메뉴 건너뛰기




Volumn 10, Issue 7, 2013, Pages 2757-2766

Aqueous solubility prediction: Do crystal lattice interactions help?

Author keywords

aqueous solubility; Bayesian neural network; enthalpy of sublimation; lattice energy; optimally sparse models; QSPR; VolSurf descriptors

Indexed keywords

ORGANIC COMPOUND;

EID: 84879698395     PISSN: 15438384     EISSN: 15438392     Source Type: Journal    
DOI: 10.1021/mp4001958     Document Type: Article
Times cited : (59)

References (66)
  • 2
  • 3
    • 0035289779 scopus 로고    scopus 로고
    • Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
    • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings Adv. Drug Delivery Rev. 2001, 46, 3-26
    • (2001) Adv. Drug Delivery Rev. , vol.46 , pp. 3-26
    • Lipinski, C.A.1    Lombardo, F.2    Dominy, B.W.3    Feeney, P.J.4
  • 4
    • 0026914713 scopus 로고
    • Estimation of Aqueous Solubility of Organic-Molecules by the Group Contribution Approach - Application to the Study of Biodegradation
    • Klopman, G.; Wang, S.; Balthasar, D. M. Estimation of Aqueous Solubility of Organic-Molecules by the Group Contribution Approach-Application to the Study of Biodegradation J. Chem. Inf. Comput. Sci. 1992, 32, 474-482
    • (1992) J. Chem. Inf. Comput. Sci. , vol.32 , pp. 474-482
    • Klopman, G.1    Wang, S.2    Balthasar, D.M.3
  • 5
    • 0035273557 scopus 로고    scopus 로고
    • Estimation of the aqueous solubility of organic molecules by the group contribution approach
    • Klopman, G.; Zhu, H. Estimation of the aqueous solubility of organic molecules by the group contribution approach J. Chem. Inf. Comput. Sci. 2001, 41, 439-45
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 439-445
    • Klopman, G.1    Zhu, H.2
  • 6
    • 0028990049 scopus 로고
    • Group-Contribution Methods to Estimate Water Solubility of Organic-Chemicals
    • Kuhne, R.; Ebert, R. U.; Kleint, F.; Schmidt, G.; Schuurmann, G. Group-Contribution Methods to Estimate Water Solubility of Organic-Chemicals Chemosphere 1995, 30, 2061-2077
    • (1995) Chemosphere , vol.30 , pp. 2061-2077
    • Kuhne, R.1    Ebert, R.U.2    Kleint, F.3    Schmidt, G.4    Schuurmann, G.5
  • 7
    • 84855772519 scopus 로고    scopus 로고
    • Solubility Prediction of Pharmaceutical and Chemical Compounds in Pure and Mixed Solvents Using Predictive Models
    • Sheikholeslamzadeh, E.; Rohani, S. Solubility Prediction of Pharmaceutical and Chemical Compounds in Pure and Mixed Solvents Using Predictive Models Ind. Eng. Chem. Res. 2012, 51, 464-473
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 464-473
    • Sheikholeslamzadeh, E.1    Rohani, S.2
  • 8
    • 65249097797 scopus 로고    scopus 로고
    • Aqueous Solubility Prediction Based on Weighted Atom Type Counts and Solvent Accessible Surface Areas
    • Wang, J. M.; Hou, T. J.; Xu, X. J. Aqueous Solubility Prediction Based on Weighted Atom Type Counts and Solvent Accessible Surface Areas J. Chem. Inf. Model. 2009, 49, 571-581
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 571-581
    • Wang, J.M.1    Hou, T.J.2    Xu, X.J.3
  • 9
    • 33646013885 scopus 로고    scopus 로고
    • Thermodynamic mdeling of activity coefficient and prediction of solubility: Part 1. Predictive models
    • Mirmehrabi, M.; Rohani, S.; Perry, L. Thermodynamic mdeling of activity coefficient and prediction of solubility: part 1. Predictive models J. Pharm. Sci. 2006, 95, 790-797
    • (2006) J. Pharm. Sci. , vol.95 , pp. 790-797
    • Mirmehrabi, M.1    Rohani, S.2    Perry, L.3
  • 10
    • 33646007005 scopus 로고    scopus 로고
    • Thermodynamic modeling of activity coefficient and prediction of solubility: Part 2. Semipredictive or semiempirical models
    • Mirmehrabi, M.; Rohani, S.; Perry, L. Thermodynamic modeling of activity coefficient and prediction of solubility: part 2. Semipredictive or semiempirical models J. Pharm. Sci. 2006, 95, 798-809
    • (2006) J. Pharm. Sci. , vol.95 , pp. 798-809
    • Mirmehrabi, M.1    Rohani, S.2    Perry, L.3
  • 14
    • 33846891907 scopus 로고    scopus 로고
    • In silico prediction of aqueous solubility
    • Dearden, J. C. In silico prediction of aqueous solubility Expert Opin. Drug Discovery 2006, 1, 31-52
    • (2006) Expert Opin. Drug Discovery , vol.1 , pp. 31-52
    • Dearden, J.C.1
  • 15
    • 2942704243 scopus 로고    scopus 로고
    • ESOL: Estimating aqueous solubility directly from molecular structure
    • Delaney, J. S. ESOL: estimating aqueous solubility directly from molecular structure J. Chem. Inf. Comput. Sci. 2004, 44, 1000-5
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1000-1005
    • Delaney, J.S.1
  • 16
    • 0036757543 scopus 로고    scopus 로고
    • High-throughput, in silico prediction of aqueous solubility based on one- and two-dimensional descriptors
    • Engkvist, O.; Wrede, P. High-throughput, in silico prediction of aqueous solubility based on one- and two-dimensional descriptors J. Chem. Inf. Comput. Sci. 2002, 42, 1247-9
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 1247-1249
    • Engkvist, O.1    Wrede, P.2
  • 17
    • 39449138204 scopus 로고    scopus 로고
    • Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P
    • Hughes, L. D.; Palmer, D. S.; Nigsch, F.; Mitchell, J. B. Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P J. Chem. Inf. Model. 2008, 48, 220-32
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 220-232
    • Hughes, L.D.1    Palmer, D.S.2    Nigsch, F.3    Mitchell, J.B.4
  • 18
    • 0000445633 scopus 로고    scopus 로고
    • Prediction of aqueous solubility of organic compounds from molecular structure
    • Mitchell, B. E.; Jurs, P. C. Prediction of aqueous solubility of organic compounds from molecular structure J. Chem. Inf. Comput. Sci. 1998, 38, 489-496
    • (1998) J. Chem. Inf. Comput. Sci. , vol.38 , pp. 489-496
    • Mitchell, B.E.1    Jurs, P.C.2
  • 19
    • 84860709721 scopus 로고    scopus 로고
    • The Structure, Thermodynamics, and Solubility of Organic Crystals from Simulation with a Polarizable Force Field
    • Schnieders, M. J.; Baltrusaitis, J.; Shi, Y.; Chattree, G.; Zheng, L. Q.; Yang, W.; Ren, P. Y. The Structure, Thermodynamics, and Solubility of Organic Crystals from Simulation with a Polarizable Force Field J. Chem. Theory Comput. 2012, 8, 1721-1736
    • (2012) J. Chem. Theory Comput. , vol.8 , pp. 1721-1736
    • Schnieders, M.J.1    Baltrusaitis, J.2    Shi, Y.3    Chattree, G.4    Zheng, L.Q.5    Yang, W.6    Ren, P.Y.7
  • 20
    • 34548014048 scopus 로고    scopus 로고
    • Computational approaches to determine drug solubility
    • Faller, B.; Ertl, P. Computational approaches to determine drug solubility Adv. Drug Delivery Rev. 2007, 59, 533-45
    • (2007) Adv. Drug Delivery Rev. , vol.59 , pp. 533-545
    • Faller, B.1    Ertl, P.2
  • 21
    • 33747183101 scopus 로고    scopus 로고
    • Recent progress in the computational prediction of aqueous solubility and absorption
    • Johnson, S. R.; Zheng, W. Recent progress in the computational prediction of aqueous solubility and absorption AAPS J. 2006, 8, E27-40
    • (2006) AAPS J. , vol.8 , pp. 27-40
    • Johnson, S.R.1    Zheng, W.2
  • 23
    • 6444225736 scopus 로고    scopus 로고
    • Prediction of aqueous solubility based on large datasets using several QSPR models utilizing topological structure representation
    • Votano, J. R.; Parham, M.; Hall, L. H.; Kier, L. B.; Hall, L. M. Prediction of aqueous solubility based on large datasets using several QSPR models utilizing topological structure representation Chem. Biodivers. 2004, 1, 1829-1841
    • (2004) Chem. Biodivers. , vol.1 , pp. 1829-1841
    • Votano, J.R.1    Parham, M.2    Hall, L.H.3    Kier, L.B.4    Hall, L.M.5
  • 24
    • 84863418861 scopus 로고    scopus 로고
    • Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area
    • Ali, J.; Camilleri, P.; Brown, M. B.; Hutt, A. J.; Kirton, S. B. Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area J. Chem. Inf. Model. 2012, 52, 420-8
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 420-428
    • Ali, J.1    Camilleri, P.2    Brown, M.B.3    Hutt, A.J.4    Kirton, S.B.5
  • 25
    • 72149104591 scopus 로고    scopus 로고
    • Prediction of aqueous solubility from SCRATCH
    • Jain, P.; Yalkowsky, S. H. Prediction of aqueous solubility from SCRATCH Int. J. Pharmaceutics 2010, 385, 1-5
    • (2010) Int. J. Pharmaceutics , vol.385 , pp. 1-5
    • Jain, P.1    Yalkowsky, S.H.2
  • 26
    • 84860658314 scopus 로고    scopus 로고
    • Bridging solubility between drug discovery and development
    • Di, L.; Fish, P. V.; Mano, T. Bridging solubility between drug discovery and development Drug Discovery Today 2012, 17, 486-495
    • (2012) Drug Discovery Today , vol.17 , pp. 486-495
    • Di, L.1    Fish, P.V.2    Mano, T.3
  • 27
    • 17844369895 scopus 로고    scopus 로고
    • Generalized fragment-substructure based property prediction method
    • Clark, M. Generalized fragment-substructure based property prediction method J. Chem. Inf. Model. 2005, 45, 30-38
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 30-38
    • Clark, M.1
  • 28
    • 34548184747 scopus 로고    scopus 로고
    • A computational model for the prediction of aqueous solubility that includes crystal packing, intrinsic solubility, and ionization effects
    • Johnson, S. R.; Chen, X. Q.; Murphy, D.; Gudmundsson, O. A computational model for the prediction of aqueous solubility that includes crystal packing, intrinsic solubility, and ionization effects Mol. Pharmaceutics 2007, 4, 513-523
    • (2007) Mol. Pharmaceutics , vol.4 , pp. 513-523
    • Johnson, S.R.1    Chen, X.Q.2    Murphy, D.3    Gudmundsson, O.4
  • 29
    • 67949124727 scopus 로고    scopus 로고
    • Optimal Sparse Descriptor Selection for QSAR Using Bayesian Methods
    • Burden, F. R.; Winkler, D. A. Optimal Sparse Descriptor Selection for QSAR Using Bayesian Methods QSAR Combin. Sci. 2009, 28, 645-653
    • (2009) QSAR Combin. Sci. , vol.28 , pp. 645-653
    • Burden, F.R.1    Winkler, D.A.2
  • 30
    • 58149381237 scopus 로고    scopus 로고
    • Bayesian regularization of neural networks
    • Burden, F.; Winkler, D. Bayesian regularization of neural networks Methods Mol. Biol. 2008, 458, 25-44
    • (2008) Methods Mol. Biol. , vol.458 , pp. 25-44
    • Burden, F.1    Winkler, D.2
  • 31
    • 76749109588 scopus 로고    scopus 로고
    • An Optimal Self-Pruning Neural Network and Nonlinear Descriptor Selection in QSAR
    • Burden, F. R.; Winkler, D. A. An Optimal Self-Pruning Neural Network and Nonlinear Descriptor Selection in QSAR QSAR Combin. Sci. 2009, 28, 1092-1097
    • (2009) QSAR Combin. Sci. , vol.28 , pp. 1092-1097
    • Burden, F.R.1    Winkler, D.A.2
  • 32
    • 84879724769 scopus 로고    scopus 로고
    • (Physical/Chemical Property database); Syracuse Research Corporation: New York
    • PHYSPROP (Physical/Chemical Property database); Syracuse Research Corporation: New York, 2011.
    • (2011) PHYSPROP
  • 33
    • 69749091529 scopus 로고    scopus 로고
    • A Consistent Dataset of Kinetic Solubilities for Early-Phase Drug Discovery
    • Kramer, C.; Heinisch, T.; Fligge, T.; Beck, B.; Clark, T. A Consistent Dataset of Kinetic Solubilities for Early-Phase Drug Discovery ChemMedChem 2009, 4, 1529-1536
    • (2009) ChemMedChem , vol.4 , pp. 1529-1536
    • Kramer, C.1    Heinisch, T.2    Fligge, T.3    Beck, B.4    Clark, T.5
  • 35
    • 49449113247 scopus 로고    scopus 로고
    • Solubility challenge: Can you predict solubilities of 32 molecules using a database of 100 reliable measurements?
    • Llinas, A.; Glen, R. C.; Goodman, J. M. Solubility challenge: Can you predict solubilities of 32 molecules using a database of 100 reliable measurements? J. Chem. Inf. Model. 2008, 48, 1289-1303
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1289-1303
    • Llinas, A.1    Glen, R.C.2    Goodman, J.M.3
  • 36
    • 0034992583 scopus 로고    scopus 로고
    • Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors
    • Zhao, Y. H.; Le, J.; Abraham, M. H.; Hersey, A.; Eddershaw, P. J.; Luscombe, C. N.; Boutina, D.; Beck, G.; Sherborne, B.; Cooper, I.; Platts, J. A. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors J. Pharm. Sci. 2001, 90, 749-784
    • (2001) J. Pharm. Sci. , vol.90 , pp. 749-784
    • Zhao, Y.H.1    Le, J.2    Abraham, M.H.3    Hersey, A.4    Eddershaw, P.J.5    Luscombe, C.N.6    Boutina, D.7    Beck, G.8    Sherborne, B.9    Cooper, I.10    Platts, J.A.11
  • 37
    • 0033800498 scopus 로고    scopus 로고
    • VolSurf: A new tool for the pharmacokinetic optimization of lead compounds
    • Cruciani, G.; Pastor, M.; Guba, W. VolSurf: a new tool for the pharmacokinetic optimization of lead compounds Eur. J. Pharm. Sci. 2000, 11 (Suppl. 2) S29-39
    • (2000) Eur. J. Pharm. Sci. , vol.11 , Issue.SUPPL. 2 , pp. 29-39
    • Cruciani, G.1    Pastor, M.2    Guba, W.3
  • 38
    • 0036490151 scopus 로고    scopus 로고
    • Charged partial surface area (CPSA) descriptors QSAR applications. SAR QSAR Environ
    • Stanton, D. T.; Dimitrov, S.; Grancharov, V.; Mekenyan, O. G. Charged partial surface area (CPSA) descriptors QSAR applications. SAR QSAR Environ Res. 2002, 13, 341-351
    • (2002) Res. , vol.13 , pp. 341-351
    • Stanton, D.T.1    Dimitrov, S.2    Grancharov, V.3    Mekenyan, O.G.4
  • 39
    • 84908150275 scopus 로고
    • Charged Partial Surface-Area Descriptors for Structure-Property Relationship Studies
    • Stanton, D. T.; Jurs, P. C. Charged Partial Surface-Area Descriptors for Structure-Property Relationship Studies Abstr. Pap. Am. Chem. Soc. 1990, 199, 2
    • (1990) Abstr. Pap. Am. Chem. Soc. , vol.199 , pp. 2
    • Stanton, D.T.1    Jurs, P.C.2
  • 40
    • 84873023995 scopus 로고    scopus 로고
    • Capturing the crystal: Prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds
    • Salahinejad, M.; Le, T. C.; Winkler, D. A. Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds J. Chem. Inf. Model. 2013, 53, 223-229
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 223-229
    • Salahinejad, M.1    Le, T.C.2    Winkler, D.A.3
  • 41
    • 0033549850 scopus 로고    scopus 로고
    • Robust QSAR models using Bayesian regularized neural networks
    • Burden, F. R.; Winkler, D. A. Robust QSAR models using Bayesian regularized neural networks J. Med. Chem. 1999, 42, 3183-3187
    • (1999) J. Med. Chem. , vol.42 , pp. 3183-3187
    • Burden, F.R.1    Winkler, D.A.2
  • 42
    • 76749124899 scopus 로고    scopus 로고
    • Robust modelling of solubility in supercritical carbon dioxide using Bayesian methods
    • Tarasova, A.; Burden, F.; Gasteiger, J.; Winkler, D. A. Robust modelling of solubility in supercritical carbon dioxide using Bayesian methods J. Mol. Graph. Model. 2010, 28, 593-7
    • (2010) J. Mol. Graph. Model. , vol.28 , pp. 593-597
    • Tarasova, A.1    Burden, F.2    Gasteiger, J.3    Winkler, D.A.4
  • 43
    • 16544393180 scopus 로고    scopus 로고
    • Neural networks as robust tools in drug lead discovery and development
    • Winkler, D. A. Neural networks as robust tools in drug lead discovery and development Mol. Biotechnol. 2004, 27, 139-167
    • (2004) Mol. Biotechnol. , vol.27 , pp. 139-167
    • Winkler, D.A.1
  • 44
    • 0036368719 scopus 로고    scopus 로고
    • Application of neural networks to large dataset QSAR, virtual screening, and library design
    • Winkler, D. A.; Burden, F. R. Application of neural networks to large dataset QSAR, virtual screening, and library design Methods Mol. Biol. 2002, 201, 325-67
    • (2002) Methods Mol. Biol. , vol.201 , pp. 325-367
    • Winkler, D.A.1    Burden, F.R.2
  • 45
    • 44249109682 scopus 로고    scopus 로고
    • A general approach to simultaneous model fitting and variable elimination in response models for biological data with many more variables than observations
    • Kiiveri, H. T. A general approach to simultaneous model fitting and variable elimination in response models for biological data with many more variables than observations BMC Bioinformatics 2008, 9, 195
    • (2008) BMC Bioinformatics , vol.9 , pp. 195
    • Kiiveri, H.T.1
  • 46
    • 0027209171 scopus 로고
    • The Probability of Chance Correlation Using Partial Least-Squares (Pls)
    • Clark, M.; Cramer, R. D. The Probability of Chance Correlation Using Partial Least-Squares (Pls) Quant. Struct.-Act. Relat. 1993, 12, 137-145
    • (1993) Quant. Struct.-Act. Relat. , vol.12 , pp. 137-145
    • Clark, M.1    Cramer, R.D.2
  • 47
    • 84861059886 scopus 로고    scopus 로고
    • Quantitative structure-property relationship modeling of diverse materials properties
    • Le, T. C.; Epa, V. C.; Burden, F. R.; Winkler, D. A. Quantitative structure-property relationship modeling of diverse materials properties Chem. Rev. 2012, 112, 2889-919
    • (2012) Chem. Rev. , vol.112 , pp. 2889-2919
    • Le, T.C.1    Epa, V.C.2    Burden, F.R.3    Winkler, D.A.4
  • 48
    • 77958029276 scopus 로고    scopus 로고
    • Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction
    • Katritzky, A. R.; Kuanar, M.; Slavov, S.; Hall, C. D.; Karelson, M.; Kahn, I.; Dobchev, D. A. Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction Chem. Rev. 2010, 110, 5714-5789
    • (2010) Chem. Rev. , vol.110 , pp. 5714-5789
    • Katritzky, A.R.1    Kuanar, M.2    Slavov, S.3    Hall, C.D.4    Karelson, M.5    Kahn, I.6    Dobchev, D.A.7
  • 50
    • 74249093072 scopus 로고    scopus 로고
    • Early ADMET Prediction: Toy or Tool
    • Varnek, A. Tropsha, A. RSC: Cambridge
    • Tetko, I. V.; Oprea, T. I. Early ADMET Prediction: Toy or Tool. In Chemoinformatics Approaches to Virtual Screening; Varnek, A.; Tropsha, A., Eds.; RSC: Cambridge, 2008; pp 250-267.
    • (2008) Chemoinformatics Approaches to Virtual Screening , pp. 250-267
    • Tetko, I.V.1    Oprea, T.I.2
  • 52
  • 53
    • 79952229990 scopus 로고    scopus 로고
    • Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection
    • Cheng, T.; Li, Q.; Wang, Y.; Bryant, S. H. Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection J. Chem. Inf. Model. 2011, 51, 229-36
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 229-236
    • Cheng, T.1    Li, Q.2    Wang, Y.3    Bryant, S.H.4
  • 55
    • 78649356495 scopus 로고    scopus 로고
    • Prediction of Aqueous Solubility of Drug-Like Compounds by Using an Artificial Neural Network and Least-Squares Support Vector Machine
    • Fatemi, M. H.; Heidari, A.; Ghorbanzade, M. Prediction of Aqueous Solubility of Drug-Like Compounds by Using an Artificial Neural Network and Least-Squares Support Vector Machine Bull. Chem. Soc. Jpn. 2010, 83, 1338-1345
    • (2010) Bull. Chem. Soc. Jpn. , vol.83 , pp. 1338-1345
    • Fatemi, M.H.1    Heidari, A.2    Ghorbanzade, M.3
  • 57
    • 79551534528 scopus 로고    scopus 로고
    • Prediction of aqueous solubility of druglike organic compounds using partial least squares, back-propagation network and support vector machine
    • Cao, D. S.; Xu, Q. S.; Liang, Y. Z.; Chen, X. A.; Li, H. D. Prediction of aqueous solubility of druglike organic compounds using partial least squares, back-propagation network and support vector machine J. Chemomet. 2010, 24, 584-595
    • (2010) J. Chemomet. , vol.24 , pp. 584-595
    • Cao, D.S.1    Xu, Q.S.2    Liang, Y.Z.3    Chen, X.A.4    Li, H.D.5
  • 58
    • 50649105956 scopus 로고    scopus 로고
    • New QSPR study for the prediction of aqueous solubility of drug-like compounds
    • Duchowicz, P. R.; Talevi, A.; Bruno-Blanch, L. E.; Castro, E. A. New QSPR study for the prediction of aqueous solubility of drug-like compounds Bioorg. Med. Chem. 2008, 16, 7944-7955
    • (2008) Bioorg. Med. Chem. , vol.16 , pp. 7944-7955
    • Duchowicz, P.R.1    Talevi, A.2    Bruno-Blanch, L.E.3    Castro, E.A.4
  • 59
    • 57649210497 scopus 로고    scopus 로고
    • Measurement and prediction of phase diagrams of the enantiomeric 3-chloromandelic acid system
    • Zhang, Y.; Ray, A.; Rohani, S. Measurement and prediction of phase diagrams of the enantiomeric 3-chloromandelic acid system Chem. Eng. Sci. 2009, 64, 192-197
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 192-197
    • Zhang, Y.1    Ray, A.2    Rohani, S.3
  • 60
    • 84866071307 scopus 로고    scopus 로고
    • Modelling solubility, acid-base properties and activity coefficients of amoxicillin, ampicillin and (+)6-aminopenicillanic acid, in NaCl((aq)) at different ionic strengths and temperatures
    • Crea, F.; Cucinotta, D.; De Stefano, C.; Milea, D.; Sammartano, S.; Vianelli, G. Modelling solubility, acid-base properties and activity coefficients of amoxicillin, ampicillin and (+)6-aminopenicillanic acid, in NaCl((aq)) at different ionic strengths and temperatures Eur. J. Pharm. Sci. 2012, 47, 661-77
    • (2012) Eur. J. Pharm. Sci. , vol.47 , pp. 661-677
    • Crea, F.1    Cucinotta, D.2    De Stefano, C.3    Milea, D.4    Sammartano, S.5    Vianelli, G.6
  • 61
    • 60849095491 scopus 로고    scopus 로고
    • Use of H-1 NMR to facilitate solubility measurement for drug discovery compounds
    • Lin, M.; Tesconi, M.; Tischler, M. Use of H-1 NMR to facilitate solubility measurement for drug discovery compounds Int. J. Pharmaceutics 2009, 369, 47-52
    • (2009) Int. J. Pharmaceutics , vol.369 , pp. 47-52
    • Lin, M.1    Tesconi, M.2    Tischler, M.3
  • 63
    • 84866733801 scopus 로고    scopus 로고
    • PH-Induced Precipitation Behavior of Weakly Basic Compounds: Determination of Extent and Duration of Supersaturation Using Potentiometric Titration and Correlation to Solid State Properties
    • Hsieh, Y.; Ilevbare, G. A.; Van Eerdenbrugh, B.; Box, K. J.; Sanchez-Felix, M. V.; Taylor, L. S. pH-Induced Precipitation Behavior of Weakly Basic Compounds: Determination of Extent and Duration of Supersaturation Using Potentiometric Titration and Correlation to Solid State Properties Pharm. Res. 2012, 29, 2738-2753
    • (2012) Pharm. Res. , vol.29 , pp. 2738-2753
    • Hsieh, Y.1    Ilevbare, G.A.2    Van Eerdenbrugh, B.3    Box, K.J.4    Sanchez-Felix, M.V.5    Taylor, L.S.6
  • 64
    • 77956504378 scopus 로고    scopus 로고
    • Solubility of Folic Acid in Water at pH Values between 0 and 7 at Temperatures (298.15, 303.15, and 313.15) K
    • Wu, Z.; Li, X. X.; Hou, C. Y.; Qian, Y. Solubility of Folic Acid in Water at pH Values between 0 and 7 at Temperatures (298.15, 303.15, and 313.15) K J. Chem. Eng. Data 2010, 55, 3958-3961
    • (2010) J. Chem. Eng. Data , vol.55 , pp. 3958-3961
    • Wu, Z.1    Li, X.X.2    Hou, C.Y.3    Qian, Y.4
  • 65
    • 78651288987 scopus 로고    scopus 로고
    • Solubility Advantage of Amorphous Pharmaceuticals: II. Application of Quantitative Thermodynamic Relationships for Prediction of Solubility Enhancement in Structurally Diverse Insoluble Pharmaceuticals
    • Murdande, S. B.; Pikal, M. J.; Shanker, R. M.; Bogner, R. H. Solubility Advantage of Amorphous Pharmaceuticals: II. Application of Quantitative Thermodynamic Relationships for Prediction of Solubility Enhancement in Structurally Diverse Insoluble Pharmaceuticals Pharm. Res. 2010, 27, 2704-2714
    • (2010) Pharm. Res. , vol.27 , pp. 2704-2714
    • Murdande, S.B.1    Pikal, M.J.2    Shanker, R.M.3    Bogner, R.H.4
  • 66
    • 79960736520 scopus 로고    scopus 로고
    • Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures
    • Martinez, F.; Pena, M. A.; Bustamante, P. Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures Fluid Phase Equilib. 2011, 308, 98-106
    • (2011) Fluid Phase Equilib. , vol.308 , pp. 98-106
    • Martinez, F.1    Pena, M.A.2    Bustamante, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.