메뉴 건너뛰기




Volumn 25, Issue 9, 2003, Pages 1050-1159

Adaptive sparseness for supervised learning

Author keywords

Classification; Expectation maximization algorithm; Feature selection; Kernel methods; Regression; Sparseness; Supervised learning

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; NEURAL NETWORKS; OPTIMIZATION; PROBABILITY DENSITY FUNCTION; REGRESSION ANALYSIS;

EID: 0141836275     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2003.1227989     Document Type: Article
Times cited : (463)

References (32)
  • 1
    • 4544258714 scopus 로고    scopus 로고
    • Adaptive sparseness using Jeffreys prior
    • T. Dietterich, S. Becker, and Z. Ghahramani, eds. Cambridge, Mass.: MIT Press
    • M. Figueiredo, "Adaptive Sparseness Using Jeffreys Prior," Proc. Advances in Neural Information Processing Systems 14, T. Dietterich, S. Becker, and Z. Ghahramani, eds. Cambridge, Mass.: MIT Press, pp. 697-704, 2002.
    • (2002) Proc. Advances in Neural Information Processing Systems 14 , pp. 697-704
    • Figueiredo, M.1
  • 3
    • 0040675320 scopus 로고    scopus 로고
    • On different facets of regularization theory
    • Z. Chen and S. Haykin, "On Different Facets of Regularization Theory," Neural Computation, vol. 14, no. 12, pp. 2791-2846, 2002.
    • (2002) Neural Computation , vol.14 , Issue.12 , pp. 2791-2846
    • Chen, Z.1    Haykin, S.2
  • 8
    • 0141571972 scopus 로고    scopus 로고
    • On Gaussian radial basis function approximations: Interpretation, extensions, and learning strategies
    • M. Figueiredo, "On Gaussian Radial Basis Function Approximations: Interpretation, Extensions, and Learning Strategies," Proc. Int'l Conf. Pattern Recognition, vol. 2, pp. 618-621, 2000.
    • (2000) Proc. Int'l Conf. Pattern Recognition , vol.2 , pp. 618-621
    • Figueiredo, M.1
  • 10
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • M.I. Jordan, ed., The Netherlands: Kluwer
    • C. Williams, "Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond," Learning in Graphical Models, M.I. Jordan, ed., The Netherlands: Kluwer, pp. 599-621, 1998.
    • (1998) Learning in Graphical Models , pp. 599-621
    • Williams, C.1
  • 11
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. Hoerl and R. Kennard, "Ridge Regression: Biased Estimation for Nonorthogonal Problems," Technometrics, vol. 12, pp. 55-67, 1970.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.1    Kennard, R.2
  • 13
    • 0003466536 scopus 로고
    • Soc. for Industrial and Applied Math. (SIAM), Philadelphia
    • G. Wahba, Spline Models for Observational Data. Soc. for Industrial and Applied Math. (SIAM), Philadelphia, 1990.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1
  • 14
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi, "Networks for Approximation and Learning," Proc. IEEE, vol. 78, pp. 1481-1497, 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 16
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression Shrinkage and Selection via the Lasso," J. Royal Statistical Soc. (B), vol. 58, pp. 267-288, 1996.
    • (1996) J. Royal Statistical Soc. (B) , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 17
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a laplace prior
    • P. Williams, "Bayesian Regularization and Pruning Using a Laplace Prior," Neural Computation, vol. 7, pp. 117-143, 1995.
    • (1995) Neural Computation , vol.7 , pp. 117-143
    • Williams, P.1
  • 18
    • 0000217030 scopus 로고
    • Normal/independent distributions and their applications in robust regression
    • K. Lange and J. Sinsheimer, "Normal/Independent Distributions and Their Applications in Robust Regression," J. Computational and Graphical Statistics, vol. 2, pp. 175-198, 1993.
    • (1993) J. Computational and Graphical Statistics , vol.2 , pp. 175-198
    • Lange, K.1    Sinsheimer, J.2
  • 19
    • 0035442514 scopus 로고    scopus 로고
    • Wavelet-based image estimation: An empirical bayes approach using Jeffreys' noninformative prior
    • M. Figueiredo and R. Nowak, "Wavelet-Based Image Estimation: An Empirical Bayes Approach Using Jeffreys' Noninformative Prior," IEEE Trans. Image Processing, vol. 10, no. 9, pp. 1322-1331, 2001.
    • (2001) IEEE Trans. Image Processing , vol.10 , Issue.9 , pp. 1322-1331
    • Figueiredo, M.1    Nowak, R.2
  • 21
    • 0007826152 scopus 로고    scopus 로고
    • Bayesian non-linear modelling for the 1993 energy prediction competition
    • G. Heidbreder, ed. Kluwer
    • D. MacKay, "Bayesian Non-Linear Modelling for the 1993 Energy Prediction Competition," Maximum Entropy and Bayesian Methods, G. Heidbreder, ed. Kluwer, pp. 221-234, 1996.
    • (1996) Maximum Entropy and Bayesian Methods , pp. 221-234
    • MacKay, D.1
  • 23
    • 84899032239 scopus 로고    scopus 로고
    • The relevance vector machine
    • S. Solla, T. Leen, and K.-R. Müller, eds. Cambridge, Mass.: MIT Press
    • M. Tipping, "The Relevance Vector Machine," Proc. Advances in Neural Information Processing Systems S. Solla, T. Leen, and K.-R. Müller, eds. Cambridge, Mass.: MIT Press, pp. 652-658, 2000.
    • (2000) Proc. Advances in Neural Information Processing Systems , vol.12 , pp. 652-658
    • Tipping, M.1
  • 24
    • 0041958932 scopus 로고
    • Ideal spatial adaptation via wavelet shrinkage
    • D. Donoho and I. Johnstone, "Ideal Spatial Adaptation via Wavelet Shrinkage," Biometrika, vol. 81, pp. 425-455, 1994.
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.1    Johnstone, I.2
  • 25
    • 0032662774 scopus 로고    scopus 로고
    • Analysis of multiresolution image denoising schemes using generalized-Gaussian and complexity priors
    • P. Moulin and J. Liu, "Analysis of Multiresolution Image Denoising Schemes Using Generalized-Gaussian and Complexity Priors," IEEE Trans. Information Theory, vol. 45, pp. 909-919, 1999.
    • (1999) IEEE Trans. Information Theory , vol.45 , pp. 909-919
    • Moulin, P.1    Liu, J.2
  • 26
    • 0004123838 scopus 로고    scopus 로고
    • Least absolute shrinkage is equivalent to quadratic penalization
    • L. Niklasson, M. Boden, and T. Ziemske, eds. Springer Verlag
    • Y. Grandvalet, "Least Absolute Shrinkage is Equivalent to Quadratic Penalization," Perspectives in Neural Computing, L. Niklasson, M. Boden, and T. Ziemske, eds. Springer Verlag, pp. 201-206, 1998.
    • (1998) Perspectives in Neural Computing , pp. 201-206
    • Grandvalet, Y.1
  • 27
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • M. Osborne, B. Presnell, and B. Turlach, "A New Approach to Variable Selection in Least Squares Problems," IMA J. Numerical Analysis, vol. 20, pp. 389-404, 2000.
    • (2000) IMA J. Numerical Analysis , vol.20 , pp. 389-404
    • Osborne, M.1    Presnell, B.2    Turlach, B.3
  • 30
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • J. Albert and S. Chib, "Bayesian Analysis of Binary and Polychotomous Response Data," J. Am. Statistical Assoc., vol. 88, pp. 669-679, 1993.
    • (1993) J. Am. Statistical Assoc. , vol.88 , pp. 669-679
    • Albert, J.1    Chib, S.2
  • 31
    • 84898947199 scopus 로고    scopus 로고
    • Bayesian model selection for support vector machines, gaussian processes, and other kernel classifiers
    • S. Solla, T. Leen, and K.-R. Müller, eds. Cambridge, Mass.: MIT press
    • M. Seeger, "Bayesian Model Selection for Support Vector Machines, Gaussian Processes, and Other Kernel Classifiers," Proc. Advances in Neural Information Processing Systems 12, S. Solla, T. Leen, and K.-R. Müller, eds. Cambridge, Mass.: MIT press, 2000.
    • (2000) Proc. Advances in Neural Information Processing Systems , vol.12 , pp. 603-609
    • Seeger, M.1
  • 32
    • 84899010839 scopus 로고    scopus 로고
    • Using the nystrom method to speedup kernel machines
    • T. Leen, T. Dietterich, and V. Tresp, eds. Cambridge, Mass.: MIT Press
    • C. Williams and M. Seeger, "Using the Nystrom Method to Speedup Kernel Machines," Proc. Advances in Neural Information Processing Systems 13, T. Leen, T. Dietterich, and V. Tresp, eds. Cambridge, Mass.: MIT Press, pp. 682-688, 2001.
    • (2001) Proc. Advances in Neural Information Processing Systems , vol.13 , pp. 682-688
    • Williams, C.1    Seeger, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.