메뉴 건너뛰기




Volumn 15, Issue 1, 2011, Pages 269-289

Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM)

Author keywords

Drug design; Enzyme inhibition; Feature selection; In silico modeling; QSAR; Review; SAR; Structure activity relationships

Indexed keywords

ACETAMIDE DERIVATIVE; BENZIMIDAZOLE DERIVATIVE; CALCIUM CHANNEL; CHYMOTRYPSIN; CRUZIPAIN; CYCLIN DEPENDENT KINASE; GLYCOPROTEIN P; GONADORELIN AGONIST; GONADORELIN ANTAGONIST; HUMAN IMMUNODEFICIENCY VIRUS PROTEINASE; LYSOZYME; MATRIX METALLOPROTEINASE; POTASSIUM CHANNEL; PROTEIN FARNESYLTRANSFERASE; PYRIMIDINE DERIVATIVE; TACRINE DERIVATIVE;

EID: 79953327578     PISSN: 13811991     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11030-010-9234-9     Document Type: Review
Times cited : (87)

References (105)
  • 1
    • 29144521676 scopus 로고    scopus 로고
    • Chemoinformatics: A new field with a long tradition
    • doi:10.1007/s00216-005-0065-y
    • Gasteiger J (2006) Chemoinformatics: a new field with a long tradition. Anal Bioanal Chem 384:57-64. doi:10.1007/s00216-005-0065-y
    • (2006) Anal Bioanal Chem , vol.384 , pp. 57-64
    • Gasteiger, J.1
  • 2
    • 0023751431 scopus 로고
    • Comparativemolecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins
    • doi:10.1021/ja00226a005
    • Cramer RD, Patterson DE, Bunce JD (1988) Comparativemolecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959-5967. doi:10.1021/ja00226a005
    • (1988) J Am Chem Soc , vol.110 , pp. 5959-5967
    • Cramer, R.D.1    Patterson, D.E.2    Bunce, J.D.3
  • 3
    • 0027944195 scopus 로고
    • Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity
    • DOI 10.1021/jm00050a010
    • Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130-4146. doi:10.1021/jm00050a010 (Pubitemid 24379702)
    • (1994) Journal of Medicinal Chemistry , vol.37 , Issue.24 , pp. 4130-4146
    • Klebe, G.1    Abraham, U.2    Mietzner, T.3
  • 5
    • 0035263818 scopus 로고    scopus 로고
    • Chem-bioinformatics and QSAR: A review of QSAR lacking positive hydrophobic terms
    • DOI 10.1021/cr0000067
    • Hansch C, Kurup A, Garg R, Gao H (2001) Chem-bioinformatics and QSAR: a review of QSAR lacking positive hydrophobic terms. Chem Rev 101:619-672. doi:10.1021/cr0000067 (Pubitemid 35377680)
    • (2001) Chemical Reviews , vol.101 , Issue.3 , pp. 619-672
    • Hansch, C.1    Kurup, A.2    Garg, R.3    Gao, H.4
  • 7
    • 0001728908 scopus 로고    scopus 로고
    • Quantum-chemical descriptors in QSAR/QSPR studies
    • Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027-1043. doi:10.1021/cr950202r (Pubitemid 126641476)
    • (1996) Chemical Reviews , vol.96 , Issue.3 , pp. 1027-1043
    • Karelson, M.1    Lobanov, V.S.2    Katritzky, A.R.3
  • 9
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • DOI 10.1016/S0097-8485(01)00094-8, PII S0097848501000948
    • Burbidge R, Trotter M, Buxton B, Holden S (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 26:5-14. doi:10.1016/S0097-8485(01)00094-8 (Pubitemid 33034554)
    • (2001) Computers and Chemistry , vol.26 , Issue.1 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 10
    • 30744458142 scopus 로고    scopus 로고
    • Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks
    • DOI 10.1007/s00894-005-0014-x
    • Caballero J, Fernández M (2006) Linear and non-linear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks. J Mol Model 12:168-181. doi:10.1007/s00894-005-0014-x (Pubitemid 43090583)
    • (2006) Journal of Molecular Modeling , vol.12 , Issue.2 , pp. 168-181
    • Caballero, J.1    Fernandez, M.2
  • 13
    • 0036628557 scopus 로고    scopus 로고
    • Genetic algorithm guided selection: Variable selection and subset selection
    • DOI 10.1021/ci010247v
    • Cho SJ, Hermsmeier MA (2002) Genetic algorithm guided selection: variable selection and subset selection. J Chem Inf Comput Sci 42:927-936. doi:10.1021/ci010247v (Pubitemid 35355242)
    • (2002) Journal of Chemical Information and Computer Sciences , vol.42 , Issue.4 , pp. 927-936
    • Cho, S.J.1    Hermsmeier, M.A.2
  • 15
    • 35449002457 scopus 로고    scopus 로고
    • Protein radial distribution function (P-RDF) and Bayesian-Regularized Genetic Neural Networks for modeling protein conformational stability: Chymotrypsin inhibitor 2 mutants
    • DOI 10.1016/j.jmgm.2007.04.011, PII S1093326307000848
    • Fernández M, Caballero J, Fernández L, Abreu JI, Garriga M (2007) Protein radial distribution function (P-RDF) and Bayesian- regularized genetic neural networks formodeling protein conformational stability: chymotrypsin inhibitor 2 mutants. J Mol Graph Model 26:748-759. doi:10.1016/j.jmgm.2007.04.011 (Pubitemid 47628843)
    • (2007) Journal of Molecular Graphics and Modelling , vol.26 , Issue.4 , pp. 748-759
    • Fernandez, M.1    Caballero, J.2    Fernandez, L.3    Abreu, J.I.4    Garriga, M.5
  • 16
    • 33644549129 scopus 로고    scopus 로고
    • + channel by some triarylmethanes using topological charge indexes descriptors
    • doi:10.1007/s10822-005-9025-z
    • + channel by some triarylmethanes using topological charge indexes descriptors. J Comput Aid Mol Des 19:771-789. doi:10.1007/s10822-005-9025-z
    • (2005) J Comput Aid Mol des , vol.19 , pp. 771-789
    • Caballero, J.1    Garriga, M.2    Fernández, M.3
  • 17
    • 33646488015 scopus 로고    scopus 로고
    • 2D Autocorrelation modeling of the negative inotropic activity of calcium entry blockers using Bayesian-regularized genetic neural networks
    • doi:10.1016/j.bmc.2005.12.048
    • Caballero J, Garriga M, Fernández M (2006) 2D Autocorrelation modeling of the negative inotropic activity of calcium entry blockers using Bayesian-regularized genetic neural networks. Bioorg Med Chem 14:3330-3340. doi:10.1016/j.bmc.2005.12.048
    • (2006) Bioorg Med Chem , vol.14 , pp. 3330-3340
    • Caballero, J.1    Garriga, M.2    Fernández, M.3
  • 18
    • 33846815342 scopus 로고    scopus 로고
    • i) of some cruzain ketone-based inhibitors using 2D spatial autocorrelation vectors and data-diverse ensembles of Bayesian-regularized genetic neural networks
    • DOI 10.1002/qsar.200610001
    • Caballero J, Tundidor-Camba A, Fernández M (2007) Modeling of the inhibition constant (Ki ) of some Cruzain ketonebased inhibitors using 2D spatial autocorrelation vectors and data-diverse ensembles of Bayesian-regularized genetic neural networks. QSAR Comb Sci 26:27-40. doi:10.1002/qsar.200610001 (Pubitemid 46202936)
    • (2007) QSAR and Combinatorial Science , vol.26 , Issue.1 , pp. 27-40
    • Caballero, J.1    Tundidor-Camba, A.2    Fernandez, M.3
  • 19
    • 28944449555 scopus 로고    scopus 로고
    • Modeling of cyclin-dependent kinase inhibition by 1H-pyrazolo[3,4-d] pyrimidine derivatives using artificial neural network ensembles
    • DOI 10.1021/ci050263i
    • Fernández M, Tundidor-Camba A, Caballero J (2005) Modeling of cyclin-dependent kinase inhibition by 1H-pyrazolo [3,4-d] pyrimidine derivatives using artificial neural networks ensembles. J Chem Inf Model 45:1884-1895. doi:10.1021/ci050263i (Pubitemid 41784762)
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.6 , pp. 1884-1895
    • Fernandez, M.1    Tundidor-Camba, A.2    Caballero, J.3
  • 20
    • 33750495370 scopus 로고    scopus 로고
    • Bayesian-regularized genetic neural networks applied to the modeling of non-peptide antagonists for the human luteinizing hormone-releasing hormone receptor
    • DOI 10.1016/j.jmgm.2006.02.005, PII S109332630600043X
    • Fernández M, Caballero J (2006) Bayesian-regularized genetic neural networks applied to the modeling of non-peptide antagonists for the human luteinizing hormone-releasing hormone receptor. J Mol Graph Model 25:410-422. doi:10.1016/j.jmgm.2006.02.005 (Pubitemid 44667581)
    • (2006) Journal of Molecular Graphics and Modelling , vol.25 , Issue.4 , pp. 410-422
    • Fernandez, M.1    Caballero, J.2
  • 21
    • 33845769362 scopus 로고    scopus 로고
    • Modeling of acetylcholinesterase inhibition by tacrine analogues using Bayesian-regularized Genetic Neural Networks and ensemble averaging
    • DOI 10.1080/14756360600862366, PII GR2K1007TU41U576
    • Fernandez M, Carreiras MC, Marco JL, Caballero J (2006) Modeling of acetylcholinesterase inhibition by tacrine analogues using Bayesian-regularized genetic neural networks and ensemble averaging. J Enzym Inhib Med Chem 21:647-661. doi:10.1080/14756360600862366 (Pubitemid 44970953)
    • (2006) Journal of Enzyme Inhibition and Medicinal Chemistry , vol.21 , Issue.6 , pp. 647-661
    • Fernandez, M.1    Carreiras, M.C.2    Marco, J.L.3    Caballero, J.4
  • 22
    • 27744524965 scopus 로고    scopus 로고
    • Modeling of activity of cyclic urea HIV-1 protease inhibitors using regularized-artificial neural networks
    • DOI 10.1016/j.bmc.2005.08.022, PII S0968089605007765
    • Fernández M, Caballero J (2006) Modeling of activity of cyclic urea HIV-1 protease inhibitors using regularized-artificial neural networks. BioorgMed Chem 14:280-294. doi:10.1016/j.bmc.2005.08.022 (Pubitemid 41635490)
    • (2006) Bioorganic and Medicinal Chemistry , vol.14 , Issue.1 , pp. 280-294
    • Fernandez, M.1    Caballero, J.2
  • 23
    • 33646186011 scopus 로고    scopus 로고
    • Linear and nonlinear QSAR study of N-hydroxy-2-[(phenylsulfonyl) amino]acetamide derivatives as matrix metalloproteinase inhibitors
    • doi:10.1016/j.bmc.2006.01.072
    • Fernández M, Caballero J, Tundidor-Camba A (2006) Linear and nonlinear QSAR study of N-hydroxy-2-[(phenylsulfonyl) amino]acetamide derivatives as matrix metalloproteinase inhibitors. Bioorg Med Chem 14:4137-4150. doi:10.1016/j.bmc.2006.01.072
    • (2006) Bioorg Med Chem , vol.14 , pp. 4137-4150
    • Fernández, M.1    Caballero, J.2    Tundidor-Camba, A.3
  • 24
    • 33751032263 scopus 로고    scopus 로고
    • Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines
    • DOI 10.1111/j.1747-0285.2006.00435.x
    • Fernández M, Caballero J (2006) Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines. Chem Biol Drug Des 68:201-212. doi:10.1111/j.1747-0285.2006.00435.x (Pubitemid 44760245)
    • (2006) Chemical Biology and Drug Design , vol.68 , Issue.4 , pp. 201-212
    • Fernandez, M.1    Caballero, J.2
  • 25
    • 27744456972 scopus 로고    scopus 로고
    • Modeling of farnesyltransferase inhibition by some thiol and non-thiol peptidomimetic inhibitors using genetic neural networks and RDF approaches
    • doi:10.1016/j.bmc.2005.08.009
    • González MP, Caballero J, Tundidor-Camba A, Helguera AM, Fernández M (2006) Modeling of farnesyltransferase inhibition by some thiol and non-thiol peptidomimetic inhibitors using genetic neural networks and RDF approaches. Bioorg Med Chem 14:200-213. doi:10.1016/j.bmc.2005.08.009
    • (2006) Bioorg Med Chem , vol.14 , pp. 200-213
    • González, M.P.1    Caballero, J.2    Tundidor-Camba, A.3    Helguera, A.M.4    Fernández, M.5
  • 26
    • 34047170242 scopus 로고    scopus 로고
    • Caco-2 cell permeability modelling: A neural network coupled genetic algorithm approach
    • DOI 10.1007/s10822-006-9098-3
    • Di Fenza A, Alagona G, Ghio C, Leonardi R, Giolitti A, Madami A (2007) Caco-2 cell permeability modelling: a neural network coupled genetic algorithm approach. J Comput Aid Mol Des 21:207-221. doi:10.1007/s10822-006-9098-3 (Pubitemid 46510844)
    • (2007) Journal of Computer-Aided Molecular Design , vol.21 , Issue.4 , pp. 207-221
    • Di, F.A.1    Alagona, G.2    Ghio, C.3    Leonardi, R.4    Giolitti, A.5    Madami, A.6
  • 27
    • 0029970338 scopus 로고    scopus 로고
    • Evolutionary optimization in quantitative structure-activity relationship: An application of genetic neural networks
    • DOI 10.1021/jm9507035
    • So S, Karplus M (1996) Evolutionary optimization in quantitative structure-activity relationship: an application of genetic neural networks. J Med Chem 39:1521-1530. doi:10.1021/jm9507035 (Pubitemid 26108787)
    • (1996) Journal of Medicinal Chemistry , vol.39 , Issue.7 , pp. 1521-1530
    • So, S.-S.1    Karplus, M.2
  • 28
    • 0035263417 scopus 로고    scopus 로고
    • Application of BCUT metrics and genetic algorithm in binary QSAR analysis
    • doi:10.1021/ci000306p
    • Gao H (2001) Application of BCUT metrics and genetic algorithm in binary QSAR analysis. J Chem Inf Comput Sci 41:402-407. doi:10.1021/ci000306p
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 402-407
    • Gao, H.1
  • 29
    • 42749090642 scopus 로고    scopus 로고
    • (+) ion channels from 3Dpseudo-folding graph representation of protein sequences using genetic algorithm-optimized support vector machines
    • doi:10.1016/j.jmgm.2008.01.001
    • (+) ion channels from 3Dpseudo-folding graph representation of protein sequences using genetic algorithm-optimized support vector machines. J Mol Graph Model 26:1306-1314. doi:10.1016/j.jmgm.2008.01.001
    • (2008) J Mol Graph Model , vol.26 , pp. 1306-1314
    • Fernández, M.1    Fernández, L.2    Abreu, J.I.3    Garriga, M.4
  • 30
    • 34250845013 scopus 로고    scopus 로고
    • Proteometric study of ghrelin receptor function variations upon mutations using amino acid sequence autocorrelation vectors and genetic algorithm-based least square support vector machines
    • DOI 10.1016/j.jmgm.2006.11.002, PII S1093326306001409
    • Caballero J, Fernández L, Garriga M, Abreu JI, Collina S, Fernández M (2007) Proteometric study of ghrelin receptor function variations upon mutations using amino acid sequence autocorrelation vectors and genetic algorithm-based least square support vector machines. J Mol Graph Model 26:166-178. doi:10.1016/j.jmgm.2006.11.002 (Pubitemid 46977255)
    • (2007) Journal of Molecular Graphics and Modelling , vol.26 , Issue.1 , pp. 166-178
    • Caballero, J.1    Fernandez, L.2    Garriga, M.3    Abreu, J.I.4    Collina, S.5    Fernandez, M.6
  • 31
    • 0037191112 scopus 로고    scopus 로고
    • QSAR study of the calcium channel antagonist activity of some recently synthesized dihydropyridine derivatives. An application of genetic algorithm for variable selection in MLR and PLS methods
    • doi:10.1016/S0169-7439(02)00068-0
    • Hemmateenejad B, Miri R, Akhond M, Shamsipur M (2002) QSAR study of the calcium channel antagonist activity of some recently synthesized dihydropyridine derivatives. An application of genetic algorithm for variable selection in MLR and PLS methods. Chemom Intell Lab 64:91-99. doi:10.1016/S0169-7439(02)00068-0
    • (2002) Chemom Intell Lab , vol.64 , pp. 91-99
    • Hemmateenejad, B.1    Miri, R.2    Akhond, M.3    Shamsipur, M.4
  • 32
    • 0042700229 scopus 로고    scopus 로고
    • Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: Application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogous)
    • doi:10.1021/ci025661p
    • Hemmateenejad B, Akhond M, Miri R, Shamsipur M (2003) Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogous). J Chem Inf Comput Sci 43:1328-1334. doi:10.1021/ci025661p
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1328-1334
    • Hemmateenejad, B.1    Akhond, M.2    Miri, R.3    Shamsipur, M.4
  • 33
    • 18844385705 scopus 로고    scopus 로고
    • Optimal QSAR analysis of the carcinogenic activity of drugs by correlation ranking and genetic algorithm-based PCR
    • doi:10.1002/cem.891
    • Hemmateenejad B (2004) Optimal QSAR analysis of the carcinogenic activity of drugs by correlation ranking and genetic algorithm-based PCR. J Chemom 18:475-485. doi:10.1002/cem.891
    • (2004) J Chemom , vol.18 , pp. 475-485
    • Hemmateenejad, B.1
  • 34
    • 0036786448 scopus 로고    scopus 로고
    • Quantitative structure/ property relationship analysis of caco-2 permeability using a genetic algorithm-based partial least squares method
    • doi:10.1002/jps.10214
    • Yamashita F, Wanchana S, Hashida M (2002) Quantitative structure/ property relationship analysis of caco-2 permeability using a genetic algorithm-based partial least squares method. J Pharm Sci 91:2230-2238. doi:10.1002/jps.10214
    • (2002) J Pharm Sci , vol.91 , pp. 2230-2238
    • Yamashita, F.1    Wanchana, S.2    Hashida, M.3
  • 36
    • 33947726051 scopus 로고    scopus 로고
    • 1 isoform of human thyroid hormone receptor by genetic algorithm and projection pursuit regression
    • DOI 10.1016/j.bmcl.2007.02.025, PII S0960894X07002247
    • Ren Y, Liu H, Li S, Yao X, Liu M (2007) Prediction of binding affinities to b1 isoform of human thyroid hormone receptor by genetic algorithm and projection pursuit regression. Bioorg Med Chem Lett 17:2474-2482. doi:10.1016/j.bmcl.2007.02.025 (Pubitemid 46507788)
    • (2007) Bioorganic and Medicinal Chemistry Letters , vol.17 , Issue.9 , pp. 2474-2482
    • Ren, Y.1    Liu, H.2    Li, S.3    Yao, X.4    Liu, M.5
  • 37
    • 0033980580 scopus 로고    scopus 로고
    • Evaluation of the EVA descriptor for QSAR studies: 3. The use of a genetic algorithm to search for models with enhanced predictive properties (EVA GA)
    • DOI 10.1023/A:1008180020974
    • Turner DB, Willett P (2000) Evaluation of the EVA descriptor for QSAR studies: 3. The use of a genetic algorithm to search for models with enhanced predictive properties (EVA-GA). J Comput Aid Mol Des 14:1-21. doi:10.1023/A:1008180020974 (Pubitemid 30103819)
    • (2000) Journal of Computer-Aided Molecular Design , vol.14 , Issue.1 , pp. 1-21
    • Turner, D.B.1    Willett, P.2
  • 38
    • 0034181655 scopus 로고    scopus 로고
    • Molecular descriptors for effective classification of biologically active compounds based on principal component analysis identified by a genetic algorithm
    • doi:10.1021/ci000322m
    • Xue L, Bajorath J (2000) Molecular descriptors for effective classification of biologically active compounds based on principal component analysis identified by a genetic algorithm. J Chem Inf Comput Sci 40:801-809. doi:10.1021/ci000322m
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 801-809
    • Xue, L.1    Bajorath, J.2
  • 40
    • 12844273856 scopus 로고    scopus 로고
    • Application of genetic stochastic resonance algorithm to quantitative structure-activity relationship study
    • DOI 10.1016/j.chemolab.2004.07.004, PII S0169743904001765
    • Guo W, Cai W, Shao X, Pan Z (2005) Application of genetic stochastic resonance algorithm to quantitative structure-activity relationship study. Chemom Intell Lab 75:181-188. doi:10.1016/j.chemolab.2004.07.004 (Pubitemid 40164341)
    • (2005) Chemometrics and Intelligent Laboratory Systems , vol.75 , Issue.2 , pp. 181-188
    • Guo, W.1    Cai, W.2    Shao, X.3    Pan, Z.4
  • 42
    • 0031434910 scopus 로고    scopus 로고
    • Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks: 1. Method and validations
    • doi:10.1021/jm970487v
    • So SS, Karplus M (1997) Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks: 1. Method and validations. J Med Chem 40:4347-4359. doi:10.1021/jm970487v
    • (1997) J Med Chem , vol.40 , pp. 4347-4359
    • So, S.S.1    Karplus, M.2
  • 43
    • 0031466773 scopus 로고    scopus 로고
    • Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks: 2. Applications
    • doi:10.1021/jm970488n
    • So SS, Karplus M (1997) Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks: 2. Applications. J Med Chem 40:4360-4371. doi:10.1021/jm970488n
    • (1997) J Med Chem , vol.40 , pp. 4360-4371
    • So, S.S.1    Karplus, M.2
  • 44
    • 0042672732 scopus 로고    scopus 로고
    • Genetic neural networks for functional approximation
    • doi:10.1002/qsar.200310004
    • Chiu TL, So SS (2003) Genetic neural networks for functional approximation. QSAR Comb Sci 22:519-526. doi:10.1002/qsar.200310004
    • (2003) QSAR Comb Sci , vol.22 , pp. 519-526
    • Chiu, T.L.1    So, S.S.2
  • 45
    • 0034185913 scopus 로고    scopus 로고
    • Prediction of IC50 values for ACAT inhibitors from molecular structure
    • doi:10.1021/ci990125r
    • Patankar SJ, Jurs PC (2000) Prediction of IC50 values for ACAT inhibitors from molecular structure. J Chem Inf Comput Sci 40:706-723. doi:10.1021/ci990125r
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 706-723
    • Patankar, S.J.1    Jurs, P.C.2
  • 46
    • 0034182811 scopus 로고    scopus 로고
    • Prediction of inhibition of the sodium ion-proton antiporter by benzoylguanidine derivatives from molecular structure
    • doi:10.1021/ci9901237
    • Kauffman GW, Jurs PC (2000) Prediction of inhibition of the sodium ion-proton antiporter by benzoylguanidine derivatives from molecular structure. J Chem Inf Comput Sci 40:753-761. doi:10.1021/ci9901237
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 753-761
    • Kauffman, G.W.1    Jurs, P.C.2
  • 47
    • 0035498337 scopus 로고    scopus 로고
    • QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors
    • doi:10.1021/ci010073h
    • Kauffman GW, Jurs PC (2001) QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors. J Chem Inf Comput Sci 41:1553-1560. doi:10.1021/ci010073h
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 1553-1560
    • Kauffman, G.W.1    Jurs, P.C.2
  • 48
    • 0036025427 scopus 로고    scopus 로고
    • Development of quantitative structure-activity relationship and classification models for a set of carbonic anhydrase inhibitors
    • DOI 10.1021/ci0100696
    • Mattioni BE, Jurs PC (2002) Development of quantitative structure- activity relationship and classification models for a set of carbonic anhydrase inhibitors. J Chem Inf Comput Sci 42:94-102. doi:10.1021/ci0100696 (Pubitemid 35355329)
    • (2002) Journal of Chemical Information and Computer Sciences , vol.42 , Issue.1 , pp. 94-102
    • Mattioni, B.E.1    Jurs, P.C.2
  • 49
    • 0035438389 scopus 로고    scopus 로고
    • QSARs for 6-azasteroids as inhibitors of human type 1 5alpha-reductase: Prediction of binding affinity and selectivity relative to 3-BHSD
    • doi:10.1021/ci010036q
    • Bakken GA, Jurs PC (2001) QSARs for 6-azasteroids as inhibitors of human type 1 5alpha-reductase: prediction of binding affinity and selectivity relative to 3-BHSD. J Chem Inf Comput Sci 41:1255-1265. doi:10.1021/ci010036q
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 1255-1265
    • Bakken, G.A.1    Jurs, P.C.2
  • 50
    • 0036708521 scopus 로고    scopus 로고
    • Prediction of glycine/NMDA receptor antagonist inhibition from molecular structure
    • DOI 10.1021/ci010114+
    • Patankar SJ, Jurs PC (2002) Prediction of glycine/NMDA receptor antagonist inhibition from molecular structure. J Chem Inf Comput Sci 42:1053-1068. doi:10.1021/ci010114+ (Pubitemid 35360288)
    • (2002) Journal of Chemical Information and Computer Sciences , vol.42 , Issue.5 , pp. 1053-1068
    • Patankar, S.J.1    Jurs, P.C.2
  • 51
    • 0033549850 scopus 로고    scopus 로고
    • Robust QSAR models using bayesian regularized neural networks
    • DOI 10.1021/jm980697n
    • Burden FR, Winkler DA (1999) Robust QSAR models using Bayesian regularized neural networks. J Med Chem 42:3183-3187. doi:10.1021/jm980697n (Pubitemid 29384055)
    • (1999) Journal of Medicinal Chemistry , vol.42 , Issue.16 , pp. 3183-3187
    • Burden, F.R.1    Winkler, D.A.2
  • 52
    • 12444281776 scopus 로고    scopus 로고
    • Bayesian neural nets for modeling in drug discovery
    • doi:10.1016/S1741-8364(04)02393-5
    • Winkler DA, Burden R (2004) Bayesian neural nets for modeling in drug discovery. Biosilico 2:104-111. doi:10.1016/S1741-8364(04)02393-5
    • (2004) Biosilico , vol.2 , pp. 104-111
    • Winkler, D.A.1    Burden, R.2
  • 53
    • 33745696303 scopus 로고    scopus 로고
    • Natick
    • MATLAB 7.0. Program (2004) MathWorks Inc., Natick. http:// www.mathworks.com
    • (2004) MATLAB 7.0. Program
  • 56
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • doi:10.1162/neco.1992.4.3.448
    • Mackay DJC (1992) A practical Bayesian framework for backpropagation networks. Neural Comput 4:448-472. doi:10.1162/neco.1992.4.3.448
    • (1992) Neural Comput , vol.4 , pp. 448-472
    • Mackay, D.J.C.1
  • 57
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • Mackay DJC (1992) Bayesian interpolation. Neural Comput 4:415-447
    • (1992) Neural Comput , vol.4 , pp. 415-447
    • Mackay, D.J.C.1
  • 58
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273-297
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 59
    • 27144489164 scopus 로고    scopus 로고
    • Atutorial on support vector machines for pattern recognition
    • doi:10.1023/A:1009715923555
    • Burges CJC (1998) Atutorial on support vector machines for pattern recognition. Data Min Knowl Discipl 2:1-47. doi:10.1023/A:1009715923555
    • (1998) Data Min Knowl Discipl , vol.2 , pp. 1-47
    • Burges, C.J.C.1
  • 61
    • 67349139293 scopus 로고    scopus 로고
    • An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs
    • doi:10.1016/j.artmed.2008.07.001
    • Yang SY, Huang Q, Li LL, Ma CY, Zhang H, Bai R, Teng QZ, Xiang ML, Wei YQ (2009) An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs. Artif Intell Med 46:155-163. doi:10.1016/j.artmed.2008.07.001
    • (2009) Artif Intell Med , vol.46 , pp. 155-163
    • Yang, S.Y.1    Huang, Q.2    Li, L.L.3    Ma, C.Y.4    Zhang, H.5    Bai, R.6    Teng, Q.Z.7    Xiang, M.L.8    Wei, Y.Q.9
  • 62
    • 44749088791 scopus 로고    scopus 로고
    • Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method
    • doi:10.1016/j.jpba.2008.03.023
    • Ma CY, Yang SY, Zhang H, Xiang ML, Huang Q, Wei YQ (2008) Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method. J Pharmaceut Biomed 47:677-682. doi:10.1016/j.jpba.2008. 03.023
    • (2008) J Pharmaceut Biomed , vol.47 , pp. 677-682
    • Ma, C.Y.1    Yang, S.Y.2    Zhang, H.3    Xiang, M.L.4    Huang, Q.5    Wei, Y.Q.6
  • 63
    • 58149291856 scopus 로고    scopus 로고
    • In silico prediction of mitochondrial toxicity by using GA-CGSVM approach
    • doi:10.1016/j.tiv.2008.09.017
    • Zhang H, Chen QY, Xiang ML, Ma CY, Huang Q, Yang SY (2009) in silico prediction of mitochondrial toxicity by using GA-CGSVM approach. Toxicol in Vitro 23:134-140. doi:10.1016/j.tiv.2008.09.017
    • (2009) Toxicol in Vitro , vol.23 , pp. 134-140
    • Zhang, H.1    Chen, Q.Y.2    Xiang, M.L.3    Ma, C.Y.4    Huang, Q.5    Yang, S.Y.6
  • 65
    • 0036006911 scopus 로고    scopus 로고
    • Beware of q2!
    • doi:10.1016/S1093-3263(01)00123-1
    • Golbraikh A, Tropsha A (2002) Beware of q2!. J Mol Graph Model 20:269-276. doi:10.1016/S1093-3263(01)00123-1
    • (2002) J Mol Graph Model , vol.20 , pp. 269-276
    • Golbraikh, A.1    Tropsha, A.2
  • 66
    • 60149104848 scopus 로고    scopus 로고
    • A novel QSAR model for predicting the inhibition of CXCR3 receptor by 4-N-aryl-[1,4] diazepane ureas
    • doi:10.1016/j.ejmech.2008.05.028
    • Afantitis A, Melagraki G, Sarimveis H, Igglessi-Markopoulou O, Kollias G (2009) A novel QSAR model for predicting the inhibition of CXCR3 receptor by 4-N-aryl-[1,4] diazepane ureas. Eur J Med Chem 44:877-884. doi:10.1016/j.ejmech. 2008.05.028
    • (2009) Eur J Med Chem , vol.44 , pp. 877-884
    • Afantitis, A.1    Melagraki, G.2    Sarimveis, H.3    Igglessi-Markopoulou, O.4    Kollias, G.5
  • 68
    • 33745380521 scopus 로고    scopus 로고
    • Amino acid sequence autocorrelation vectors and ensembles of bayesian-regularized genetic neural networks for prediction of conformational stability of human lysozyme mutants
    • DOI 10.1021/ci050507z
    • Caballero J, Fernández L, Abreu JI, Fernández M (2006) Amino acid sequence autocorrelation vectors and ensembles of Bayesian- regularized genetic neural networks for prediction of conformational stability of human lysozyme mutants. J Chem Inf Model 46:1255-1268. doi:10.1021/ci050507z (Pubitemid 43999169)
    • (2006) Journal of Chemical Information and Modeling , vol.46 , Issue.3 , pp. 1255-1268
    • Caballero, J.1    Fernandez, L.2    Abreu, J.I.3    Fernandez, M.4
  • 69
    • 34248549553 scopus 로고    scopus 로고
    • Amino acid sequence autocorrelation vectors and bayesian-regularized genetic neural networks for modeling protein conformational stability: Gene V protein mutants
    • doi:10.1002/prot.21349
    • Fernández L, Caballero J, Abreu JI, Fernández M (2007) Amino acid sequence autocorrelation vectors and bayesian-regularized genetic neural networks for modeling protein conformational stability: gene V protein mutants. Proteins 67:834-852. doi:10.1002/prot.21349
    • (2007) Proteins , vol.67 , pp. 834-852
    • Fernández, L.1    Caballero, J.2    Abreu, J.I.3    Fernández, M.4
  • 70
    • 0003996909 scopus 로고
    • Frank J. Seiler Research Laboratory. US Air Force Academy, Springs, CO
    • MOPAC 6.0. (1993) Frank J. Seiler Research Laboratory. US Air Force Academy, Springs, CO
    • (1993) MOPAC 6.0
  • 71
    • 33947168866 scopus 로고    scopus 로고
    • QSAR models for predicting the activity of non-peptide luteinizing hormone-releasing hormone (LHRH) antagonists derived from erythromycin A using quantum chemical properties
    • DOI 10.1007/s00894-006-0163-6
    • Fernández M, Caballero J (2007) QSAR models for predicting the activity of non-peptide luteinizing hormone-releasing hormone (LHRH) antagonists derived from erythromycin A using quantum chemical properties. J Mol Model 13:465-476. doi:10.1007/s00894-006-0163-6 (Pubitemid 46404030)
    • (2007) Journal of Molecular Modeling , vol.13 , Issue.4 , pp. 465-476
    • Fernandez, M.1    Caballero, J.2
  • 72
    • 34547093412 scopus 로고    scopus 로고
    • QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy-α-phenylsulfonylacetamide derivatives
    • DOI 10.1016/j.bmc.2007.06.014, PII S096808960700538X
    • Fernández M, Caballero J (2007) QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy-α-phenylsulfonylacetamide derivatives. Bioorg Med Chem 15:6298-6310. doi:10.1016/j.bmc.2007.06.014 (Pubitemid 47096793)
    • (2007) Bioorganic and Medicinal Chemistry , vol.15 , Issue.18 , pp. 6298-6310
    • Fernandez, M.1    Caballero, J.2
  • 73
    • 35348816323 scopus 로고    scopus 로고
    • A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine
    • DOI 10.1016/j.bmc.2007.08.057, PII S0968089607007675
    • Fatemi MH, Gharaghani S (2007) A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Bioorg Med Chem 15:7746-7754. doi:10.1016/j.bmc.2007.08.057 (Pubitemid 47575917)
    • (2007) Bioorganic and Medicinal Chemistry , vol.15 , Issue.24 , pp. 7746-7754
    • Fatemi, M.H.1    Gharaghani, S.2
  • 75
    • 79953304425 scopus 로고    scopus 로고
    • Version 4.11
    • Cerius2, Version 4.11, http://www.accelrys.com
    • Cerius2
  • 76
    • 79953302553 scopus 로고    scopus 로고
    • VCCLAB, Virtual Computational Chemistry Laboratory (2005) http://www.vcclab.org
    • (2005)
  • 77
    • 77954078020 scopus 로고    scopus 로고
    • version 1.0. Molecular Modeling Group University of Matanzas, Matanzas, Cuba
    • Fernandez M, Abreu JI (2006) PROTMETRICS; version 1.0. Molecular Modeling Group University of Matanzas, Matanzas, Cuba
    • (2006) PROTMETRICS
    • Fernandez, M.1    Abreu, J.I.2
  • 78
    • 0343621535 scopus 로고    scopus 로고
    • AAindex: Amino acid index database
    • doi:10.1093/nar/28.1.374
    • Kawashima S, Kanehisa M (2000) AAindex: amino acid index database. Nucleic Acids Res 28:374-374. doi:10.1093/nar/28.1.374
    • (2000) Nucleic Acids Res , vol.28 , pp. 374-374
    • Kawashima, S.1    Kanehisa, M.2
  • 79
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • doi:10.1007/BF00337288
    • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59-69. doi:10.1007/BF00337288
    • (1982) Biol Cybern , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 80
    • 34548379435 scopus 로고    scopus 로고
    • The significance of mitochondrial toxicity testing in drug development
    • DOI 10.1016/j.drudis.2007.07.013, PII S1359644607002796
    • Dykens JA, Will Y (2007) The significance of mitochondrial toxicity testing in drug development. Drug Discov Today 12:777-785. doi:10.1016/j.drudis. 2007.07.013 (Pubitemid 47362789)
    • (2007) Drug Discovery Today , vol.12 , Issue.17-18 , pp. 777-785
    • Dykens, J.A.1    Will, Y.2
  • 82
    • 0032575714 scopus 로고    scopus 로고
    • Death receptors: Signaling and modulation
    • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305-1308. doi:10.1126/science.281.5381.1305 (Pubitemid 28406815)
    • (1998) Science , vol.281 , Issue.5381 , pp. 1305-1308
    • Ashkenazi, A.1    Dixit, V.M.2
  • 83
    • 0030892234 scopus 로고    scopus 로고
    • Apoptosis by death factor
    • doi:10.1016/S0092-8674(00)81874-7
    • Nagata S (1997) Apoptosis by death factor. Cell 88:355-365. doi:10.1016/S0092-8674(00)81874-7
    • (1997) Cell , vol.88 , pp. 355-365
    • Nagata, S.1
  • 84
    • 0019972810 scopus 로고
    • The cholinergic hypothesis of geriatric memory dysfunction
    • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408-417. doi:10.1126/science.7046051 (Pubitemid 12048290)
    • (1982) Science , vol.217 , Issue.4558 , pp. 408-417
    • Bartus, R.T.1    Dean III, R.L.2    Beer, B.3    Lippa, A.S.4
  • 85
    • 0026031111 scopus 로고
    • Role of the peripheral anionic site on acetylcholinesterase: Inhibition by substrates and coumarin derivatives
    • Radic Z, Reiner E, Taylor P (1991) Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivatives. Mol Pharmacol 39:98-104
    • (1991) Mol Pharmacol , vol.39 , pp. 98-104
    • Radic, Z.1    Reiner, E.2    Taylor, P.3
  • 86
    • 0029817834 scopus 로고    scopus 로고
    • Highly potent, selective, and lowcost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase: Steps towar novel drugs for treating Alzheimer's disease
    • doi:10.1074/jbc.271.39.23646
    • Pang YP, Quiram P, Jelacic T, Hong F, Brimijoin S (1996) Highly potent, selective, and lowcost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase: steps towar novel drugs for treating Alzheimer's disease. J Biol Chem 271:23646-23649. doi:10.1074/jbc.271.39.23646
    • (1996) J Biol Chem , vol.271 , pp. 23646-23649
    • Pang, Y.P.1    Quiram, P.2    Jelacic, T.3    Hong, F.4    Brimijoin, S.5
  • 89
    • 0032781959 scopus 로고    scopus 로고
    • A protease inhibitor for the treatment of patients with HIV-1 infection
    • Reddy P, Ross J (1999) Amprenavir: a protease inhibitor for the treatment of patients with HIV-1 infection. Formulary 34:567-577 (Pubitemid 29334848)
    • (1999) Formulary , vol.34 , Issue.7 , pp. 567-577
    • Reddy, P.1    Ross, J.2
  • 91
    • 0012937117 scopus 로고    scopus 로고
    • Recent advances in the biology of small conductance calcium-activated potassium channels
    • doi:10.1023/A:1017095519863
    • Castle NA (1999) Recent advances in the biology of small conductance calcium-activated potassium channels. Perspect Drug Discov Des 15:131-154. doi:10.1023/A:1017095519863
    • (1999) Perspect Drug Discov des , vol.15 , pp. 131-154
    • Castle, N.A.1
  • 94
    • 0031937742 scopus 로고    scopus 로고
    • Cysteine protease inhibitors alter Golgi complex ultrastructure and function in Trypanosoma cruzi
    • Engel JC, Doyle PS, Palmer J, Hsieh I, Bainton DF, McKerrow JH (1998) Growth arrest of T. cruzi by cysteine protease inhibitors is accompanied by alterations in Golgi complex and ER ultrastructure. J Cell Sci 111:597-606 (Pubitemid 28142364)
    • (1998) Journal of Cell Science , vol.111 , Issue.5 , pp. 597-606
    • Engel, J.C.1    Doyle, P.S.2    Palmer, J.3    Hsleh, I.4    Bainton, D.F.5    McKerrow, J.H.6
  • 95
    • 67349205580 scopus 로고    scopus 로고
    • Three-class classification models of logS and logP derived by using GA-CG-SVM approach
    • doi:10.1007/s11030-009-9108-1
    • Zhang H, Xiang ML, Ma CY, Huang Q, Li W, Xie Y, Wei YQ, Yang SY (2009) Three-class classification models of logS and logP derived by using GA-CG-SVM approach. Mol Divers 13:261-268. doi:10.1007/s11030-009-9108-1
    • (2009) Mol Divers , vol.13 , pp. 261-268
    • Zhang, H.1    Xiang, M.L.2    Ma, C.Y.3    Huang, Q.4    Li, W.5    Xie, Y.6    Wei, Y.Q.7    Yang, S.Y.8
  • 96
    • 4043133700 scopus 로고    scopus 로고
    • Markovian backbone negentropies: Molecular descriptors for protein research. I. predicting protein stability in Arc repressor mutants
    • doi:10.1002/prot.20159
    • Ramosde Armas R, Gonzalez-Díaz H, Molina R, Uriarte E (2004) Markovian backbone negentropies: molecular descriptors for protein research. I. predicting protein stability in Arc repressor mutants. Proteins 56:715-723. doi:10.1002/prot.20159
    • (2004) Proteins , vol.56 , pp. 715-723
    • Ramosde Armas, R.1    Gonzalez-Díaz, H.2    Molina, R.3    Uriarte, E.4
  • 97
    • 23644443075 scopus 로고    scopus 로고
    • Recognition of stable protein mutants with 3D stochastic average electrostatic potentials
    • DOI 10.1016/j.febslet.2005.06.065, PII S001457930500815X
    • Gonzalez-Diaz H, Molina R, Uriarte E (2005) Recognition of stable protein mutantswith 3Dstochastic average electrostatic potentials. FEBS Lett 579:4297-4301. doi:10.1016/j.febslet.2005.06.065 (Pubitemid 41116355)
    • (2005) FEBS Letters , vol.579 , Issue.20 , pp. 4297-4301
    • Gonzalez-Diaz, H.1    Molina, R.2    Uriarte, E.3
  • 98
    • 34447254270 scopus 로고    scopus 로고
    • Medicinal chemistry and bioinformatics - Current trends in drugs discovery with networks topological indices
    • DOI 10.2174/156802607780906771
    • González-Díaz H, Vilar S, Santana L, Uriarte E (2007) Medicinal chemistry and bioinformatics-current trends in drugs discovery with networks topological indices. Curr Top Med Chem 7:1015-1029. doi:10.2174/156802607780906771 (Pubitemid 47040529)
    • (2007) Current Topics in Medicinal Chemistry , vol.7 , Issue.10 , pp. 1015-1029
    • Gonzalez-Diaz, H.1    Vilar, S.2    Santana, L.3    Uriarte, E.4
  • 99
    • 57049145806 scopus 로고    scopus 로고
    • QSAR model for alignment-free prediction of human breast cancer biomarkers based on electrostatic potentials of protein pseudofolding HP-lattice networks
    • doi:10.1002/jcc.21016
    • Vilar S, Gonzalez-Diaz H, Santana L, Uriarte E (2008) QSAR model for alignment-free prediction of human breast cancer biomarkers based on electrostatic potentials of protein pseudofolding HP-lattice networks. J Comput Chem 29:2613-2622. doi:10.1002/jcc.21016
    • (2008) J Comput Chem , vol.29 , pp. 2613-2622
    • Vilar, S.1    Gonzalez-Diaz, H.2    Santana, L.3    Uriarte, E.4
  • 100
    • 50149119645 scopus 로고    scopus 로고
    • Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices
    • doi:10.1016/j.jtbi.2008.06.003
    • Munteanua CR, González-Díaz H, Magalhãesa AL (2008) Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices. J Theor Biol 254:476-482. doi:10.1016/j.jtbi.2008.06.003
    • (2008) J Theor Biol , vol.254 , pp. 476-482
    • Munteanua, C.R.1    González-Díaz, H.2    Magalhãesa, A.L.3
  • 101
    • 37349058879 scopus 로고    scopus 로고
    • Classification of conformational stability of protein mutants from 3D pseudo-folding graph representation of protein sequences using support vector machines
    • DOI 10.1002/prot.21524
    • Fernández M, Caballero J, Fernández L, Abreu JI, Acosta G (2008) Classification of conformational stability of protein mutants from 3D pseudo folding graph representation of protein sequences using support vector machines. Proteins 70:167-175. doi:10.1002/prot.21524 (Pubitemid 350293458)
    • (2008) Proteins: Structure, Function and Genetics , vol.70 , Issue.1 , pp. 167-175
    • Fernandez, M.1    Caballero, J.2    Fernandez, L.3    Abreu, J.I.4    Acosta, G.5
  • 102
    • 50949094134 scopus 로고    scopus 로고
    • Prediction of protein structure class by coupling improved genetic algorithm and support vector machine
    • doi:10.1007/s00726-008-0084-z
    • Li ZC, Zhou XB, Lin YR, Zou XY (2008) Prediction of protein structure class by coupling improved genetic algorithm and support vector machine. Amino Acids 35:581-590. doi:10.1007/s00726-008-0084-z
    • (2008) Amino Acids , vol.35 , pp. 581-590
    • Li, Z.C.1    Zhou, X.B.2    Lin, Y.R.3    Zou, X.Y.4
  • 103
    • 34548458988 scopus 로고    scopus 로고
    • Pro-Loc: Prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features
    • doi:10.1016/j.biosystems.2007.01.001
    • Huang WL, Tung CW, Huang HL, Hwang SF, Ho SY (2007) Pro-Loc: prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features. BioSystems 90:573-581. doi:10.1016/j.biosystems.2007.01.001
    • (2007) BioSystems , vol.90 , pp. 573-581
    • Huang, W.L.1    Tung, C.W.2    Huang, H.L.3    Hwang, S.F.4    Ho, S.Y.5
  • 104
    • 33750090686 scopus 로고    scopus 로고
    • Physicochemical descriptors to discriminate protein-protein interactions in permanent and transient complexes selected by means of machine learning algorithms
    • DOI 10.1002/prot.21104
    • Block P, Paern J, Huallermeier E, Sanschagrin P, Sotriffer CA, Klebe G (2006) Physicochemical descriptors to discriminate protein- protein interactions in permanent and transient complexes selected by means of machine learning algorithms. Proteins 65:607-622. doi:10.1002/prot.21104 (Pubitemid 44583211)
    • (2006) Proteins: Structure, Function and Genetics , vol.65 , Issue.3 , pp. 607-622
    • Block, P.1    Paern, J.2    Hullermeier, E.3    Sanschagrin, P.4    Sotriffer, C.A.5    Klebe, G.6
  • 105
    • 65249145330 scopus 로고    scopus 로고
    • Using genetic algorithms to select most predictive protein features
    • doi:10.1002/prot.22211
    • Kernytsky A, Rost B (2009) Using genetic algorithms to select most predictive protein features. Proteins 75:75-88. doi:10.1002/prot.22211
    • (2009) Proteins , vol.75 , pp. 75-88
    • Kernytsky, A.1    Rost, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.