메뉴 건너뛰기




Volumn 1260, Issue , 2015, Pages 65-88

Use of artifcial neural networks in the qsar prediction of physicochemical properties and toxicities for reach legislation

Author keywords

Artifcial neural networks; Physicochemical properties; QSAR; REACH; Toxicity

Indexed keywords

ACTIVATED SLUDGE; ACUTE TOXICITY; AQUATIC SPECIES; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOACCUMULATION; BIODEGRADABILITY; CARCINOGENICITY; DISSOCIATION CONSTANT; EYE IRRITATION; GENETIC ALGORITHM; HYDROLYSIS; LAW; LIPID MEMBRANE; MELTING POINT; MUTAGENICITY; NONHUMAN; PARTITION COEFFICIENT; PHYSICAL CHEMISTRY; QUANTITATIVE STRUCTURE ACTIVITY RELATION; QUANTITATIVE STRUCTURE PROPERTY RELATION; RELATIVE DENSITY; REPRODUCTIVE TOXICITY; RESPIRATION DEPRESSION; SKIN IRRITATION; SKIN SENSITIZATION; SUPPORT VECTOR MACHINE; SURFACE TENSION; TEMPERATURE; TERRESTRIAL SPECIES; VALIDATION STUDY; VAPOR PRESSURE; ANIMAL; ENVIRONMENTAL PLANNING; EUROPEAN UNION; HUMAN; LEGISLATION AND JURISPRUDENCE; POLLUTANT; TOXICITY;

EID: 84917690958     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-4939-2239-0_5     Document Type: Article
Times cited : (15)

References (116)
  • 2
    • 0015545469 scopus 로고
    • Lipophilic character and activity of drugs II: The parabolic case
    • Hansch C, Clayton JM (1973) Lipophilic character and activity of drugs II: the parabolic case. J Pharm Sci 62:1–23
    • (1973) J Pharm Sci , vol.62 , pp. 1-23
    • Hansch, C.1    Clayton, J.M.2
  • 3
    • 0031868433 scopus 로고    scopus 로고
    • Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis
    • Cronin MTD, Gregory BW, Schultz TW (1998) Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis. Chem Res Toxicol 11:902–908
    • (1998) Chem Res Toxicol , vol.11 , pp. 902-908
    • Cronin, M.1    Gregory, B.W.2    Schultz, T.W.3
  • 7
    • 0000381846 scopus 로고    scopus 로고
    • Strengths and weaknesses of the backpropagation neural network QSPR studies
    • In: Devillers J, Academic, London
    • Devillers J (1996) Strengths and weaknesses of the backpropagation neural network QSPR studies. In: Devillers J (ed) Neural networks in QSAR and drug design. Academic, London, pp 1–46
    • (1996) Neural Networks in QSAR and Drug Design , pp. 1-46
    • Devillers, J.1
  • 12
    • 30944432548 scopus 로고    scopus 로고
    • A new strategy for using supervised artifcial neural networks in QSAR
    • Devillers J (2005) A new strategy for using supervised artifcial neural networks in QSAR. SAR QSAR Environ Res 16:433–442
    • (2005) SAR QSAR Environ Res , vol.16 , pp. 433-442
    • Devillers, J.1
  • 14
    • 84858285778 scopus 로고    scopus 로고
    • Artifcial neural network modeling of the environmental fate and eco-toxicity of chemicals
    • In: Devillers J, Springer, Dordrecht
    • Devillers J (2009) Artifcial neural network modeling of the environmental fate and eco-toxicity of chemicals. In: Devillers J (ed) Ecotoxicology modeling. Springer, Dordrecht, pp 1–28
    • (2009) Ecotoxicology Modeling , pp. 1-28
    • Devillers, J.1
  • 15
    • 84857770428 scopus 로고    scopus 로고
    • The challenges involved in modelling toxicity data in silico: A review
    • Gleeson MP, Modi S, Bender A et al (2012) The challenges involved in modelling toxicity data in silico: a review. Curr Pharm Des 18: 1266–1291
    • (2012) Curr Pharm Des , vol.18 , pp. 1266-1291
    • Gleeson, M.P.1    Modi, S.2    Bender, A.3
  • 16
    • 0142057084 scopus 로고    scopus 로고
    • A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fsh
    • Moore DRJ, Breton RL, MacDonald DB (2003) A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fsh. Environ Toxicol Chem 22:1799–1809
    • (2003) Environ Toxicol Chem , vol.22 , pp. 1799-1809
    • Moore, D.1    Breton, R.L.2    Macdonald, D.B.3
  • 17
    • 70649101191 scopus 로고    scopus 로고
    • Prediction of biomagnifcation factors for some organochlorine compounds using linear free energy relationship parameters and artifcial neural networks
    • Fatemi MH, Abraham MH, Haghdadi M (2009) Prediction of biomagnifcation factors for some organochlorine compounds using linear free energy relationship parameters and artifcial neural networks. SAR QSAR Environ Res 20:453–465
    • (2009) SAR QSAR Environ Res , vol.20 , pp. 453-465
    • Fatemi, M.H.1    Abraham, M.H.2    Haghdadi, M.3
  • 18
    • 71549137727 scopus 로고    scopus 로고
    • Prediction of the acute toxicity of chemical compounds to the fathead minnow by machine learning approaches
    • Tan N-X, Li P, Rao H-B et al (2010) Prediction of the acute toxicity of chemical compounds to the fathead minnow by machine learning approaches. Chemometr Intell Lab Syst 100:66–73
    • (2010) Chemometr Intell Lab Syst , vol.100 , pp. 66-73
    • Tan, N.-X.1    Li, P.2    Rao, H.-B.3
  • 19
    • 67949118928 scopus 로고    scopus 로고
    • How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR)
    • Dearden JC, Cronin MTD, Kaiser KLE (2009) How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ Res 20:241–266
    • (2009) SAR QSAR Environ Res , vol.20 , pp. 241-266
    • Dearden, J.C.1    Cronin, M.2    Kaiser, K.3
  • 20
    • 0036490199 scopus 로고    scopus 로고
    • An approach to the interpretation of backpropagation neural network models in QSAR studies
    • Baskin II, Ait AO, Halberstam NM et al (2002) An approach to the interpretation of backpropagation neural network models in QSAR studies. SAR QSAR Environ Res 13: 35–41
    • (2002) SAR QSAR Environ Res , vol.13 , pp. 35-41
    • Baskin, I.I.1    Ait, A.O.2    Halberstam, N.M.3
  • 21
    • 20444409456 scopus 로고    scopus 로고
    • Interpreting computational neural network QSAR models: A measure of descriptor importance
    • Guha R, Jurs PC (2005) Interpreting computational neural network QSAR models: a measure of descriptor importance. J Chem Inf Model 45:800–806
    • (2005) J Chem Inf Model , vol.45 , pp. 800-806
    • Guha, R.1    Jurs, P.C.2
  • 22
    • 23844539732 scopus 로고    scopus 로고
    • Interpreting computational neural network QSAR models: A detailed interpretation of the weights and biases
    • Guha R, Stanton DT, Jurs PC (2005) Interpreting computational neural network QSAR models: a detailed interpretation of the weights and biases. J Chem Inf Model 45: 1109–1121
    • (2005) J Chem Inf Model , vol.45 , pp. 1109-1121
    • Guha, R.1    Stanton, D.T.2    Jurs, P.C.3
  • 23
    • 77955342898 scopus 로고    scopus 로고
    • Global QSAR models of skin sensitisers for regulatory purposes
    • Chaudhry Q, Piclin N, Cotterill J et al (2010) Global QSAR models of skin sensitisers for regulatory purposes. Chem Cent J 4(Suppl 1): S1–S6
    • (2010) Chem Cent J , vol.4 , pp. S1-S6
    • Chaudhry, Q.1    Piclin, N.2    Cotterill, J.3
  • 24
    • 39449135396 scopus 로고    scopus 로고
    • The trouble with QSAR (or how I learned to stop worrying and embrace fallacy)
    • Johnson SR (2008) The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). J Chem Inf Model 48:25–26
    • (2008) J Chem Inf Model , vol.48 , pp. 25-26
    • Johnson, S.R.1
  • 25
    • 53849113018 scopus 로고    scopus 로고
    • Identifcation of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach
    • Enoch SJ, Madden JC, Cronin MTD (2008) Identifcation of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach. SAR QSAR Environ Res 19:555–578
    • (2008) SAR QSAR Environ Res , vol.19 , pp. 555-578
    • Enoch, S.J.1    Madden, J.C.2    Cronin, M.3
  • 26
    • 33745808006 scopus 로고    scopus 로고
    • Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: A case study
    • Vračko M, Bandelj V, Barbier P et al (2006) Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study. SAR QSAR Environ Res 17:265–284
    • (2006) SAR QSAR Environ Res , vol.17 , pp. 265-284
    • Vračko, M.1    Bandelj, V.2    Barbier, P.3
  • 27
    • 85073142597 scopus 로고    scopus 로고
    • The role of QSAR methodology in the regulatory assessment of chemicals
    • In: Puzyn T, Leszczynski J, Cronin MTD, Springer, Dordrecht
    • Worth AP (2010) The role of QSAR methodology in the regulatory assessment of chemicals. In: Puzyn T, Leszczynski J, Cronin MTD (eds) Recent advances in QSAR studies: methods and applications. Springer, Dordrecht, pp 367–382
    • (2010) Recent Advances in QSAR Studies: Methods and Applications , pp. 367-382
    • Worth, A.P.1
  • 28
    • 84917672508 scopus 로고    scopus 로고
    • Accessed 16 Jan 2014
    • QSAR Model Reporting Format. Available at http://qsardb.jrc.it/qmrf. Accessed 16 Jan 2014
    • (Q)SAR Model Reporting Format
  • 31
    • 84891550691 scopus 로고    scopus 로고
    • QSPR prediction of physico-chemical properties for REACH
    • Dearden JC, Rotureau P, Fayet G (2013) QSPR prediction of physico-chemical properties for REACH. SAR QSAR Environ Res 24:279–318
    • (2013) SAR QSAR Environ Res , vol.24 , pp. 279-318
    • Dearden, J.C.1    Rotureau, P.2    Fayet, G.3
  • 32
    • 0043235835 scopus 로고    scopus 로고
    • Prediction of physicochemical properties based on neural network modelling
    • Taskinen J, Yliruusi J (2003) Prediction of physicochemical properties based on neural network modelling. Adv Drug Deliv Rev 55:1163–1183
    • (2003) Adv Drug Deliv Rev , vol.55 , pp. 1163-1183
    • Taskinen, J.1    Yliruusi, J.2
  • 33
    • 33746322753 scopus 로고    scopus 로고
    • An improved structure-property model for predicting melting-point temperatures
    • Godavarthy SS, Robinson RL, Gasem KAM (2006) An improved structure-property model for predicting melting-point temperatures. Ind Eng Chem Res 45:5117–5126
    • (2006) Ind Eng Chem Res , vol.45 , pp. 5117-5126
    • Godavarthy, S.S.1    Robinson, R.L.2    Gasem, K.3
  • 34
    • 20444362720 scopus 로고    scopus 로고
    • General melting point prediction based on a diverse compound data set and artifcial neural networks
    • Karthikeyan M, Glen RC, Bender A (2005) General melting point prediction based on a diverse compound data set and artifcial neural networks. J Chem Inf Model 45:581–590
    • (2005) J Chem Inf Model , vol.45 , pp. 581-590
    • Karthikeyan, M.1    Glen, R.C.2    Bender, A.3
  • 35
    • 0000497238 scopus 로고    scopus 로고
    • Boiling point and critical temperature of a heterogeneous data set. QSAR with atom type electrotopological state indices using artifcial neural networks
    • Hall LH, Story CT (1996) Boiling point and critical temperature of a heterogeneous data set. QSAR with atom type electrotopological state indices using artifcial neural networks. J Chem Inf Comput Sci 36:1004–1014
    • (1996) J Chem Inf Comput Sci , vol.36 , pp. 1004-1014
    • Hall, L.H.1    Story, C.T.2
  • 36
    • 0035272009 scopus 로고    scopus 로고
    • A quantum mechanical/neural network model for boiling points with error estimation
    • Chalk AJ, Beck B, Clark T (2001) A quantum mechanical/neural network model for boiling points with error estimation. J Chem Inf Comput Sci 41:457–462
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 457-462
    • Chalk, A.J.1    Beck, B.2    Clark, T.3
  • 37
    • 0028465825 scopus 로고
    • Neural network-graph theory approach to the prediction of the physical properties of organic compounds
    • Gakh AA, Gakh EG, Sumpter BG et al (1994) Neural network-graph theory approach to the prediction of the physical properties of organic compounds. J Chem Inf Comput Sci 34:832–839
    • (1994) J Chem Inf Comput Sci , vol.34 , pp. 832-839
    • Gakh, A.A.1    Gakh, E.G.2    Sumpter, B.G.3
  • 38
    • 65349166294 scopus 로고    scopus 로고
    • Density of ionic liquids using group contribution and artifcial neural networks
    • Valderrama JO, Reátegui A, Rojas RE (2009) Density of ionic liquids using group contribution and artifcial neural networks. Ind Eng Chem Res 48:3254–3259
    • (2009) Ind Eng Chem Res , vol.48 , pp. 3254-3259
    • Valderrama, J.O.1    Reátegui, A.2    Rojas, R.E.3
  • 39
    • 0001626393 scopus 로고    scopus 로고
    • Quantitative structure-property relationships for the prediction of vapor pressures of organic compounds from molecular structure
    • McClelland HE, Jurs PC (2000) Quantitative structure-property relationships for the prediction of vapor pressures of organic compounds from molecular structure. J Chem Inf Comput Sci 40:967–975
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 967-975
    • McClelland, H.E.1    Jurs, P.C.2
  • 40
    • 0035412810 scopus 로고    scopus 로고
    • A temperature- dependent quantum mechanical/ neural net model for vapor pressure
    • Chalk AJ, Beck B, Clark T (2001) A temperature- dependent quantum mechanical/ neural net model for vapor pressure. J Chem Inf Comput Sci 41:1053–1059
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 1053-1059
    • Chalk, A.J.1    Beck, B.2    Clark, T.3
  • 41
    • 84855774694 scopus 로고    scopus 로고
    • Artifcial neural network modeling of surface tension for pure organic compounds
    • Roosta A, Setoodeh P, Jahanmiri A (2012) Artifcial neural network modeling of surface tension for pure organic compounds. Ind Eng Chem Res 51:561–566
    • (2012) Ind Eng Chem Res , vol.51 , pp. 561-566
    • Roosta, A.1    Setoodeh, P.2    Jahanmiri, A.3
  • 42
    • 79955886615 scopus 로고    scopus 로고
    • Use of artifcial neural network- group contribution method to determine surface tension of pure compounds
    • Gharagheizi F, Eslamimanesh A, Mohammadi AH et al (2011) Use of artifcial neural network- group contribution method to determine surface tension of pure compounds. J Chem Eng Data 56:2587–2601
    • (2011) J Chem Eng Data , vol.56 , pp. 2587-2601
    • Gharagheizi, F.1    Eslamimanesh, A.2    Mohammadi, A.H.3
  • 43
    • 33846891907 scopus 로고    scopus 로고
    • In silico prediction of aqueous solubility
    • Dearden JC (2006) In silico prediction of aqueous solubility. Expert Opin Drug Discov 1:31–52
    • (2006) Expert Opin Drug Discov , vol.1 , pp. 31-52
    • Dearden, J.C.1
  • 44
    • 0037361981 scopus 로고    scopus 로고
    • Prediction of aqueous solubility of organic compounds based on a 3D structure representation
    • Yan A, Gasteiger J (2003) Prediction of aqueous solubility of organic compounds based on a 3D structure representation. J Chem Inf Comput Sci 43:429–434
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 429-434
    • Yan, A.1    Gasteiger, J.2
  • 45
    • 0001011568 scopus 로고    scopus 로고
    • QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coeffcients
    • Katritzky AR, Wang Y, Sild S et al (1998) QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coeffcients. J Chem Inf Comput Sci 38:720–725
    • (1998) J Chem Inf Comput Sci , vol.38 , pp. 720-725
    • Katritzky, A.R.1    Wang, Y.2    Sild, S.3
  • 46
    • 0035526164 scopus 로고    scopus 로고
    • Search for predictive generic model of aqueous solubility using Bayesian neural nets
    • Bruneau P (2001) Search for predictive generic model of aqueous solubility using Bayesian neural nets. J Chem Inf Comput Sci 41:1605–1616
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 1605-1616
    • Bruneau, P.1
  • 47
    • 0038282314 scopus 로고    scopus 로고
    • Theoretical property predictions
    • Livingstone DJ (2003) Theoretical property predictions. Curr Top Med Chem 3: 1171–1192
    • (2003) Curr Top Med Chem , vol.3 , pp. 1171-1192
    • Livingstone, D.J.1
  • 48
    • 14544278461 scopus 로고    scopus 로고
    • Recent methodologies for the estimation of n-octanol-water partition coeffcients and their use in the prediction of membrane transport properties of drugs
    • Klopman G, Zhu H (2005) Recent methodologies for the estimation of n-octanol-water partition coeffcients and their use in the prediction of membrane transport properties of drugs. Mini Rev Med Chem 5:127–133
    • (2005) Mini Rev Med Chem , vol.5 , pp. 127-133
    • Klopman, G.1    Zhu, H.2
  • 49
    • 67651249916 scopus 로고    scopus 로고
    • In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression
    • Chen H-F (2009) In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression. Chem Biol Drug Des 74:142–147
    • (2009) Chem Biol Drug Des , vol.74 , pp. 142-147
    • Chen, H.-F.1
  • 50
    • 0035470269 scopus 로고    scopus 로고
    • Prediction of n-octanol-water partition coeffcients from PHYSPROP database using artifcial neural networks and E-state indices
    • Tetko IV, Tanchuk VY, Villa AEP (2001) Prediction of n-octanol-water partition coeffcients from PHYSPROP database using artifcial neural networks and E-state indices. J Chem Inf Comput Sci 41: 1407–1421
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 1407-1421
    • Tetko, I.V.1    Tanchuk, V.Y.2    Villa, A.3
  • 53
    • 54049139304 scopus 로고    scopus 로고
    • A new neural network-group contri bution method for estimation of fash point temperature of pure components
    • Gharagheizi F, Alamdari RF, Angaji MT (2008) A new neural network-group contri bution method for estimation of fash point temperature of pure components. Energy Fuel 22:1628–1635
    • (2008) Energy Fuel , vol.22 , pp. 1628-1635
    • Gharagheizi, F.1    Alamdari, R.F.2    Angaji, M.T.3
  • 54
    • 77954796539 scopus 로고    scopus 로고
    • Chemical structure-based model for estimation of the upper fam-mability limit of pure compounds
    • Gharagheizi F (2010) Chemical structure-based model for estimation of the upper fam-mability limit of pure compounds. Energy Fuel 24:3867–3871
    • (2010) Energy Fuel , vol.24 , pp. 3867-3871
    • Gharagheizi, F.1
  • 55
    • 67649394207 scopus 로고    scopus 로고
    • Prediction of upper fammability limit percent of pure compounds from their molecular structures
    • Gharagheizi F (2009) Prediction of upper fammability limit percent of pure compounds from their molecular structures. J Hazard Mater 167:507–510
    • (2009) J Hazard Mater , vol.167 , pp. 507-510
    • Gharagheizi, F.1
  • 56
    • 53849091731 scopus 로고    scopus 로고
    • Quantitative structure- property relationship for prediction of the lower fammability limit of pure compounds
    • Gharagheizi F (2008) Quantitative structure- property relationship for prediction of the lower fammability limit of pure compounds. Energy Fuel 22:3037–3039
    • (2008) Energy Fuel , vol.22 , pp. 3037-3039
    • Gharagheizi, F.1
  • 57
    • 69249213956 scopus 로고    scopus 로고
    • A new group contribution- based model for estimation of lower fammability limit of pure compounds
    • Gharagheizi F (2009) A new group contribution- based model for estimation of lower fammability limit of pure compounds. J Hazard Mater 170:595–604
    • (2009) J Hazard Mater , vol.170 , pp. 595-604
    • Gharagheizi, F.1
  • 58
    • 16444381420 scopus 로고    scopus 로고
    • Optimization of neural networks architecture for impact sensitivity of energetic molecules
    • Cho SG, No KT, Goh EM et al (2005) Optimization of neural networks architecture for impact sensitivity of energetic molecules. Bull Korean Chem Soc 26:399–408
    • (2005) Bull Korean Chem Soc , vol.26 , pp. 399-408
    • Cho, S.G.1    No, K.T.2    Goh, E.M.3
  • 59
    • 67349117399 scopus 로고    scopus 로고
    • Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological- state indices
    • Wang R, Jiang J, Pan Y et al (2009) Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological- state indices. J Hazard Mater 166:155–186
    • (2009) J Hazard Mater , vol.166 , pp. 155-186
    • Wang, R.1    Jiang, J.2    Pan, Y.3
  • 60
    • 0029959906 scopus 로고    scopus 로고
    • Optimisation of radial basis and backpropaga-tion neural networks for modelling auto-ignition temperature by quantitative structure-property relationships
    • Tetteh J, Metcalfe E, Howells SL (1996) Optimisation of radial basis and backpropaga-tion neural networks for modelling auto-ignition temperature by quantitative structure-property relationships. Chemometr Intell Lab Syst 32:177–191
    • (1996) Chemometr Intell Lab Syst , vol.32 , pp. 177-191
    • Tetteh, J.1    Metcalfe, E.2    Howells, S.L.3
  • 61
    • 46449109393 scopus 로고    scopus 로고
    • Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices
    • Pan Y, Jiang J, Wang R et al (2008) Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices. J Hazard Mater 157:510–517
    • (2008) J Hazard Mater , vol.157 , pp. 510-517
    • Pan, Y.1    Jiang, J.2    Wang, R.3
  • 62
    • 20344407072 scopus 로고    scopus 로고
    • QSAR analysis of soil sorption coeffcients for polar organic chemicals: Substituted anilines and phenols
    • Liu GS, Yu JG (2005) QSAR analysis of soil sorption coeffcients for polar organic chemicals: substituted anilines and phenols. Water Res 39:2048–2055
    • (2005) Water Res , vol.39 , pp. 2048-2055
    • Liu, G.S.1    Yu, J.G.2
  • 63
    • 68249117442 scopus 로고    scopus 로고
    • QSPR modeling of soil sorption coef- fcients (Koc) of pesticides using SPA-ANN and SPA-MLR
    • Goudarzi N, Goodarzi M, Araujo MCU et al (2009) QSPR modeling of soil sorption coef- fcients (Koc) of pesticides using SPA-ANN and SPA-MLR. J Agric Food Chem 57: 7153–7158
    • (2009) J Agric Food Chem , vol.57 , pp. 7153-7158
    • Goudarzi, N.1    Goodarzi, M.2    Araujo, M.3
  • 64
    • 24044549995 scopus 로고    scopus 로고
    • Prediction of pKa for neutral and basic drugs based on radial basis function neural networks and the heuristic method
    • Luan F, Ma W, Zhang H et al (2005) Prediction of pKa for neutral and basic drugs based on radial basis function neural networks and the heuristic method. Pharm Res 22: 1454–1460
    • (2005) Pharm Res , vol.22 , pp. 1454-1460
    • Luan, F.1    Ma, W.2    Zhang, H.3
  • 65
    • 84917712780 scopus 로고    scopus 로고
    • Accessed 26 Jan 2014
    • CODESSA software. Available at www.semi-chem.com. Accessed 26 Jan 2014
    • CODESSA software1
  • 66
    • 31744441243 scopus 로고    scopus 로고
    • Prediction acidity constant of various benzoic acids and phenols in water using linear and nonlinear QSPR models
    • Habibi-Yangjeh A, Danandeh-Jenagharad M, Nooshyar M (2005) Prediction acidity constant of various benzoic acids and phenols in water using linear and nonlinear QSPR models. Bull Korean Chem Soc 26:2007–2016
    • (2005) Bull Korean Chem Soc , vol.26 , pp. 2007-2016
    • Habibi-Yangjeh, A.1    Danandeh-Jenagharad, M.2    Nooshyar, M.3
  • 67
    • 0035272647 scopus 로고    scopus 로고
    • Prediction of surface tension, viscosity and thermal conductivity for common organic solvents using quantitative structure-property relationships
    • Kauffman GW, Jurs PC (2001) Prediction of surface tension, viscosity and thermal conductivity for common organic solvents using quantitative structure-property relationships. J Chem Inf Comput Sci 41:408–418
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 408-418
    • Kauffman, G.W.1    Jurs, P.C.2
  • 68
    • 0035497866 scopus 로고    scopus 로고
    • Prediction of physical properties of organic compounds using artifcial neural networks within the substructure approach
    • Artemenko NV, Baskin II, Palyulin VA et al (2001) Prediction of physical properties of organic compounds using artifcial neural networks within the substructure approach. Doklady Chem 381:317–320
    • (2001) Doklady Chem , vol.381 , pp. 317-320
    • Artemenko, N.V.1    Baskin, I.I.2    Palyulin, V.A.3
  • 69
    • 33846096494 scopus 로고    scopus 로고
    • QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach
    • Modarresi H, Modarress H, Dearden JC (2007) QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach. Chemosphere 66:2067–2076
    • (2007) Chemosphere , vol.66 , pp. 2067-2076
    • Modarresi, H.1    Modarress, H.2    Dearden, J.C.3
  • 70
    • 77958020996 scopus 로고    scopus 로고
    • Prediction of Henry’s law constant of organic compounds in water from a new group-contribution- based method
    • Gharagheizi F, Abbasi R, Tirandazi B (2010) Prediction of Henry’s law constant of organic compounds in water from a new group-contribution- based method. Ind Eng Chem Res 49:10149–10152
    • (2010) Ind Eng Chem Res , vol.49 , pp. 10149-10152
    • Gharagheizi, F.1    Abbasi, R.2    Tirandazi, B.3
  • 72
    • 38849171093 scopus 로고    scopus 로고
    • A review of QSAR models for skin and eye irritation and corrosion
    • Salina AG, Patlewicz G, Worth AP (2008) A review of QSAR models for skin and eye irritation and corrosion. QSAR Comb Sci 27: 49–59
    • (2008) QSAR Comb Sci , vol.27 , pp. 49-59
    • Salina, A.G.1    Patlewicz, G.2    Worth, A.P.3
  • 73
    • 58149179927 scopus 로고    scopus 로고
    • Quantitative structure-property relationships modeling of skin irritation
    • Golla S, Madihally S, Robinson RL et al (2009) Quantitative structure-property relationships modeling of skin irritation. Toxicol In Vitro 23:176–184
    • (2009) Toxicol in Vitro , vol.23 , pp. 176-184
    • Golla, S.1    Madihally, S.2    Robinson, R.L.3
  • 74
    • 0029887895 scopus 로고    scopus 로고
    • Quantitative structure-activity relationships (QSARs) for skin corro-sivity of organic acids, bases and phenols: Principal components and neural networks analysis of extended datasets
    • Barratt MD (1996) Quantitative structure-activity relationships (QSARs) for skin corro-sivity of organic acids, bases and phenols: principal components and neural networks analysis of extended datasets. Toxicol In Vitro 10:85–94
    • (1996) Toxicol in Vitro , vol.10 , pp. 85-94
    • Barratt, M.D.1
  • 75
    • 0030982242 scopus 로고    scopus 로고
    • QSARs for the eye irritation potential of neutral organic chemicals
    • Barratt MD (1997) QSARs for the eye irritation potential of neutral organic chemicals. Toxicol In Vitro 11:1–8
    • (1997) Toxicol in Vitro , vol.11 , pp. 1-8
    • Barratt, M.D.1
  • 76
    • 0033995693 scopus 로고    scopus 로고
    • A QSAR model for the eye irritation of cat-ionic surfactants
    • Patlewicz GY, Rodford RA, Ellis G et al (2000) A QSAR model for the eye irritation of cat-ionic surfactants. Toxicol In Vitro 14:79–84
    • (2000) Toxicol in Vitro , vol.14 , pp. 79-84
    • Patlewicz, G.Y.1    Rodford, R.A.2    Ellis, G.3
  • 77
    • 41649099510 scopus 로고    scopus 로고
    • A minireview of available skin sensitization (Q)SARs/expert systems
    • Patlewicz G, Roberts DW, Uriarte E (2008) A minireview of available skin sensitization (Q)SARs/expert systems. Chem Res Toxicol 21:521–541
    • (2008) Chem Res Toxicol , vol.21 , pp. 521-541
    • Patlewicz, G.1    Roberts, D.W.2    Uriarte, E.3
  • 78
    • 0033838582 scopus 로고    scopus 로고
    • A neural network SAR model for allergic contact dermatitis
    • Devillers J (2000) A neural network SAR model for allergic contact dermatitis. Toxicol Methods 10:181–193
    • (2000) Toxicol Methods , vol.10 , pp. 181-193
    • Devillers, J.1
  • 79
    • 0028191789 scopus 로고
    • Multivariate QSAR analysis of a skin sensiti-zation database
    • Cronin MTD, Basketter DA (1994) Multivariate QSAR analysis of a skin sensiti-zation database. SAR QSAR Environ Res 2: 159–179
    • (1994) SAR QSAR Environ Res , vol.2 , pp. 159-179
    • Cronin, M.1    Basketter, D.A.2
  • 80
    • 60549110633 scopus 로고    scopus 로고
    • Quantitative structure-property relationship modeling of skin sensitization: A quantitative prediction
    • Golla S, Madihally S, Robinson RL et al (2009) Quantitative structure-property relationship modeling of skin sensitization: a quantitative prediction. Toxicol In Vitro 23: 454–465
    • (2009) Toxicol in Vitro , vol.23 , pp. 454-465
    • Golla, S.1    Madihally, S.2    Robinson, R.L.3
  • 82
    • 84869996743 scopus 로고    scopus 로고
    • In silico prediction of chemical Ames mutagenicity
    • Xu C, Cheng F, Chen L et al (2012) In silico prediction of chemical Ames mutagenicity. J Chem Inf Model 52:2840–2847
    • (2012) J Chem Inf Model , vol.52 , pp. 2840-2847
    • Xu, C.1    Cheng, F.2    Chen, L.3
  • 83
    • 77955085075 scopus 로고    scopus 로고
    • Predicting mutagenicity of aromatic amines by various machine learning approaches
    • Leong MK, Lin S-W, Chen H-B et al (2010) Predicting mutagenicity of aromatic amines by various machine learning approaches. Toxicol Sci 116:498–513
    • (2010) Toxicol Sci , vol.116 , pp. 498-513
    • Leong, M.K.1    Lin, S.-W.2    Chen, H.-B.3
  • 84
    • 38849209152 scopus 로고    scopus 로고
    • A mini review of mammalian toxicity (Q)SAR models
    • Tsakovska I, Lessigiarska I, Netzeva T et al (2008) A mini review of mammalian toxicity (Q)SAR models. QSAR Comb Sci 27:41–48
    • (2008) QSAR Comb Sci , vol.27 , pp. 41-48
    • Tsakovska, I.1    Lessigiarska, I.2    Netzeva, T.3
  • 85
    • 8344231675 scopus 로고    scopus 로고
    • Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modelling
    • Devillers J (2004) Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modelling. SAR QSAR Environ Res 15:501–510
    • (2004) SAR QSAR Environ Res , vol.15 , pp. 501-510
    • Devillers, J.1
  • 86
    • 72049089038 scopus 로고    scopus 로고
    • A tentative quantitative structure-toxicity relationship study of benzodiazepine drugs
    • Funar-Timofei S, Ionescu D, Suzuki T (2010) A tentative quantitative structure-toxicity relationship study of benzodiazepine drugs. Toxicol In Vitro 24:184–200
    • (2010) Toxicol in Vitro , vol.24 , pp. 184-200
    • Funar-Timofei, S.1    Ionescu, D.2    Suzuki, T.3
  • 87
    • 0035145572 scopus 로고    scopus 로고
    • Modeling acute toxicity of chemicals to Daphnia magna: A probabilistic neural network approach
    • Kaiser KLE, Niculescu SP (2001) Modeling acute toxicity of chemicals to Daphnia magna: a probabilistic neural network approach. Environ Toxicol Chem 20:420–431
    • (2001) Environ Toxicol Chem , vol.20 , pp. 420-431
    • Kaiser, K.1    Niculescu, S.P.2
  • 88
    • 37249035097 scopus 로고    scopus 로고
    • Modeling the toxicity of chemicals to Tetrahymena pyrifor-mis using heuristic multilinear regression and heuristic back-propagation neural networks
    • Kahn I, Sild S, Maran U (2007) Modeling the toxicity of chemicals to Tetrahymena pyrifor-mis using heuristic multilinear regression and heuristic back-propagation neural networks. J Chem Inf Model 47:2271–2279
    • (2007) J Chem Inf Model , vol.47 , pp. 2271-2279
    • Kahn, I.1    Sild, S.2    Maran, U.3
  • 89
    • 84869887397 scopus 로고    scopus 로고
    • Elicitation of the most important structural properties of ionic liquids affecting ecotoxic-ity in limnic green algae: A QSAR approach
    • Izadiyan P, Fatemi MH, Izadiyan M (2013) Elicitation of the most important structural properties of ionic liquids affecting ecotoxic-ity in limnic green algae: a QSAR approach. Ecotoxicol Environ Saf 87:42–48
    • (2013) Ecotoxicol Environ Saf , vol.87 , pp. 42-48
    • Izadiyan, P.1    Fatemi, M.H.2    Izadiyan, M.3
  • 90
    • 0027900053 scopus 로고
    • Estimating pesticide feld half-lives from a backpropagation neural network
    • Domine D, Devillers J, Chastrette M et al (1993) Estimating pesticide feld half-lives from a backpropagation neural network. SAR QSAR Environ Res 1:211–219
    • (1993) SAR QSAR Environ Res , vol.1 , pp. 211-219
    • Domine, D.1    Devillers, J.2    Chastrette, M.3
  • 91
    • 79956081809 scopus 로고    scopus 로고
    • Quantitative structure-biodegradability relationship study about the aerobic biodegrada-tion of some aromatic compounds
    • Jing G-H, Li X-L, Zhou Z-M (2011) Quantitative structure-biodegradability relationship study about the aerobic biodegrada-tion of some aromatic compounds. Chin J Struct Chem 30:368–375
    • (2011) Chin J Struct Chem , vol.30 , pp. 368-375
    • Jing, G.-H.1    Li, X.-L.2    Zhou, Z.-M.3
  • 92
    • 34250824089 scopus 로고    scopus 로고
    • In silico screening of estrogen-like chemicals based on different nonlinear classifcation models
    • Liu H, Papa E, Walker JD et al (2007) In silico screening of estrogen-like chemicals based on different nonlinear classifcation models. J Mol Graph Model 26:135–144
    • (2007) J Mol Graph Model , vol.26 , pp. 135-144
    • Liu, H.1    Papa, E.2    Walker, J.D.3
  • 93
    • 57349166641 scopus 로고    scopus 로고
    • Binary classifcation models for endocrine disrupter effects mediated through the estrogen receptor
    • Roncaglioni A, Piclin N, Pintore M et al (2008) Binary classifcation models for endocrine disrupter effects mediated through the estrogen receptor. SAR QSAR Environ Res 19:697–733
    • (2008) SAR QSAR Environ Res , vol.19 , pp. 697-733
    • Roncaglioni, A.1    Piclin, N.2    Pintore, M.3
  • 94
    • 0036892637 scopus 로고    scopus 로고
    • Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis
    • Wajima T, Fukumura K, Yano Y et al (2002) Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis. J Pharm Sci 91:2489–2499
    • (2002) J Pharm Sci , vol.91 , pp. 2489-2499
    • Wajima, T.1    Fukumura, K.2    Yano, Y.3
  • 95
    • 0030803990 scopus 로고    scopus 로고
    • Application of neural networks to population pharmacokinetic data analysis
    • Chow H-H, Tolle KM, Roe DJ et al (1997) Application of neural networks to population pharmacokinetic data analysis. J Pharm Sci 86:840–845
    • (1997) J Pharm Sci , vol.86 , pp. 840-845
    • Chow, H.-H.1    Tolle, K.M.2    Roe, D.J.3
  • 96
    • 84880324511 scopus 로고    scopus 로고
    • Predicting acute aqueous toxicity of structurally diverse chemicals in fsh using artifcial intelligence approaches
    • Singh KP, Gupta S, Rai P (2013) Predicting acute aqueous toxicity of structurally diverse chemicals in fsh using artifcial intelligence approaches. Ecotoxicol Environ Saf 95: 221–232
    • (2013) Ecotoxicol Environ Saf , vol.95 , pp. 221-232
    • Singh, K.P.1    Gupta, S.2    Rai, P.3
  • 97
    • 55249126163 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship study on fsh toxicity of substituted benzenes
    • Gong Z, Xia B, Zhang R et al (2008) Quantitative structure-activity relationship study on fsh toxicity of substituted benzenes. QSAR Comb Sci 27:967–976
    • (2008) QSAR Comb Sci , vol.27 , pp. 967-976
    • Gong, Z.1    Xia, B.2    Zhang, R.3
  • 98
    • 0033103912 scopus 로고    scopus 로고
    • Molecular level studies of the origin of toxicity: Determination of key variables and selection of descriptors
    • Okey RW, Martis MC (1999) Molecular level studies of the origin of toxicity: determination of key variables and selection of descriptors. Chemosphere 38:1419–1427
    • (1999) Chemosphere , vol.38 , pp. 1419-1427
    • Okey, R.W.1    Martis, M.C.2
  • 99
    • 0036763729 scopus 로고    scopus 로고
    • Quantitative structure-conditions- property relationship studies. Neural network modelling of the acid hydrolysis of esters
    • Halberstam NM, Baskin II, Palyulin VA et al (2002) Quantitative structure-conditions- property relationship studies. Neural network modelling of the acid hydrolysis of esters. Mendeleev Commun 12(5):185–186
    • (2002) Mendeleev Commun , vol.12 , Issue.5 , pp. 185-186
    • Halberstam, N.M.1    Baskin, I.I.2    Palyulin, V.A.3
  • 100
    • 84871769654 scopus 로고    scopus 로고
    • Evaluation of the threshold of toxicological concern (TTC)—challenges and approaches
    • Dewhurst I, Renwick AG (2013) Evaluation of the threshold of toxicological concern (TTC)—challenges and approaches. Regul Toxicol Pharmacol 65:168–177
    • (2013) Regul Toxicol Pharmacol , vol.65 , pp. 168-177
    • Dewhurst, I.1    Renwick, A.G.2
  • 101
    • 48049090727 scopus 로고    scopus 로고
    • A feed-forward arti-fcial neural network for prediction of the aquatic ecotoxicity of alcohol ethoxylate
    • Meng Y, Lin B-L (2008) A feed-forward arti-fcial neural network for prediction of the aquatic ecotoxicity of alcohol ethoxylate. Ecotoxicol Environ Saf 71:172–186
    • (2008) Ecotoxicol Environ Saf , vol.71 , pp. 172-186
    • Meng, Y.1    Lin, B.-L.2
  • 102
    • 0037533737 scopus 로고    scopus 로고
    • Prediction of bioconcentration factor using genetic algorithm and artifcial neural network
    • Fatemi MH, Jalali-Heravi M, Konuze E (2003) Prediction of bioconcentration factor using genetic algorithm and artifcial neural network. Anal Chim Acta 486:101–108
    • (2003) Anal Chim Acta , vol.486 , pp. 101-108
    • Fatemi, M.H.1    Jalali-Heravi, M.2    Konuze, E.3
  • 103
    • 55249098367 scopus 로고    scopus 로고
    • A new hybrid system of QSAR models for prediction bioconcentration factors (BCF)
    • Zhao C, Boriani E, Chana A et al (2008) A new hybrid system of QSAR models for prediction bioconcentration factors (BCF). Chemosphere 73:1701–1707
    • (2008) Chemosphere , vol.73 , pp. 1701-1707
    • Zhao, C.1    Boriani, E.2    Chana, A.3
  • 105
    • 40749086750 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship (QSAR) studies for fungicidal activities of thiazoline derivatives against rice blast
    • Song JS, Moon T, Nam KD et al (2008) Quantitative structure-activity relationship (QSAR) studies for fungicidal activities of thiazoline derivatives against rice blast. Bioorg Med Chem Lett 18:2133–2142
    • (2008) Bioorg Med Chem Lett , vol.18 , pp. 2133-2142
    • Song, J.S.1    Moon, T.2    Nam, K.D.3
  • 106
    • 78650176178 scopus 로고    scopus 로고
    • Quantitative and qualitative models for carci-nogenicity prediction for non-congeneric chemicals using CP NN method for regulatory uses
    • Fjodorova N, Vračko M, Tušar M et al (2010) Quantitative and qualitative models for carci-nogenicity prediction for non-congeneric chemicals using CP NN method for regulatory uses. Mol Divers 14:581–594
    • (2010) Mol Divers , vol.14 , pp. 581-594
    • Fjodorova, N.1    Vračko, M.2    Tušar, M.3
  • 107
    • 84884148379 scopus 로고    scopus 로고
    • Predicting carcinogenicity of diverse chemicals using probabilistic neural network modelling approaches
    • Singh KP, Gupta S, Rai P (2013) Predicting carcinogenicity of diverse chemicals using probabilistic neural network modelling approaches. Toxicol Appl Pharmacol 272: 465–475
    • (2013) Toxicol Appl Pharmacol , vol.272 , pp. 465-475
    • Singh, K.P.1    Gupta, S.2    Rai, P.3
  • 108
    • 84897493756 scopus 로고    scopus 로고
    • Expert systems for tox-icity prediction
    • In: Cronin MTD, Madden JC, Royal Society of Chemistry, London
    • Dearden JC (2010) Expert systems for tox-icity prediction. In: Cronin MTD, Madden JC (eds) In silico toxicology: principles and applications. Royal Society of Chemistry, London, pp 478–507
    • (2010) In Silico Toxicology: Principles and Applications , pp. 478-507
    • Dearden, J.C.1
  • 110
    • 84917712778 scopus 로고    scopus 로고
    • Accessed 25 Jan 2014
    • Molecular Modeling Pro. Available at http://www.chemsw.com/Software-and-Solutions/Laboratory-Software/Drawing-and-Modeling-Tools/Molecular-Modeling-Pro.aspx. Accessed 25 Jan 2014
    • Molecular Modeling Pro1
  • 111
    • 84972939236 scopus 로고
    • Estimation of pure-component properties from group-contributions
    • Joback KG, Reid RC (1987) Estimation of pure-component properties from group-contributions. Chem Eng Commun 57: 233–243
    • (1987) Chem Eng Commun , vol.57 , pp. 233-243
    • Joback, K.G.1    Reid, R.C.2
  • 112
    • 84917712777 scopus 로고    scopus 로고
    • Accessed 28 Jan 2014
    • ADMET Predictor. http://www.simulations-plus.com. Accessed 28 Jan 2014
    • ADMET Predictor1
  • 113
    • 84917712776 scopus 로고    scopus 로고
    • Accessed 28 Jan 2014
    • ChemSilico. Available at www.chemsilico.com. Accessed 28 Jan 2014
    • ChemSilico1
  • 114
    • 84917712775 scopus 로고    scopus 로고
    • Accessed 28 Jan 2014
    • TOPKAT. Available at www.accelrys.com. Accessed 28 Jan 2014
    • TOPKAT1
  • 115
    • 84917712774 scopus 로고    scopus 로고
    • Accessed 28 Jan 2014
    • TerraBase. Available at www.terrabase-inc.com. Accessed 28 Jan 2014
    • TerraBase1
  • 116
    • 0038069350 scopus 로고    scopus 로고
    • Neural networks for effect prediction in environmental health issues using large datasets
    • Kaiser KLE (2003) Neural networks for effect prediction in environmental health issues using large datasets. QSAR Comb Sci 22:185–190
    • (2003) QSAR Comb Sci , vol.22 , pp. 185-190
    • Kaiser, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.