271–1280. doi:10.1021/ci200091h.
    • (2011) J Chem Inf Model , vol.51 , Issue.6 , pp. 1271-1280
    • Novotarskyi, S.1    Sushko, I.2    Korner, R.3
  • 63
    • 84944212427 scopus 로고    scopus 로고
    • QSAR models and scaffold-based analysis of non-nucleoside HIV RT inhibitors
    • B.Nizami, I.V.Tetko, N.A.Koorbanally, et al. QSAR models and scaffold-based analysis of non-nucleoside HIV RT inhibitors. Chemometrics Intell Lab Syst. 2015;148:134–144. doi:10.1016/j.chemolab.2015.09.011.
    • (2015) Chemometrics Intell Lab Syst , vol.148 , pp. 134-144
    • Nizami, B.1    Tetko, I.V.2    Koorbanally, N.A.3
  • 64
    • 84977138622 scopus 로고    scopus 로고
    • CERAPP: collaborative estrogen receptor activity prediction project
    • K.Mansouri, A.Abdelaziz, A.Rybacka, et al. CERAPP: collaborative estrogen receptor activity prediction project. Environ Health Perspect. 2016. doi:10.1289/ehp.1510267.
    • (2016) Environ Health Perspect
    • Mansouri, K.1    Abdelaziz, A.2    Rybacka, A.3
  • 65
    • 54249125512 scopus 로고    scopus 로고
    • Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection
    • I.V.Tetko, I.Sushko, A.K.Pandey, et al. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. J Chem Inf Model. 2008;48(9):1733–1746. doi:10.1021/ci800151m.
    • (2008) J Chem Inf Model , vol.48 , Issue.9 , pp. 1733-1746
    • Tetko, I.V.1    Sushko, I.2    Pandey, A.K.3
  • 66
    • 77951080733 scopus 로고    scopus 로고
    • Applicability domain for in silico models to achieve accuracy of experimental measurements
    • I.Sushko, S.Novotarskyi, R.Körner, et al. Applicability domain for in silico models to achieve accuracy of experimental measurements. J Chemom. 2010;24(3–4):202–208. doi:10.1002/cem.1296.
    • (2010) J Chemom , vol.24 , Issue.3-4 , pp. 202-208
    • Sushko, I.1    Novotarskyi, S.2    Körner, R.3
  • 67
    • 0032894478 scopus 로고    scopus 로고
    • Corticofugal modulation of functional connectivity within the auditory thalamus of rat, guinea pig and cat revealed by cooling deactivation
    • A.E.Villa, I.V.Tetko, P.Dutoit, et al. Corticofugal modulation of functional connectivity within the auditory thalamus of rat, guinea pig and cat revealed by cooling deactivation. J Neurosci Methods. 1999;86(2):161–178.
    • (1999) J Neurosci Methods , vol.86 , Issue.2 , pp. 161-178
    • Villa, A.E.1    Tetko, I.V.2    Dutoit, P.3
  • 68
    • 0036757804 scopus 로고    scopus 로고
    • Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program
    • I.V.Tetko, V.Y.Tanchuk. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J Chem Inf Comput Sci. 2002;42(5):1136–1145.
    • (2002) J Chem Inf Comput Sci , vol.42 , Issue.5 , pp. 1136-1145
    • Tetko, I.V.1    Tanchuk, V.Y.2
  • 69
    • 44649190610 scopus 로고    scopus 로고
    • Calculation of lipophilicity for Pt(II) complexes: experimental comparison of several methods
    • I.V.Tetko, I.Jaroszewicz, J.A.Platts, et al. Calculation of lipophilicity for Pt(II) complexes: experimental comparison of several methods. J Inorg Biochem. 2008;102(7):1424–1437. doi:10.1016/j.jinorgbio.2007.12.029.
    • (2008) J Inorg Biochem , vol.102 , Issue.7 , pp. 1424-1437
    • Tetko, I.V.1    Jaroszewicz, I.2    Platts, J.A.3
  • 70
    • 7444258512 scopus 로고    scopus 로고
    • Application of ALOGPS 2.1 to predict log D distribution coefficient for Pfizer proprietary compounds
    • I.V.Tetko, G.I.Poda. Application of ALOGPS 2.1 to predict log D distribution coefficient for Pfizer proprietary compounds. J Med Chem. 2004;47(23):5601–5604. doi:10.1021/jm049509l.
    • (2004) J Med Chem , vol.47 , Issue.23 , pp. 5601-5604
    • Tetko, I.V.1    Poda, G.I.2
  • 71
    • 72449148696 scopus 로고    scopus 로고
    • Large-scale evaluation of log P predictors: local corrections may compensate insufficient accuracy and need of experimentally testing every other compound
    • I.V.Tetko, G.I.Poda, C.Ostermann, et al. Large-scale evaluation of log P predictors: local corrections may compensate insufficient accuracy and need of experimentally testing every other compound. Chem Biodivers. 2009;6(11):1837–1844. doi:10.1002/cbdv.200900075.
    • (2009) Chem Biodivers , vol.6 , Issue.11 , pp. 1837-1844
    • Tetko, I.V.1    Poda, G.I.2    Ostermann, C.3
  • 72
    • 84919628756 scopus 로고    scopus 로고
    • How accurately can we predict the melting points of drug-like compounds?
    • I.V.Tetko, Y.Sushko, S.Novotarskyi, et al. How accurately can we predict the melting points of drug-like compounds? J Chem Inf Model. 2014;54(12):3320–3329. doi:10.1021/ci5005288.
    • (2014) J Chem Inf Model , vol.54 , Issue.12 , pp. 3320-3329
    • Tetko, I.V.1    Sushko, Y.2    Novotarskyi, S.3
  • 73
    • 84954494338 scopus 로고    scopus 로고
    • Prediction of logP for Pt(II) and Pt(IV) complexes: Comparison of statistical and quantum-chemistry based approaches
    • I.V.Tetko, H.P.Varbanov, M.Galanski, et al. Prediction of logP for Pt(II) and Pt(IV) complexes: Comparison of statistical and quantum-chemistry based approaches. J Inorg Biochem. 2016;156:1–13. doi:10.1016/j.jinorgbio.2015.12.006.
    • (2016) J Inorg Biochem , vol.156 , pp. 1-13
    • Tetko, I.V.1    Varbanov, H.P.2    Galanski, M.3
  • 74
    • 84969816544 scopus 로고    scopus 로고
    • ToxCast EPA in vitro to in vivo challenge: insight into the Rank-i model
    • S.Novotarskyi, A.Abdelaziz, Y.Sushko, et al. ToxCast EPA in vitro to in vivo challenge: insight into the Rank-i model. Chem Res Toxicol. 2016;29(5):768–775. doi:10.1021/acs.chemrestox.5b00481.
    • (2016) Chem Res Toxicol , vol.29 , Issue.5 , pp. 768-775
    • Novotarskyi, S.1    Abdelaziz, A.2    Sushko, Y.3
  • 75
    • 85063821675 scopus 로고    scopus 로고
    • Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge
    • A.Abdelaziz, H.Spahn-Langguth, K.Werner-Schramm, et al. Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge. Frontiers Environ Sci. 2016;4(2). doi:10.3389/fenvs.2016.00002.
    • (2016) Frontiers Environ Sci , vol.4 , Issue.2
    • Abdelaziz, A.1    Spahn-Langguth, H.2    Werner-Schramm, K.3
  • 76
    • 1542424391 scopus 로고    scopus 로고
    • The use of self-organizing neural networks in drug design
    • S.Anzali, J.Gasteiger, U.Holzgrabe, et al. The use of self-organizing neural networks in drug design. Perspect Drug Discov Des. 1998;9:273–299. doi:10.1023/A:1027276425268.
    • (1998) Perspect Drug Discov Des , vol.9 , pp. 273-299
    • Anzali, S.1    Gasteiger, J.2    Holzgrabe, U.3
  • 77
    • 0036522888 scopus 로고    scopus 로고
    • The comparative molecular surface analysis (COMSA) – a nongrid 3D QSAR method by a coupled neural network and PLS system: predicting pKa values of benzoic and alkanoic acids
    • J.Polanski, R.Gieleciak, A.Bak. The comparative molecular surface analysis (COMSA) – a nongrid 3D QSAR method by a coupled neural network and PLS system: predicting pKa values of benzoic and alkanoic acids. J Chem Inf Comput Sci. 2002;42(2):184–191.
    • (2002) J Chem Inf Comput Sci , vol.42 , Issue.2 , pp. 184-191
    • Polanski, J.1    Gieleciak, R.2    Bak, A.3
  • 78
    • 0035913053 scopus 로고    scopus 로고
    • Volume learning algorithm artificial neural networks for 3D QSAR studies
    • I.V.Tetko, V.V.Kovalishyn, D.J.Livingstone. Volume learning algorithm artificial neural networks for 3D QSAR studies. J Med Chem. 2001;44(15):2411–2420.
    • (2001) J Med Chem , vol.44 , Issue.15 , pp. 2411-2420
    • Tetko, I.V.1    Kovalishyn, V.V.2    Livingstone, D.J.3
  • 79
    • 84953897016 scopus 로고    scopus 로고
    • Classification of mixtures of Chinese herbal medicines based on a Self-Organizing Map (SOM)
    • M.Wang, L.Li, C.Yu, et al. Classification of mixtures of Chinese herbal medicines based on a Self-Organizing Map (SOM). Mol Inform. 2016. doi:10.1002/minf.201500115.
    • (2016) Mol Inform
    • Wang, M.1    Li, L.2    Yu, C.3
  • 80
    • 84960539870 scopus 로고    scopus 로고
    • Hybrid network model for “deep learning” of chemical data: application to antimicrobial peptides
    • P.Schneider, A.T.Mueller, G.Gabernet, et al. Hybrid network model for “deep learning” of chemical data: application to antimicrobial peptides. Mol Inform. 2016. doi:10.1002/minf.201600011.
    • (2016) Mol Inform
    • Schneider, P.1    Mueller, A.T.2    Gabernet, G.3
  • 81
    • 84921689992 scopus 로고    scopus 로고
    • Chemical data visualization and analysis with incremental generative topographic mapping: big data challenge
    • H.A.Gaspar, I.I.Baskin, G.Marcou, et al. Chemical data visualization and analysis with incremental generative topographic mapping: big data challenge. J Chem Inf Model. 2015;55(1):84–94. doi:10.1021/ci500575y.
    • (2015) J Chem Inf Model , vol.55 , Issue.1 , pp. 84-94
    • Gaspar, H.A.1    Baskin, I.I.2    Marcou, G.3
  • 82
    • 84933512956 scopus 로고    scopus 로고
    • GTM-based QSAR models and their applicability domains
    • H.A.Gaspar, I.I.Baskin, G.Marcou, et al. GTM-based QSAR models and their applicability domains. Mol Inform. 2015;34(6–7):348–356. doi:10.1002/minf.201400153.
    • (2015) Mol Inform , vol.34 , Issue.6-7 , pp. 348-356
    • Gaspar, H.A.1    Baskin, I.I.2    Marcou, G.3
  • 83
    • 84896519769 scopus 로고    scopus 로고
    • Generative topographic mapping-based classification models and their applicability domain: application to the Biopharmaceutics Drug Disposition Classification System (BDDCS)
    • H.A.Gaspar, G.Marcou, D.Horvath, et al. Generative topographic mapping-based classification models and their applicability domain: application to the Biopharmaceutics Drug Disposition Classification System (BDDCS). J Chem Inf Model. 2013;53(12):3318–3325. doi:10.1021/ci400423c.
    • (2013) J Chem Inf Model , vol.53 , Issue.12 , pp. 3318-3325
    • Gaspar, H.A.1    Marcou, G.2    Horvath, D.3
  • 84
    • 84947930825 scopus 로고    scopus 로고
    • Stargate GTM: bridging descriptor and activity spaces
    • H.A.Gaspar, I.I.Baskin, G.Marcou, et al. Stargate GTM: bridging descriptor and activity spaces. J Chem Inf Model. 2015;55(11):2403–2410. doi:10.1021/acs.jcim.5b00398.
    • (2015) J Chem Inf Model , vol.55 , Issue.11 , pp. 2403-2410
    • Gaspar, H.A.1    Baskin, I.I.2    Marcou, G.3
  • 85
    • 0001022357 scopus 로고    scopus 로고
    • A neural device for searching direct correlations between structures and properties of chemical compounds
    • I.I.Baskin, V.A.Palyulin, N.S.Zefirov. A neural device for searching direct correlations between structures and properties of chemical compounds. J Chem Inf Comput Sci. 1997;37(4):715–721. doi:10.1021/ci940128y.• First neural network with discrete convolutional architecture for searching direct correlations between structures and properties of chemical compounds.
    • (1997) J Chem Inf Comput Sci , vol.37 , Issue.4 , pp. 715-721
    • Baskin, I.I.1    Palyulin, V.A.2    Zefirov, N.S.3
  • 86
    • 0035221306 scopus 로고    scopus 로고
    • Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-activity relationship studies of benzodiazepines
    • A.Micheli, A.Sperduti, A.Starita, et al. Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-activity relationship studies of benzodiazepines. J Chem Inf Comput Sci. 2001;41(1):202–218.
    • (2001) J Chem Inf Comput Sci , vol.41 , Issue.1 , pp. 202-218
    • Micheli, A.1    Sperduti, A.2    Starita, A.3
  • 87
    • 33847047522 scopus 로고    scopus 로고
    • Predicting activities without computing descriptors: graph machines for QSAR
    • A.Goulon, T.Picot, A.Duprat, et al. Predicting activities without computing descriptors: graph machines for QSAR. SAR QSAR Environ Res. 2007;18(1–2):141–153. doi:10.1080/10629360601054313.
    • (2007) SAR QSAR Environ Res , vol.18 , Issue.1-2 , pp. 141-153
    • Goulon, A.1    Picot, T.2    Duprat, A.3
  • 88
    • 84876898784 scopus 로고    scopus 로고
    • Computational modeling and prediction of the complex time-dependent phase behavior of lyotropic liquid crystals under in meso crystallization conditions
    • T.C.Le, C.E.Conn, B.Fr, et al. Computational modeling and prediction of the complex time-dependent phase behavior of lyotropic liquid crystals under in meso crystallization conditions. Cryst Growth Des. 2013;13(3):1267–1276. doi:10.1021/cg301730z.
    • (2013) Cryst Growth Des , vol.13 , Issue.3 , pp. 1267-1276
    • Le, T.C.1    Conn, C.E.2    Fr, B.3
  • 89
    • 32944456867 scopus 로고    scopus 로고
    • A Bayesian recurrent neural network for unsupervised pattern recognition in large incomplete data sets
    • R.Orre, A.Bate, G.N.Noren, et al. A Bayesian recurrent neural network for unsupervised pattern recognition in large incomplete data sets. Int J Neural Syst. 2005;15(3):207–222. doi:10.1142/S0129065705000219.
    • (2005) Int J Neural Syst , vol.15 , Issue.3 , pp. 207-222
    • Orre, R.1    Bate, A.2    Noren, G.N.3
  • 90
    • 23044533713 scopus 로고    scopus 로고
    • Application of a recurrent neural network to prediction of drug dissolution profiles
    • W.Y.Goh, C.P.Lim, K.K.Peh, et al. Application of a recurrent neural network to prediction of drug dissolution profiles. Neural Comput Appl. 2002;10(4):311–317. doi:10.1007/s005210200003.
    • (2002) Neural Comput Appl , vol.10 , Issue.4 , pp. 311-317
    • Goh, W.Y.1    Lim, C.P.2    Peh, K.K.3
  • 91
    • 38149129421 scopus 로고    scopus 로고
    • Predicting human immunodeficiency virus (HIV) drug resistance using recurrent neural networks
    • Mira J., Alvarez J.R., (eds), Berlin: Springer
    • I.Bonet, M.M.Garcia, Y.Saeys, et al. Predicting human immunodeficiency virus (HIV) drug resistance using recurrent neural networks. In: J.Mira, J.R.Alvarez, editors. Bio-inspired modeling of cognitive tasks, pt 1, proceedings. 2007. Berlin: Springer. p. 234–243.
    • (2007) Bio-inspired modeling of cognitive tasks, pt 1, proceedings , pp. 234-243
    • Bonet, I.1    Garcia, M.M.2    Saeys, Y.3
  • 92
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: a review and new perspectives
    • Y.Bengio, A.Courville, P.Vincent. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1798–1828. doi:10.1109/TPAMI.2013.50.• Important review on representation learning.
    • (2013) IEEE Trans Pattern Anal Mach Intell , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 94
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y.LeCun, L.Bottou, Y.Bengio, et al. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–2324. doi:10.1109/5.726791.
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3
  • 95
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • S.J.Pan, Q.Yang. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–1359. doi:10.1109/TKDE.2009.191.
    • (2010) IEEE Trans Knowl Data Eng , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 97
    • 79954511288 scopus 로고    scopus 로고
    • Chemoinformatics as a theoretical chemistry discipline
    • A.Varnek, I.I.Baskin. Chemoinformatics as a theoretical chemistry discipline. Mol Inform. 2011;30(1):20–32. doi:10.1002/minf.v30.1.• An important review on the use of machine learning in structure–activity modeling
    • (2011) Mol Inform , vol.30 , Issue.1 , pp. 20-32
    • Varnek, A.1    Baskin, I.I.2
  • 98
    • 84862848391 scopus 로고    scopus 로고
    • Machine learning methods for property prediction in chemoinformatics: quo vadis?
    • A.Varnek, I.Baskin. Machine learning methods for property prediction in chemoinformatics: quo vadis? J Chem Inf Model. 2012;52(6):1413–1437. doi:10.1021/ci200409x.
    • (2012) J Chem Inf Model , vol.52 , Issue.6 , pp. 1413-1437
    • Varnek, A.1    Baskin, I.2
  • 99
    • 84899881824 scopus 로고    scopus 로고
    • QSAR modeling: where have you been? Where are you going to?
    • A.Cherkasov, E.N.Muratov, D.Fourches, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2015;57(12):4977–5010. doi:10.1021/jm4004285.•• Comprehensive review on QSAR modeling
    • (2015) J Med Chem , vol.57 , Issue.12 , pp. 4977-5010
    • Cherkasov, A.1    Muratov, E.N.2    Fourches, D.3
  • 100
    • 84880542260 scopus 로고    scopus 로고
    • Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules
    • A.Lusci, G.Pollastri, P.Baldi Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2013;53(7):1563–1575.
    • (2013) J Chem Inf Model , vol.53 , Issue.7 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 102
    • 84954372459 scopus 로고    scopus 로고
    • Deep learning in drug discovery
    • E.Gawehn, J.A.Hiss, G.Schneider. Deep learning in drug discovery. Mol Inf. 2016;35(1):3–14. doi:10.1002/minf.v35.1.
    • (2016) Mol Inf , vol.35 , Issue.1 , pp. 3-14
    • Gawehn, E.1    Hiss, J.A.2    Schneider, G.3
  • 103
    • 84903700854 scopus 로고    scopus 로고
    • Scientists see promise in deep-learning programs
    • Nov
    • J.Markoff Scientists see promise in deep-learning programs. The New York Times. 2012 Nov 23.
    • (2012) The New York Times
    • Markoff, J.1
  • 107
    • 84919928142 scopus 로고    scopus 로고
    • Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process
    • Y.Sushko, S.Novotarskyi, R.Korner, et al. Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process. J Cheminform. 2014;6(1):48. doi:10.1186/1758-2946-6-6.
    • (2014) J Cheminform , vol.6 , Issue.1 , pp. 48
    • Sushko, Y.1    Novotarskyi, S.2    Korner, R.3
  • 108
    • 84978913253 scopus 로고    scopus 로고
    • BIGCHEM: challenges and opportunities for Big Data analysis in chemistry
    • I.V.Tetko, O.Engkvist, U.Koch, et al. BIGCHEM: challenges and opportunities for Big Data analysis in chemistry. Mol Inf. 2016.•• An important review on Big Data in chemistry.
    • (2016) Mol Inf
    • Tetko, I.V.1    Engkvist, O.2    Koch, U.3
  • 109
    • 84906303709 scopus 로고    scopus 로고
    • Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde?
    • M.Cruz-Monteagudo, J.Medina-Franco, Y.Pérez-Castillo, et al. Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde? Drug Discov Today. 2014;19(8):1069–1080. doi:10.1016/j.drudis.2014.02.003.
    • (2014) Drug Discov Today , vol.19 , Issue.8 , pp. 1069-1080
    • Cruz-Monteagudo, M.1    Medina-Franco, J.2    Pérez-Castillo, Y.3
  • 110
    • 84898814974 scopus 로고    scopus 로고
    • Impact of distance-based metric learning on classification and visualization model performance and structure-activity landscapes
    • N.V.Kireeva, S.I.Ovchinnikova, S.L.Kuznetsov, et al. Impact of distance-based metric learning on classification and visualization model performance and structure-activity landscapes. J Comput Aid Mol Des. 2014;28(2):61–73. doi:10.1007/s10822-014-9719-1.
    • (2014) J Comput Aid Mol Des , vol.28 , Issue.2 , pp. 61-73
    • Kireeva, N.V.1    Ovchinnikova, S.I.2    Kuznetsov, S.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.