메뉴 건너뛰기




Volumn 28, Issue 2, 2014, Pages 61-73

Impact of distance-based metric learning on classification and visualization model performance and structure-activity landscapes

Author keywords

Chemical liabilities; Chemography; Generative topographic maps; Large margin nearest neighbors; Metric learning; Structure activity landscapes

Indexed keywords

CHEMICAL ANALYSIS; DATA MINING; MAPS; PATTERN RECOGNITION; VISUALIZATION;

EID: 84898814974     PISSN: 0920654X     EISSN: 15734951     Source Type: Journal    
DOI: 10.1007/s10822-014-9719-1     Document Type: Article
Times cited : (11)

References (52)
  • 2
    • 0037364162 scopus 로고    scopus 로고
    • ADMET in silico modelling: Towards prediction paradise?
    • DOI 10.1038/nrd1032
    • van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2(3):192-204 (Pubitemid 37361664)
    • (2003) Nature Reviews Drug Discovery , vol.2 , Issue.3 , pp. 192-204
    • Van De, W.H.1    Gifford, E.2
  • 7
    • 85133386144 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side-information
    • Dietterich TG, Becker S, Ghahramani Z (eds) MIT press, Cambridge
    • Xing EP, Ng AY, Jordan MI, Russel S (2002) Distance metric learning, with application to clustering with side-information. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems, vol 14. MIT press, Cambridge
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russel, S.4
  • 8
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weinberger KQ, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification. JMLR 10:207-244
    • (2009) JMLR , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 9
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13:21-27
    • (1967) IEEE Trans Inf Theory , vol.13 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 10
    • 2942640607 scopus 로고    scopus 로고
    • Neighborhood behavior - The relation between chemical similarity and property similarity
    • Horvath D, Barbosa F (2004) Neighborhood behavior - the relation between chemical similarity and property similarity. Curr Trends Med Chem 4:589-600
    • (2004) Curr Trends Med Chem , vol.4 , pp. 589-600
    • Horvath, D.1    Barbosa, F.2
  • 11
    • 0037365125 scopus 로고    scopus 로고
    • Neighborhood behavior of in silico structural spaces with respect to in vitro activity spaces - A novel understanding of the molecular similarity principle in the context of multiple receptor binding profiles
    • Horvath D, Jeandenans C (2003) Neighborhood behavior of in silico structural spaces with respect to in vitro activity spaces - a novel understanding of the molecular similarity principle in the context of multiple receptor binding profiles. J Chem Inf Comput Sci 43(2):680-690
    • (2003) J Chem Inf Comput Sci , vol.43 , Issue.2 , pp. 680-690
    • Horvath, D.1    Jeandenans, C.2
  • 13
    • 84874425276 scopus 로고    scopus 로고
    • Interpretable, probability-based confidence metric for continuous quantitative structure-activity relationship models
    • doi:10.1021/ci300554t
    • Keefer CE, Kauffman GW, Gupta RR (2013) Interpretable, probability-based confidence metric for continuous quantitative structure-activity relationship models. J Chem Inf Model 53(2):368-383. doi:10.1021/ci300554t
    • (2013) J Chem Inf Model , vol.53 , Issue.2 , pp. 368-383
    • Keefer, C.E.1    Kauffman, G.W.2    Gupta, R.R.3
  • 14
    • 80053323744 scopus 로고    scopus 로고
    • Rank order entropy: Why one metric is not enough
    • doi:10.1021/ci200170k
    • McLellan MR, Ryan MD, Breneman CM Rank order entropy: why one metric is not enough. J Chem Inf Model 51(9):2302-2319. doi:10.1021/ci200170k
    • J Chem Inf Model , vol.51 , Issue.9 , pp. 2302-2319
    • McLellan, M.R.1    Ryan, M.D.2    Breneman, C.M.3
  • 16
    • 0036557849 scopus 로고    scopus 로고
    • Neural network studies. 4. Introduction to associative neural networks
    • Tetko IV (2002) Neural network studies. 4. Introduction to associative neural networks. J Chem Inf Comput Sci 42(3):717-728
    • (2002) J Chem Inf Comput Sci , vol.42 , Issue.3 , pp. 717-728
    • Tetko, I.V.1
  • 17
    • 0036784472 scopus 로고    scopus 로고
    • Associative neural network
    • Tetko IV (2002) Associative neural network. Neural Process Lett 16(2):187
    • (2002) Neural Process Lett , vol.16 , Issue.2 , pp. 187
    • Tetko, I.V.1
  • 18
    • 84861496589 scopus 로고    scopus 로고
    • Modeling of activity landscapes for drug discovery
    • Bajorath J (2012) Modeling of activity landscapes for drug discovery. Expert Opin Drug Discov 7(6):463-473
    • (2012) Expert Opin Drug Discov , vol.7 , Issue.6 , pp. 463-473
    • Bajorath, J.1
  • 19
    • 84867377213 scopus 로고    scopus 로고
    • Exploring structure-activity data using the landscape paradigm
    • doi:10.1002/wcms.1087
    • Guha R (2012) Exploring structure-activity data using the landscape paradigm. Wiley Interdiscip Rev: Comput Mol Sci 2(6):829-841. doi:10.1002/wcms.1087
    • (2012) Wiley Interdiscip Rev: Comput Mol Sci , vol.2 , Issue.6 , pp. 829-841
    • Guha, R.1
  • 20
    • 78649844432 scopus 로고    scopus 로고
    • Activity landscape representations for structure-activity relationship analysis
    • doi:10.1021/jm100933w
    • Wassermann AM, Wawer M, Bajorath J (2010) Activity landscape representations for structure-activity relationship analysis. J Med Chem 53(23):8209-8223. doi:10.1021/jm100933w
    • (2010) J Med Chem , vol.53 , Issue.23 , pp. 8209-8223
    • Wassermann, A.M.1    Wawer, M.2    Bajorath, J.3
  • 21
    • 84879742615 scopus 로고    scopus 로고
    • Activity landscapes, information theory, and structure - Activity relationships
    • doi:10.1002/minf.201200120
    • Iyer P, Stumpfe D, Vogt M, Bajorath J, Maggiora GM (2013) Activity landscapes, information theory, and structure - activity relationships. Mol Inf. doi:10.1002/minf.201200120
    • (2013) Mol Inf
    • Iyer, P.1    Stumpfe, D.2    Vogt, M.3    Bajorath, J.4    Maggiora, G.M.5
  • 22
    • 56049095031 scopus 로고    scopus 로고
    • On the interpretation and interpretability of quantitative structure-activity relationship models
    • Guha R (2008) On the interpretation and interpretability of quantitative structure-activity relationship models. J Comput Aided Mol Des 22(12):857-871
    • (2008) J Comput Aided Mol des , vol.22 , Issue.12 , pp. 857-871
    • Guha, R.1
  • 23
    • 42149090634 scopus 로고    scopus 로고
    • Structure - Activity landscape index: Identifying and quantifying activity cliffs
    • DOI 10.1021/ci7004093
    • Guha R, Van Drie JH (2008) Structure-Activity Landscape Index: identifying and quantifying activity cliffs. J Chem Inf Model 48(3):646-658. doi:10.1021/ci7004093 (Pubitemid 351535432)
    • (2008) Journal of Chemical Information and Modeling , vol.48 , Issue.3 , pp. 646-658
    • Guha, R.1    Van Drie, J.H.2
  • 24
    • 58149086468 scopus 로고    scopus 로고
    • Combining cluster analysis, feature selection and multiple support vector machine models for the identification of human ether-a-go-go related gene channel blocking compounds
    • Nisius B, Goller AH, Bajorath J (2009) Combining cluster analysis, feature selection and multiple support vector machine models for the identification of human ether-a-go-go related gene channel blocking compounds. Chem Biol Drug Des 73(1):17-25
    • (2009) Chem Biol Drug des , vol.73 , Issue.1 , pp. 17-25
    • Nisius, B.1    Goller, A.H.2    Bajorath, J.3
  • 25
  • 27
    • 77956021620 scopus 로고    scopus 로고
    • Similarity-potency trees: A method to search for SAR information in compound data sets and derive SAR rules
    • Wawer M, Jr Bajorath (2010) Similarity-potency trees: a method to search for SAR information in compound data sets and derive SAR rules. J Chem Inf Model 50(8):1395-1409
    • (2010) J Chem Inf Model , vol.50 , Issue.8 , pp. 1395-1409
    • Wawer, M.1    Bajorath, J.2
  • 28
    • 77956964002 scopus 로고    scopus 로고
    • Best practices for QSAR model development, validation, and exploitation
    • doi:10.1002/minf.201000061
    • Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inf 29(6-7):476-488. doi:10.1002/minf.201000061
    • (2010) Mol Inf , vol.29 , Issue.6-7 , pp. 476-488
    • Tropsha, A.1
  • 29
    • 84875323432 scopus 로고    scopus 로고
    • Chemaxon Standardizer. http://wwwchemaxoncom/library/scientific- presentations/standardizer/
    • Chemaxon Standardizer
  • 30
    • 84875326578 scopus 로고    scopus 로고
    • Instant JChem www.chemaxon.com/products/instant-jchem/
    • Instant JChem
  • 34
    • 34548463136 scopus 로고    scopus 로고
    • Principal component analysis
    • 2nd edn, Springer: NY
    • Jolliffe IT (2002) Principal component analysis. Springer series in statistics, vol XXIX, 2nd edn, Springer: NY
    • (2002) Springer Series in Statistics , vol.29
    • Jolliffe, I.T.1
  • 39
    • 84859890850 scopus 로고    scopus 로고
    • Generative topographic maps (GTM): Universal tool for data visualization, structure-activity modeling and database comparison
    • Kireeva N, Baskin II, Gaspar HA, Horvath D, Marcou G, Varnek A (2012) Generative topographic maps (GTM): universal tool for data visualization, structure-activity modeling and database comparison. Mol Inf 31(3-4):301-312
    • (2012) Mol Inf , vol.31 , Issue.3-4 , pp. 301-312
    • Kireeva, N.1    Baskin, I.I.2    Gaspar, H.A.3    Horvath, D.4    Marcou, G.5    Varnek, A.6
  • 40
    • 84872419971 scopus 로고    scopus 로고
    • Towards in silico identification of the human ether-a-go-go-related gene channel blockers: Discriminative vs. Generative classification models
    • doi:10.1080/1062936x.2012.742135
    • Kireeva N, Kuznetsov SL, Bykov AA, Yu Tsivadze A (2013) Towards in silico identification of the human ether-a-go-go-related gene channel blockers: discriminative vs. generative classification models. SAR QSAR Environ Res 24(2):103-117. doi:10.1080/1062936x.2012.742135
    • (2013) SAR QSAR Environ Res , vol.24 , Issue.2 , pp. 103-117
    • Kireeva, N.1    Kuznetsov, S.L.2    Bykov, A.A.3    Yu Tsivadze, A.4
  • 41
    • 84868552976 scopus 로고    scopus 로고
    • Toward navigating chemical space of ionic liquids: Prediction of melting points using generative topographic maps
    • doi:10.1021/ie3021895
    • Kireeva N, Kuznetsov SL, Tsivadze AY (2012) Toward navigating chemical space of ionic liquids: prediction of melting points using generative topographic maps. Ind Eng Chem Res 51(44):14337-14343. doi:10.1021/ie3021895
    • (2012) Ind Eng Chem Res , vol.51 , Issue.44 , pp. 14337-14343
    • Kireeva, N.1    Kuznetsov, S.L.2    Tsivadze, A.Y.3
  • 42
    • 84893304742 scopus 로고    scopus 로고
    • Prediction of protein-protein interaction pocket using L-shaped PLS approach and its visualizations by generative topographic mapping
    • doi:10.1002/minf.201300137
    • Hasegawa K, Funatsu K Prediction of protein-protein interaction pocket using L-shaped PLS approach and its visualizations by generative topographic mapping. Mol Inf. doi:10.1002/minf.201300137
    • Mol Inf
    • Hasegawa, K.1    Funatsu, K.2
  • 43
    • 84898791194 scopus 로고    scopus 로고
    • http://www.cse.wustl.edu/~-kilian/code/code.html
  • 44
    • 33846019672 scopus 로고    scopus 로고
    • Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation
    • Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: AAAI Workshop - technical report, pp 24-29
    • (2006) AAAI Workshop - Technical Report , pp. 24-29
    • Sokolova, M.1    Japkowicz, N.2    Szpakowicz, S.3
  • 46
    • 53549129519 scopus 로고    scopus 로고
    • A bootstrap-based aggregate classifier for model-based clustering
    • Dias JG, Vermunt JK (2008) A bootstrap-based aggregate classifier for model-based clustering. Comput Stat 23(4):643-659
    • (2008) Comput Stat , vol.23 , Issue.4 , pp. 643-659
    • Dias, J.G.1    Vermunt, J.K.2
  • 48
    • 84862848391 scopus 로고    scopus 로고
    • Machine learning methods for property prediction in chemoinformatics: Quo vadis?
    • Varnek A, Baskin I (2012) Machine learning methods for property prediction in chemoinformatics: quo vadis? J Chem Inf Model 52(6):1413-1437
    • (2012) J Chem Inf Model , vol.52 , Issue.6 , pp. 1413-1437
    • Varnek, A.1    Baskin, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.