메뉴 건너뛰기




Volumn 23, Issue 6, 2005, Pages 481-489

Predictive Bayesian neural network models of MHC class II peptide binding

Author keywords

Bayesian neural networks; Major histocompatibility complex; Peptide binding; Quantitative structure activity relationships; T cell epitope

Indexed keywords

AMINO ACIDS; EMBEDDED SYSTEMS; FUZZY SETS; GRAPH THEORY; MATHEMATICAL MODELS; NEURAL NETWORKS; STATISTICAL METHODS;

EID: 20444386168     PISSN: 10933263     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmgm.2005.03.001     Document Type: Article
Times cited : (32)

References (18)
  • 1
    • 0033118895 scopus 로고    scopus 로고
    • Description and prediction of peptide-MHC binding: The 'Human MHC Project'
    • S. Buus Description and prediction of peptide-MHC binding: The 'Human MHC Project' Curr. Opin. Immunol. 11 1999 209 213
    • (1999) Curr. Opin. Immunol. , vol.11 , pp. 209-213
    • Buus, S.1
  • 4
    • 0035848409 scopus 로고    scopus 로고
    • Customized versus universal scoring functions: Application to class I MHC-peptide binding free energy predictions
    • A. Logean, A. Sette, and D. Rognen Customized versus universal scoring functions: application to class I MHC-peptide binding free energy predictions Bioorg. Med. Chem. Lett. 11 2000 675 679
    • (2000) Bioorg. Med. Chem. Lett. , vol.11 , pp. 675-679
    • Logean, A.1    Sette, A.2    Rognen, D.3
  • 5
  • 6
    • 0031576987 scopus 로고    scopus 로고
    • Two complementary methods for predicting peptides binding major histocompatibility complex molecules
    • K. Gulukota, J. Sidney, A. Sette, and C. DeLisi Two complementary methods for predicting peptides binding major histocompatibility complex molecules J. Mol. Biol. 267 1997 1258 1267
    • (1997) J. Mol. Biol. , vol.267 , pp. 1258-1267
    • Gulukota, K.1    Sidney, J.2    Sette, A.3    Delisi, C.4
  • 8
    • 1342288007 scopus 로고    scopus 로고
    • *0401 binding peptides in an antigen sequence
    • *0401 binding peptides in an antigen sequence Bioinformation 20 2004 421 423
    • (2004) Bioinformation , vol.20 , pp. 421-423
    • Bhasin, M.1    Raghava, G.P.S.2
  • 9
    • 9744267439 scopus 로고    scopus 로고
    • Broad-based QSAR of farnesyltransferase inhibitors using a Bayesian regularized neural network
    • M.J. Polley, D.A. Winkler, and F.R. Burden Broad-based QSAR of farnesyltransferase inhibitors using a Bayesian regularized neural network J. Med. Chem. 47 2004 6230 6238
    • (2004) J. Med. Chem. , vol.47 , pp. 6230-6238
    • Polley, M.J.1    Winkler, D.A.2    Burden, F.R.3
  • 10
    • 2942538155 scopus 로고    scopus 로고
    • Modelling blood brain barrier partitioning using Bayesian neural nets
    • D.A. Winkler, and F.R. Burden Modelling blood brain barrier partitioning using Bayesian neural nets J. Mol. Graph. Modell. 22 2004 499 508
    • (2004) J. Mol. Graph. Modell. , vol.22 , pp. 499-508
    • Winkler, D.A.1    Burden, F.R.2
  • 11
    • 0034094124 scopus 로고    scopus 로고
    • A QSAR model for the acute toxicity of substituted benzenes towards Tetrahymena pyriformis using Bayesian regularized neural networks
    • F.R. Burden, and D.A. Winkler A QSAR model for the acute toxicity of substituted benzenes towards Tetrahymena pyriformis using Bayesian regularized neural networks Chem. Res. Toxicol. 13 2000 436 440
    • (2000) Chem. Res. Toxicol. , vol.13 , pp. 436-440
    • Burden, F.R.1    Winkler, D.A.2
  • 12
    • 0345117343 scopus 로고    scopus 로고
    • Comparison of linear and nonlinear classification algorithms: Prediction of drug metabolism by UDP-glucuronosyltransferase isoforms
    • M.J. Sorich, R.A. McKinnon, D.A. Winkler, F.R. Burden, J.O. Miners, and P.A. Smith Comparison of linear and nonlinear classification algorithms: prediction of drug metabolism by UDP-glucuronosyltransferase isoforms J. Chem. Inf. Comput. Sci. 43 2003 2019 2024
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 2019-2024
    • Sorich, M.J.1    McKinnon, R.A.2    Winkler, D.A.3    Burden, F.R.4    Miners, J.O.5    Smith, P.A.6
  • 13
    • 0003318015 scopus 로고    scopus 로고
    • Robust QSAR models from novel descriptors and Bayesian regularized neural networks
    • D.A. Winkler, and F.R. Burden Robust QSAR models from novel descriptors and Bayesian regularized neural networks Mol. Simul. 24 2000 243 258
    • (2000) Mol. Simul. , vol.24 , pp. 243-258
    • Winkler, D.A.1    Burden, F.R.2
  • 14
    • 0033549850 scopus 로고    scopus 로고
    • Robust QSAR models using Bayesian regularized artificial neural networks
    • F.R. Burden, and D.A. Winkler Robust QSAR models using Bayesian regularized artificial neural networks J. Med. Chem. 42 1999 3183 3187
    • (1999) J. Med. Chem. , vol.42 , pp. 3183-3187
    • Burden, F.R.1    Winkler, D.A.2
  • 15
    • 0031811850 scopus 로고    scopus 로고
    • MHCPEP, a database of MHC-binding peptides: Update
    • V. Brusic, G. Rudy, and L.C. Harrison MHCPEP, a database of MHC-binding peptides: update Nucleic Acids Res. 26 1998 368 371
    • (1998) Nucleic Acids Res. , vol.26 , pp. 368-371
    • Brusic, V.1    Rudy, G.2    Harrison, L.C.3
  • 16
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • J.A. Swets Measuring the accuracy of diagnostic systems Science 240 1988 1285 1293
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, J.A.1
  • 17
    • 0031825709 scopus 로고    scopus 로고
    • Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network
    • V. Brusic, G. Rudy, M. Honeyman, J. Hammer, and L. Harrison Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network Bioinformation 14 1998 121 130
    • (1998) Bioinformation , vol.14 , pp. 121-130
    • Brusic, V.1    Rudy, G.2    Honeyman, M.3    Hammer, J.4    Harrison, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.