메뉴 건너뛰기




Volumn 124, Issue 7, 2016, Pages 1023-1033

CERAPP: Collaborative estrogen receptor activity prediction project

(41)  Mansouri, Kamel a,b   Abdelaziz, Ahmed c   Rybacka, Aleksandra d   Roncaglioni, Alessandra e   Tropsha, Alexander f   Varnek, Alexandre g   Zakharov, Alexey h   Worth, Andrew i   Richard, Ann M a   Grulke, Christopher M a   Trisciuzzi, Daniela j   Fourches, Denis f   Horvath, Dragos g   Benfenati, Emilio e   Muratov, Eugene f   Wedebye, Eva Bay k   Grisoni, Francesca l   Mangiatordi, Giuseppe F j   Incisivo, Giuseppina M e   Hong, Huixiao m   more..


Author keywords

[No Author keywords available]

Indexed keywords

ESTROGEN RECEPTOR; ENDOCRINE DISRUPTOR;

EID: 84977138622     PISSN: 00916765     EISSN: 15529924     Source Type: Journal    
DOI: 10.1289/ehp.1510267     Document Type: Article
Times cited : (268)

References (101)
  • 1
    • 79956348442 scopus 로고    scopus 로고
    • Alternative (Non-animal) methods for cosmetics testing: Current status and future prospects—2010
    • Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, et al. 2011. Alternative (non-animal) methods for cosmetics testing: Current status and future prospects—2010. Arch Toxicol 85:367-485
    • (2011) Arch Toxicol , vol.85 , pp. 367-485
    • Adler, S.1    Basketter, D.2    Creton, S.3    Pelkonen, O.4    Van Benthem, J.5    Zuang, V.6
  • 2
    • 84881124332 scopus 로고    scopus 로고
    • The Tox21 robotic platform for the assessment of environmental chemicals—from vision to reality
    • Attene-Ramos MS, Miller N, Huang R, Michael S, Itkin M, Kavlock RJ, et al. 2013. The Tox21 robotic platform for the assessment of environmental chemicals—from vision to reality. Drug Discov Today 18:716-723, doi: 10.1016/j.drudis.2013.05.015.
    • (2013) Drug Discov Today , vol.18 , pp. 716-723
    • Attene-Ramos, M.S.1    Miller, N.2    Huang, R.3    Michael, S.4    Itkin, M.5    Kavlock, R.J.6
  • 3
    • 0035438399 scopus 로고    scopus 로고
    • 13C NMR quantitative spectrometric data-activity relationship (QSDAR) models of steroids binding the aromatase enzyme
    • Beger RD, Buzatu DA, Wilkes JG, Lay JO Jr. 2001. 13C NMR quantitative spectrometric data-activity relationship (QSDAR) models of steroids binding the aromatase enzyme. J Chem Inf Comput Sci 41:1360-1366.
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 1360-1366
    • Beger, R.D.1    Buzatu, D.A.2    Wilkes, J.G.3    Lay, J.O.4
  • 4
    • 0034740868 scopus 로고    scopus 로고
    • Developing 13C NMR quantitative spectrometric data-activity relation-ship (QSDAR) models of steroid binding to the corticosteroid binding globulin
    • Beger RD, Wilkes JG. 2001. Developing 13C NMR quantitative spectrometric data-activity relation-ship (QSDAR) models of steroid binding to the corticosteroid binding globulin. J Comput Aided Mol Des 15:659-669.
    • (2001) J Comput Aided Mol Des , vol.15 , pp. 659-669
    • Beger, R.D.1    Wilkes, J.G.2
  • 5
    • 84879557098 scopus 로고    scopus 로고
    • KNIME: The Konstanz Information Miner
    • Albert-Ludwigs-Universität Freiburg, 7-9 March 2007, Heidelberg, Germany. Studies in Classification, Data Analysis, and Knowledge Organization (Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R, eds). Heidelberg, Germany:Springer
    • Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, et al. 2007. KNIME: The Konstanz Information Miner. In: Proceedings of the 31st Annual Conference of the Gesellschaft für Klassifikation e.V., Albert-Ludwigs-Universität Freiburg, 7-9 March 2007, Heidelberg, Germany. Studies in Classification, Data Analysis, and Knowledge Organization (Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R, eds). Heidelberg, Germany:Springer, 319-326.
    • (2007) Proceedings of the 31St Annual Conference of the Gesellschaft für Klassifikation E.V , pp. 319-326
    • Berthold, M.R.1    Cebron, N.2    Dill, F.3    Gabriel, T.R.4    Kötter, T.5    Meinl, T.6
  • 6
    • 0038746906 scopus 로고    scopus 로고
    • Cancer and devel-opmental exposure to endocrine disruptors
    • Birnbaum LS, Fenton SE. 2003. Cancer and devel-opmental exposure to endocrine disruptors. Environ Health Perspect 111:389-394, doi: 10.1289/ehp.5686.
    • (2003) Environ Health Perspect , vol.111 , pp. 389-394
    • Birnbaum, L.S.1    Fenton, S.E.2
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests. Mach Learn 45:5-32. ChemAxon. 2014. Standardizer. Structure Canonicalization and More, [accessed 26 November 2014]
    • Breiman L. 2001. Random forests. Mach Learn 45:5-32. ChemAxon. 2014. Standardizer. Structure Canonicalization and More. Available: http://www.chemaxon.com/products/standardizer/ [accessed 26 November 2014].
    • (2001)
    • Breiman, L.1
  • 9
    • 0027428381 scopus 로고
    • Developmental effects of endocrine-disrupting chemicals in wildlife and humans
    • Colborn T, vom Saal FS, Soto AM. 1993. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378-384.
    • (1993) Environ Health Perspect , vol.101 , pp. 378-384
    • Colborn, T.1    Vom Saal, F.S.2    Soto, A.M.3
  • 10
    • 39349118236 scopus 로고    scopus 로고
    • Toxicology. Transforming environmental health protection
    • Collins FS, Gray GM, Bucher JR. 2008. Toxicology. Transforming environmental health protection. Science 319:906-907.
    • (2008) Science , vol.319 , pp. 906-907
    • Collins, F.S.1    Gray, G.M.2    Bucher, J.R.3
  • 11
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T, Hart P. 1967. Nearest neighbor pattern classification. IEEE Trans Inf Theory 13:21-27.
    • (1967) IEEE Trans Inf Theory , vol.13 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 15
    • 67949118928 scopus 로고    scopus 로고
    • How not to develop a quantitative structure-activity or structure- property relationship (QSAR/QSPR)
    • Dearden JC, Cronin MTD, Kaiser KLE. 2009. How not to develop a quantitative structure-activity or structure- property relationship (QSAR/QSPR). SAR QSAR Environ Res 20:241-266.
    • (2009) SAR QSAR Environ Res , vol.20 , pp. 241-266
    • Dearden, J.C.1    Cronin, M.2    Kaiser, K.L.E.3
  • 17
    • 84925499013 scopus 로고    scopus 로고
    • Exploring consumer exposure pathways and patterns of use for chemicals in the environment
    • Dionisio KL, Frame AM, Goldsmith MR, Wambaugh JF, Liddell A, Cathey T, et al. 2015. Exploring consumer exposure pathways and patterns of use for chemicals in the environment. Toxicol Rep 2:228-237, doi: 10.1016/j.toxrep.2014.12.009.
    • (2015) Toxicol Rep , vol.2 , pp. 228-237
    • Dionisio, K.L.1    Frame, A.M.2    Goldsmith, M.R.3    Wambaugh, J.F.4    Liddell, A.5    Cathey, T.6
  • 20
    • 84977121596 scopus 로고    scopus 로고
    • [accessed 4 November 2012]
    • Environment Canada. 2012. Domestic Substances List. Available: http://www.ec.gc.ca/lcpe-cepa/ default.asp?lang=En&n=5F213FA8-1 [accessed 4 November 2012].
    • (2012) Domestic Substances List
  • 23
    • 78049349961 scopus 로고    scopus 로고
    • Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research
    • Fourches D, Muratov E, Tropsha A. 2010. Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50:1189-1204.
    • (2010) J Chem Inf Model , vol.50 , pp. 1189-1204
    • Fourches, D.1    Muratov, E.2    Tropsha, A.3
  • 24
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • Frank IE, Friedman JH. 1993. A statistical view of some chemometrics regression tools. Technometrics 35:109-135.
    • (1993) Technometrics , vol.35 , pp. 109-135
    • Frank, I.E.1    Friedman, J.H.2
  • 25
    • 33749000228 scopus 로고
    • A new substituent constant, π, derived from partition coefficients
    • Fujita T, Iwasa J, Hansch C. 1964. A new substituent constant, π, derived from partition coefficients. J Am Chem Soc 86:5175-5180.
    • (1964) J am Chem Soc , vol.86 , pp. 5175-5180
    • Fujita, T.1    Iwasa, J.2    Hansch, C.3
  • 27
    • 0029705324 scopus 로고    scopus 로고
    • Automated docking of flexible ligands: Applications of AutoDock
    • Goodsell DS, Morris GM, Olson AJ. 1996. Automated docking of flexible ligands: Applications of AutoDock. J Mol Recognit 9:1-5.
    • (1996) J Mol Recognit , vol.9 , pp. 1-5
    • Goodsell, D.S.1    Morris, G.M.2    Olson, A.J.3
  • 28
    • 0014014324 scopus 로고
    • The structure-activity relationship in amides inhibiting photosynthesis
    • Hansch C, Deutsch EW. 1966. The structure-activity relationship in amides inhibiting photosynthesis. Bibl Laeger 112:381-391.
    • (1966) Bibl Laeger , vol.112 , pp. 381-391
    • Hansch, C.1    Deutsch, E.W.2
  • 29
    • 34447521097 scopus 로고
    • Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients
    • Hansch C, Maloney PP, Fujita T, Muir RM. 1962. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178-180.
    • (1962) Nature , vol.194 , pp. 178-180
    • Hansch, C.1    Maloney, P.P.2    Fujita, T.3    Muir, R.M.4
  • 30
    • 33751157436 scopus 로고
    • Environmental estrogens linked to reproductive abnormalities, cancer
    • Hileman B. 1994. Environmental estrogens linked to reproductive abnormalities, cancer. Chem Eng News 72:19-23.
    • (1994) Chem Eng News , vol.72 , pp. 19-23
    • Hileman, B.1
  • 31
    • 84876531706 scopus 로고    scopus 로고
    • Mold2 molecular descriptors for QSAR
    • Dehmer M, Varmuza K, Bonchev D, eds). Weinheim, Germany:Wiley-VCH Verlag GmbH & Co. KGaA
    • Hong H, Slavov S, Ge W, Qian F, Su Z, Fang H, et al. 2012. Mold2 molecular descriptors for QSAR. In: Statistical Modelling of Molecular Descriptors in QSAR/QSPR (Dehmer M, Varmuza K, Bonchev D, eds). Weinheim, Germany:Wiley-VCH Verlag GmbH & Co. KGaA., 65-109.
    • (2012) Statistical Modelling of Molecular Descriptors in QSAR/QSPR , pp. 65-109
    • Hong, H.1    Slavov, S.2    Ge, W.3    Qian, F.4    Su, Z.5    Fang, H.6
  • 32
    • 8144224602 scopus 로고    scopus 로고
    • Multiclass Decision Forest—a novel pattern recognition method for multiclass classification in microarray data analysis
    • Hong H, Tong W, Perkins R, Fang H, Xie Q, Shi L. 2004. Multiclass Decision Forest—a novel pattern recognition method for multiclass classification in microarray data analysis. DNA Cell Biol 23:685-694.
    • (2004) DNA Cell Biol , vol.23 , pp. 685-694
    • Hong, H.1    Tong, W.2    Perkins, R.3    Fang, H.4    Xie, Q.5    Shi, L.6
  • 33
    • 24644498061 scopus 로고    scopus 로고
    • An in silico ensemble method for lead discovery: Decision forest
    • Hong H, Tong W, Xie Q, Fang H, Perkins R. 2005. An in silico ensemble method for lead discovery: Decision forest. SAR QSAR Environ Res 16:339-347.
    • (2005) SAR QSAR Environ Res , vol.16 , pp. 339-347
    • Hong, H.1    Tong, W.2    Xie, Q.3    Fang, H.4    Perkins, R.5
  • 34
    • 49449098592 scopus 로고    scopus 로고
    • Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics
    • Hong H, Xie Q, Ge W, Qian F, Fang H, Shi L, et al. 2008. Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 48:1337-1344.
    • (2008) J Chem Inf Model , vol.48 , pp. 1337-1344
    • Hong, H.1    Xie, Q.2    Ge, W.3    Qian, F.4    Fang, H.5    Shi, L.6
  • 36
    • 84904350064 scopus 로고    scopus 로고
    • Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway
    • Huang R, Sakamuru S, Martin MT, Reif DM, Judson RS, Houck KA, et al. 2014. Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci Rep 4:5664, doi: 10.1038/srep05664.
    • (2014) Sci Rep , vol.4 , pp. 5664
    • Huang, R.1    Sakamuru, S.2    Martin, M.T.3    Reif, D.M.4    Judson, R.S.5    Houck, K.A.6
  • 38
    • 77951675220 scopus 로고    scopus 로고
    • In vitro screening of environmental chemicals for targeted testing prioritization: The ToxCast project
    • Judson RS, Houck KA, Kavlock RJ, Knudsen TB, Martin MT, Mortensen HM, et al. 2010. In vitro screening of environmental chemicals for targeted testing prioritization: The ToxCast project. Environ Health Perspect 118:485-492, doi: 10.1289/ehp.0901392.
    • (2010) Environ Health Perspect , vol.118 , pp. 485-492
    • Judson, R.S.1    Houck, K.A.2    Kavlock, R.J.3    Knudsen, T.B.4    Martin, M.T.5    Mortensen, H.M.6
  • 39
    • 79954507330 scopus 로고    scopus 로고
    • Estimating toxicity-related biological pathway altering doses for high-throughput chemical risk assessment
    • Judson RS, Kavlock RJ, Setzer RW, Hubal EAC, Martin MT, Knudsen TB, et al. 2011. Estimating toxicity-related biological pathway altering doses for high-throughput chemical risk assessment. Chem Res Toxicol 24:451-462.
    • (2011) Chem Res Toxicol , vol.24 , pp. 451-462
    • Judson, R.S.1    Kavlock, R.J.2    Setzer, R.W.3    Hubal, E.4    Martin, M.T.5    Knudsen, T.B.6
  • 40
    • 84947781653 scopus 로고    scopus 로고
    • Integrated model of chemical perturbations of a biological pathway using 18 in vitro high throughput screening assays for the estrogen receptor
    • Judson RS, Magpantay FM, Chickarmane V, Haskell C, Tania N, Taylor J, et al. 2015. Integrated model of chemical perturbations of a biological pathway using 18 in vitro high throughput screening assays for the estrogen receptor. Toxicol Sci 148:137-154, doi: 10.1093/toxsci/kfv168.
    • (2015) Toxicol Sci , vol.148 , pp. 137-154
    • Judson, R.S.1    Magpantay, F.M.2    Chickarmane, V.3    Haskell, C.4    Tania, N.5    Taylor, J.6
  • 41
    • 84863298868 scopus 로고    scopus 로고
    • Aggregating data for computational toxicology applications: The U.S. Environmental Protection Agency (EPA) Aggregated Computational Toxicology Resource (ACToR) system
    • Judson RS, Martin MT, Egeghy P, Gangwal S, Reif DM, Kothiya P, et al. 2012. Aggregating data for computational toxicology applications: The U.S. Environmental Protection Agency (EPA) Aggregated Computational Toxicology Resource (ACToR) system. Int J Mol Sci 13:1805-1831.
    • (2012) Int J Mol Sci , vol.13 , pp. 1805-1831
    • Judson, R.S.1    Martin, M.T.2    Egeghy, P.3    Gangwal, S.4    Reif, D.M.5    Kothiya, P.6
  • 44
    • 77953981125 scopus 로고    scopus 로고
    • Computational toxicology as implemented by the U.S. EPA: Providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk
    • Kavlock R, Dix D. 2010. Computational toxicology as implemented by the U.S. EPA: Providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk. J Toxicol Environ Health B Crit Rev 13:197-217.
    • (2010) J Toxicol Environ Health B Crit Rev , vol.13 , pp. 197-217
    • Kavlock, R.1    Dix, D.2
  • 45
    • 9544252937 scopus 로고    scopus 로고
    • Research needs for the risk assessment of health and environmental effects of endocrine disrupters: A report of the U.S. EPA-sponsored workshop
    • Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, et al. 1996. Research needs for the risk assessment of health and environmental effects of endocrine disrupters: A report of the U.S. EPA-sponsored workshop. Environ Health Perspect 104:715-740.
    • (1996) Environ Health Perspect , vol.104 , pp. 715-740
    • Kavlock, R.J.1    Daston, G.P.2    Derosa, C.3    Fenner-Crisp, P.4    Gray, L.E.5    Kaattari, S.6
  • 47
    • 0001757405 scopus 로고
    • The K-Nearest Neighbor Classification Rule (Pattern recognition) applied to nuclear magnetic resonance spectral interpretation
    • Kowalski BR, Bender CF. 1972. The K-Nearest Neighbor Classification Rule (pattern recognition) applied to nuclear magnetic resonance spectral interpretation. Anal Chem 44:1405-1411.
    • (1972) Anal Chem , vol.44 , pp. 1405-1411
    • Kowalski, B.R.1    Bender, C.F.2
  • 48
    • 0031039888 scopus 로고    scopus 로고
    • Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors a and β
    • Kuiper GG, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, et al. 1997. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors a and β. Endocrinology 138:863-870.
    • (1997) Endocrinology , vol.138 , pp. 863-870
    • Kuiper, G.G.1    Carlsson, B.2    Grandien, K.3    Enmark, E.4    Häggblad, J.5    Nilsson, S.6
  • 49
    • 77955277910 scopus 로고    scopus 로고
    • Developmental programming: Impact of fetal exposure to endo-crine disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus
    • Mahoney MM, Padmanabhan V. 2010. Developmental programming: Impact of fetal exposure to endo-crine disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus. Toxicol Appl Pharmacol 247:98-104.
    • (2010) Toxicol Appl Pharmacol , vol.247 , pp. 98-104
    • Mahoney, M.M.1    Padmanabhan, V.2
  • 51
    • 78650177107 scopus 로고    scopus 로고
    • Current Status of Testing Methods Development for Endocrine Disrupters
    • 24-2 June 2002. Tokyo, Japan, [accessed 3 July 2015]
    • METI (Ministry of Economy Trade and Industry, Japan). 2002. Current Status of Testing Methods Development for Endocrine Disrupters. 6th Meeting of the Task Force on Endocrine Disrupters Testing and Assessment (EDTA). 24-2 June 2002. Tokyo, Japan. Available: http://www.meti.go.jp/english/ report/data/gEndoctexte.pdf [accessed 3 July 2015].
    • (2002) 6Th Meeting of the Task Force on Endocrine Disrupters Testing and Assessment (EDTA).
  • 52
    • 0035654437 scopus 로고    scopus 로고
    • Estrogen receptors and endocrine diseases: Lessons from estrogen receptor knockout mice
    • Mueller SO, Korach KS. 2001. Estrogen receptors and endocrine diseases: Lessons from estrogen receptor knockout mice. Curr Opin Pharmacol 1:613-619.
    • (2001) Curr Opin Pharmacol , vol.1 , pp. 613-619
    • Mueller, S.O.1    Korach, K.S.2
  • 54
    • 84961588282 scopus 로고    scopus 로고
    • Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists
    • Ng HW, Zhang W, Shu M, Luo H, Ge W, Perkins R, et al. 2014. Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists. BMC Bioinformatics 15(suppl 11):S4, doi: 10.1186/1471-2105-15-S11-S4.
    • (2014) BMC Bioinformatics , vol.15
    • Ng, H.W.1    Zhang, W.2    Shu, M.3    Luo, H.4    Ge, W.5    Perkins, R.6
  • 55
    • 84956905001 scopus 로고    scopus 로고
    • [accessed 26 January 2015]
    • NIH (National Institutes of Health). 2015. The PubChem Database. Available: http://pubchem.ncbi.nlm.nih.gov/ [accessed 26 January 2015].
    • (2015) The Pubchem Database
  • 56
    • 0031213901 scopus 로고    scopus 로고
    • Classification of environmentally occurring chemicals using structural fragments and PLS discriminant analysis
    • Nouwen J, Lindgren F, Hansen B, Karcher W, Verhaar HJM, Hermens JLM. 1997. Classification of environmentally occurring chemicals using structural fragments and PLS discriminant analysis. Environ Sci Technol 31:2313-2318.
    • (1997) Environ Sci Technol , vol.31 , pp. 2313-2318
    • Nouwen, J.1    Lindgren, F.2    Hansen, B.3    Karcher, W.4    Verhaar, H.5    Hermens, J.L.M.6
  • 57
    • 84977134710 scopus 로고    scopus 로고
    • [accessed 12 January 2015]
    • OCHEM (Online Chemical Database with Modeling Environment). 2015. CERAPP Models. Available: Https://ochem.eu/article/71005 [accessed 12 January 2015].
    • (2015) CERAPP Models
  • 58
    • 0034320172 scopus 로고    scopus 로고
    • Robustness of biological activity spectra predicting by computer program PASS for noncongeneric sets of chemical compounds
    • Poroikov VV, Filimonov DA, Borodina YV, Lagunin AA, Kos A. 2000. Robustness of biological activity spectra predicting by computer program PASS for noncongeneric sets of chemical compounds. J Chem Inf Comput Sci 40:1349-1355.
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 1349-1355
    • Poroikov, V.V.1    Filimonov, D.A.2    Borodina, Y.V.3    Lagunin, A.A.4    Kos, A.5
  • 59
    • 85052582136 scopus 로고    scopus 로고
    • Reaction Examples
    • [accessed 25 November 2014]
    • Reusch W. 2013. Reaction Examples. Examples of Organic Reactions. Available: http://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/ react2.htm [accessed 25 November 2014].
    • (2013) Examples of Organic Reactions
    • Reusch, W.1
  • 61
    • 57349166641 scopus 로고    scopus 로고
    • Binary classification models for endocrine disrupter effects mediated through the estrogen receptor
    • Roncaglioni A, Piclin N, Pintore M, Benfenati E. 2008. Binary classification models for endocrine disrupter effects mediated through the estrogen receptor. SAR QSAR Environ Res 19:697-733.
    • (2008) SAR QSAR Environ Res , vol.19 , pp. 697-733
    • Roncaglioni, A.1    Piclin, N.2    Pintore, M.3    Benfenati, E.4
  • 62
    • 84871008938 scopus 로고    scopus 로고
    • Using in vitro high throughput screening assays to identify potential endocrine-disrupting chemicals
    • Rotroff DM, Dix DJ, Houck KA, Knudsen TB, Martin MT, McLaurin KW, et al. 2013. Using in vitro high throughput screening assays to identify potential endocrine-disrupting chemicals. Environ Health Perspect 121:7-14, doi: 10.1289/ehp.1205065.
    • (2013) Environ Health Perspect , vol.121 , pp. 7-14
    • Rotroff, D.M.1    Dix, D.J.2    Houck, K.A.3    Knudsen, T.B.4    Martin, M.T.5    McLaurin, K.W.6
  • 63
    • 84977067464 scopus 로고    scopus 로고
    • [accessed 28 January 2015]
    • Royal Society of Chemistry. 2015. ChemSpider Webservices. Available: http://www.chemspider.com/AboutServices.aspx [accessed 28 January 2015].
    • (2015) Chemspider Webservices
  • 64
    • 84942532224 scopus 로고    scopus 로고
    • Identifying potential endocrine disruptors among industrial chemicals and their metabo-lites—development and evaluation of in silico tools
    • Rybacka A, Rudén C, Tetko IV, Andersson PL. 2015. Identifying potential endocrine disruptors among industrial chemicals and their metabo-lites—development and evaluation of in silico tools. Chemosphere 139:372-378, doi: 10.1016/j.chemosphere.2015.07.036.
    • (2015) Chemosphere , vol.139 , pp. 372-378
    • Rybacka, A.1    Rudén, C.2    Tetko, I.V.3    Ersson, P.L.4
  • 65
    • 84861521242 scopus 로고    scopus 로고
    • Comparison of different approaches to define the applicability domain of QSAR models
    • Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R. 2012. Comparison of different approaches to define the applicability domain of QSAR models. Molecules 17:4791-4810.
    • (2012) Molecules , vol.17 , pp. 4791-4810
    • Sahigara, F.1    Mansouri, K.2    Ballabio, D.3    Mauri, A.4    Consonni, V.5    Todeschini, R.6
  • 66
    • 78651482291 scopus 로고    scopus 로고
    • Endocrine disrupting chemi-cals targeting estrogen receptor signaling: Iden-tification and mechanisms of action
    • Shanle EK, Xu W. 2011. Endocrine disrupting chemi-cals targeting estrogen receptor signaling: Iden-tification and mechanisms of action. Chem Res Toxicol 24:6-19.
    • (2011) Chem Res Toxicol , vol.24 , pp. 6-19
    • Shanle, E.K.1    Xu, W.2
  • 67
    • 84886542100 scopus 로고    scopus 로고
    • EADB: An estrogenic activity database for assessing potential endo-crine activity
    • Shen J, Xu L, Fang H, Richard AM, Bray JD, Judson RS, et al. 2013. EADB: An estrogenic activity database for assessing potential endo-crine activity. Toxicol Sci 135:277-291.
    • (2013) Toxicol Sci , vol.135 , pp. 277-291
    • Shen, J.1    Xu, L.2    Fang, H.3    Richard, A.M.4    Bray, J.D.5    Judson, R.S.6
  • 68
    • 78649630186 scopus 로고    scopus 로고
    • The future of toxicity testing: A focus on in vitro methods using a quantitative high-throughput screening platform
    • Shukla SJ, Huang R, Austin CP, Xia M. 2010. The future of toxicity testing: A focus on in vitro methods using a quantitative high-throughput screening platform. Drug Discov Today 15:997-1007.
    • (2010) Drug Discov Today , vol.15 , pp. 997-1007
    • Shukla, S.J.1    Huang, R.2    Austin, C.P.3    Xia, M.4
  • 70
    • 84900563930 scopus 로고    scopus 로고
    • Complementary PLS and KNN algorithms for improved 3D-QSDAR consensus modeling of AhR binding
    • Slavov SH, Pearce BA, Buzatu DA, Wilkes JG, Beger RD. 2013. Complementary PLS and KNN algorithms for improved 3D-QSDAR consensus modeling of AhR binding. J Cheminform 5:47, doi: 10.1186/1758-2946-5-47.
    • (2013) J Cheminform , vol.5 , pp. 47
    • Slavov, S.H.1    Pearce, B.A.2    Buzatu, D.A.3    Wilkes, J.G.4    Beger, R.D.5
  • 71
    • 85164278893 scopus 로고
    • Partial least squares analysis with cross-validation for the two-class problem: A Monte Carlo study
    • Ståhle L, Wold S. 1987. Partial least squares analysis with cross-validation for the two-class problem: A Monte Carlo study. J Chemom 1:185-196.
    • (1987) J Chemom , vol.1 , pp. 185-196
    • Ståhle, L.1    Wold, S.2
  • 72
    • 84896440639 scopus 로고    scopus 로고
    • Methods for assigning confidence to toxicity data with multiple values—identifying experimental outliers
    • Steinmetz FP, Enoch SJ, Madden JC, Nelms MD, Rodriguez-Sanchez N, Rowe PH, et al. 2014. Methods for assigning confidence to toxicity data with multiple values—identifying experimental outliers. Sci Total Environ 482-483:358-365.
    • (2014) Sci Total Environ , vol.482-483 , pp. 358-365
    • Steinmetz, F.P.1    Enoch, S.J.2    Madden, J.C.3    Nelms, M.D.4    Rodriguez-Sanchez, N.5    Rowe, P.H.6
  • 73
    • 84861461270 scopus 로고    scopus 로고
    • Detection of endocrine disruptors—from simple assays to whole genome scanning
    • Sung E, Turan N, Ho PWL, Ho SL, Jarratt PDB, Waring RH, et al. 2012. Detection of endocrine disruptors—from simple assays to whole genome scanning. Int J Androl 35:407-414.
    • (2012) Int J Androl , vol.35 , pp. 407-414
    • Sung, E.1    Turan, N.2    Ho, P.3    Ho, S.L.4    Jarratt, P.5    Waring, R.H.6
  • 74
    • 80051551297 scopus 로고    scopus 로고
    • Online Chemical Modeling Environment (OCHEM): Web platform for data storage, model development and publishing of chemical information
    • Sushko I, Novotarskyi S, Körner R, Pandey AK, Rupp M, Teetz W, et al. 2011. Online Chemical Modeling Environment (OCHEM): Web platform for data storage, model development and publishing of chemical information. J Comput Aided Mol Des 25:533-554, doi: 10.1007/s10822-011-9440-2.
    • (2011) J Comput Aided Mol Des , vol.25 , pp. 533-554
    • Sushko, I.1    Novotarskyi, S.2    Körner, R.3    Pandey, A.K.4    Rupp, M.5    Teetz, W.6
  • 75
    • 71849088425 scopus 로고    scopus 로고
    • Pharmacophore and QSAR modeling of estrogen receptor β ligands and subsequent vali-dation and in silico search for new hits
    • Taha MO, Tarairah M, Zalloum H, Abu-Sheikha G. 2010. Pharmacophore and QSAR modeling of estrogen receptor β ligands and subsequent vali-dation and in silico search for new hits. J Mol Graph Model 28:383-400.
    • (2010) J Mol Graph Model , vol.28 , pp. 383-400
    • Taha, M.O.1    Tarairah, M.2    Zalloum, H.3    Abu-Sheikha, G.4
  • 77
    • 0036784472 scopus 로고    scopus 로고
    • Associative neural network
    • Tetko IV. 2002a. Associative neural network. Neural Processing Letters 16:187-199.
    • (2002) Neural Processing Letters , vol.16 , pp. 187-199
    • Tetko, I.V.1
  • 78
    • 0036557849 scopus 로고    scopus 로고
    • Neural network studies. 4. Introduction to associative neural networks
    • Tetko IV. 2002b. Neural network studies. 4. Introduction to associative neural networks. J Chem Inf Comput Sci 42:717-728.
    • (2002) J Chem Inf Comput Sci , vol.42 , pp. 717-728
    • Tetko, I.V.1
  • 80
    • 84879599189 scopus 로고    scopus 로고
    • Improving the human hazard characterization of chemicals: A Tox21 update
    • Tice RR, Austin CP, Kavlock RJ, Bucher JR. 2013. Improving the human hazard characterization of chemicals: A Tox21 update. Environ Health Perspect 121:756-765, doi: 10.1289/ehp.1205784.
    • (2013) Environ Health Perspect , vol.121 , pp. 756-765
    • Tice, R.R.1    Austin, C.P.2    Kavlock, R.J.3    Bucher, J.R.4
  • 81
    • 0037365123 scopus 로고    scopus 로고
    • Decision forest: Combining the predictions of multiple independent decision tree models
    • Tong W, Hong H, Fang H, Xie Q, Perkins R. 2003. Decision forest: Combining the predictions of multiple independent decision tree models. J Chem Inf Comput Sci 43:525-531.
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 525-531
    • Tong, W.1    Hong, H.2    Fang, H.3    Xie, Q.4    Perkins, R.5
  • 82
    • 84945245519 scopus 로고    scopus 로고
    • Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data
    • Trisciuzzi D, Alberga D, Mansouri K, Judson R, Cellamare S, Catto M, et al. 2015. Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data. Future Med Chem 7:1921-1936, doi: 10.4155/ FMC.15.103.
    • (2015) Future Med Chem , vol.7 , pp. 1921-1936
    • Trisciuzzi, D.1    Alberga, D.2    Mansouri, K.3    Judson, R.4    Cellamare, S.5    Catto, M.6
  • 83
    • 84977150052 scopus 로고    scopus 로고
    • [accessed 25 November 2014]
    • U.S. EPA (U.S. Environmental Protection Agency). 1996. Drinking Water Contaminants-Standards and Regulations. Available: http://water.epa.gov/lawsregs/guidance/sdwa/theme.cfm [accessed 25 November 2014].
    • (1996) Drinking Water Contaminants-Standards and Regulations
  • 84
    • 84925499013 scopus 로고    scopus 로고
    • CPCat: Chemical and Product Categories
    • Toxicology Reports, Curated chemical and product categories data were retrieved from the CPCat Database, U.S. EPA, RTP, NC, [accessed 26 November 2014]
    • U.S. EPA. 2014a. CPCat: Chemical and Product Categories. Exploring consumer exposure pathways and patterns of use for chemicals in the environment. Toxicology Reports 2:228-237. Curated chemical and product categories data were retrieved from the CPCat Database, U.S. EPA, RTP, NC. Available: http://actor.epa.gov/cpcat [accessed 26 November 2014].
    • (2014) Exploring Consumer Exposure Pathways and Patterns of Use for Chemicals in the Environment , vol.2 , pp. 228-237
  • 88
    • 84977117911 scopus 로고    scopus 로고
    • [accessed 26 April 2014]
    • U.S. EPA. 2014e. EPI Suite Data. Available: http://esc.syrres.com/interkow/EpiSuiteData.htm [accessed 26 April 2014].
    • (2014) EPI Suite Data
  • 91
    • 84977150058 scopus 로고    scopus 로고
    • [accessed 2 March 2015]
    • UNEP, WHO (United Nations Environmental Programme, World Health Organization). 2013. State of the Science of Endocrine Disrupting Chemicals-2012. Available: http://www.unep.org/chemicalsandwaste/UNEPsWork/EndocrineDisruptingChemicals/tabid/130226/Default.aspx/ [accessed 2 March 2015].
    • (2013) State of the Science of Endocrine Disrupting Chemicals-2012
  • 93
    • 77949904078 scopus 로고    scopus 로고
    • In silico toxicology in drug discovery—concepts based on three-dimensional models
    • Vedani A, Smiesko M. 2009. In silico toxicology in drug discovery—concepts based on three-dimensional models. Altern Lab Anim 37:477-496.
    • (2009) Altern Lab Anim , vol.37 , pp. 477-496
    • Vedani, A.1    Smiesko, M.2
  • 95
    • 84555187264 scopus 로고    scopus 로고
    • Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment
    • Wetmore BA, Wambaugh JF, Ferguson SS, Sochaski MA, Rotroff DM, Freeman K, et al. 2012. Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment. Toxicol Sci 125:157-174.
    • (2012) Toxicol Sci , vol.125 , pp. 157-174
    • Wetmore, B.A.1    Wambaugh, J.F.2    Ferguson, S.S.3    Sochaski, M.A.4    Rotroff, D.M.5    Freeman, K.6
  • 97
    • 33646485030 scopus 로고    scopus 로고
    • The Characterisation of (Quantitative) Structure-Activity Relationships: Preliminary Guidance
    • EUR 21866 EN, [accessed 27 May 2016]
    • Worth AP, Bassan A, Gallegos A, Netzeva TI, Patlewicz G, Pavan M, et al. 2005. The Characterisation of (Quantitative) Structure-Activity Relationships: Preliminary Guidance. Ispra, Italy:European Commission Joint Research Centre. EUR 21866 EN. Available: Https://eurl-ecvam.jrc.ec.europa. eu/laboratories-research/predictive_toxicology/doc/QSAR_characterisation_EUR_21866_EN.pdf [accessed 27 May 2016].
    • (2005) Ispra, Italy:European Commission Joint Research Centre
    • Worth, A.P.1    Bassan, A.2    Gallegos, A.3    Netzeva, T.I.4    Patlewicz, G.5    Pavan, M.6
  • 98
    • 27644519784 scopus 로고    scopus 로고
    • Decision forest analysis of 61 single nucleotide polymorphisms in a case-control study of esophageal cancer: A novel method
    • Xie Q, Ratnasinghe LD, Hong H, Perkins R, Tang ZZ, Hu N, et al. 2005. Decision forest analysis of 61 single nucleotide polymorphisms in a case-control study of esophageal cancer: A novel method. BMC Bioinformatics 6(suppl 2):S4, doi: 10.1186/1471-2105-6-S2-S4.
    • (2005) BMC Bioinformatics , vol.6 , pp. 4
    • Xie, Q.1    Ratnasinghe, L.D.2    Hong, H.3    Perkins, R.4    Tang, Z.Z.5    Hu, N.6
  • 99
    • 79953005609 scopus 로고    scopus 로고
    • PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints
    • Yap CW. 2011. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466-1474.
    • (2011) J Comput Chem , vol.32 , pp. 1466-1474
    • Yap, C.W.1
  • 100
    • 84896988861 scopus 로고    scopus 로고
    • A new approach to radial basis function approximation and its application to QSAR
    • Zakharov AV, Peach ML, Sitzmann M, Nicklaus MC. 2014. A new approach to radial basis function approximation and its application to QSAR. J Chem Inf Model 54:713-719.
    • (2014) J Chem Inf Model , vol.54 , pp. 713-719
    • Zakharov, A.V.1    Peach, M.L.2    Sitzmann, M.3    Nicklaus, M.C.4
  • 101
    • 84896504827 scopus 로고    scopus 로고
    • Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods
    • Zang Q, Rotroff DM, Judson RS. 2013. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. J Chem Inf Model 53:3244-3261.
    • (2013) J Chem Inf Model , vol.53 , pp. 3244-3261
    • Zang, Q.1    Rotroff, D.M.2    Judson, R.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.