-
2
-
-
0015545469
-
Lipophilic character and activity of drugs II: The parabolic case
-
Hansch C, Clayton JM (1973) Lipophilic character and activity of drugs II: the parabolic case. J Pharm Sci 62:1–23
-
(1973)
J Pharm Sci
, vol.62
, pp. 1-23
-
-
Hansch, C.1
Clayton, J.M.2
-
3
-
-
0031868433
-
Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis
-
Cronin MTD, Gregory BW, Schultz TW (1998) Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis. Chem Res Toxicol 11:902–908
-
(1998)
Chem Res Toxicol
, vol.11
, pp. 902-908
-
-
Cronin, M.1
Gregory, B.W.2
Schultz, T.W.3
-
7
-
-
0000381846
-
Strengths and weaknesses of the backpropagation neural network QSPR studies
-
In: Devillers J, Academic, London
-
Devillers J (1996) Strengths and weaknesses of the backpropagation neural network QSPR studies. In: Devillers J (ed) Neural networks in QSAR and drug design. Academic, London, pp 1–46
-
(1996)
Neural Networks in QSAR and Drug Design
, pp. 1-46
-
-
Devillers, J.1
-
12
-
-
30944432548
-
A new strategy for using supervised artifcial neural networks in QSAR
-
Devillers J (2005) A new strategy for using supervised artifcial neural networks in QSAR. SAR QSAR Environ Res 16:433–442
-
(2005)
SAR QSAR Environ Res
, vol.16
, pp. 433-442
-
-
Devillers, J.1
-
13
-
-
58149386885
-
Neural networks in building QSAR models
-
In: Livingstone DS, Humana Press, New York
-
Baskin II, Palyulin VA, Zefrov NS (2008) Neural networks in building QSAR models. In: Livingstone DS (ed) Artifcial neural networks: methods and protocols. Humana Press, New York, pp 137–158
-
(2008)
Artifcial Neural Networks: Methods and Protocols
, pp. 137-158
-
-
Baskin, I.I.1
Palyulin, V.A.2
Zefrov, N.S.3
-
14
-
-
84858285778
-
Artifcial neural network modeling of the environmental fate and eco-toxicity of chemicals
-
In: Devillers J, Springer, Dordrecht
-
Devillers J (2009) Artifcial neural network modeling of the environmental fate and eco-toxicity of chemicals. In: Devillers J (ed) Ecotoxicology modeling. Springer, Dordrecht, pp 1–28
-
(2009)
Ecotoxicology Modeling
, pp. 1-28
-
-
Devillers, J.1
-
15
-
-
84857770428
-
The challenges involved in modelling toxicity data in silico: A review
-
Gleeson MP, Modi S, Bender A et al (2012) The challenges involved in modelling toxicity data in silico: a review. Curr Pharm Des 18: 1266–1291
-
(2012)
Curr Pharm Des
, vol.18
, pp. 1266-1291
-
-
Gleeson, M.P.1
Modi, S.2
Bender, A.3
-
16
-
-
0142057084
-
A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fsh
-
Moore DRJ, Breton RL, MacDonald DB (2003) A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fsh. Environ Toxicol Chem 22:1799–1809
-
(2003)
Environ Toxicol Chem
, vol.22
, pp. 1799-1809
-
-
Moore, D.1
Breton, R.L.2
Macdonald, D.B.3
-
17
-
-
70649101191
-
Prediction of biomagnifcation factors for some organochlorine compounds using linear free energy relationship parameters and artifcial neural networks
-
Fatemi MH, Abraham MH, Haghdadi M (2009) Prediction of biomagnifcation factors for some organochlorine compounds using linear free energy relationship parameters and artifcial neural networks. SAR QSAR Environ Res 20:453–465
-
(2009)
SAR QSAR Environ Res
, vol.20
, pp. 453-465
-
-
Fatemi, M.H.1
Abraham, M.H.2
Haghdadi, M.3
-
18
-
-
71549137727
-
Prediction of the acute toxicity of chemical compounds to the fathead minnow by machine learning approaches
-
Tan N-X, Li P, Rao H-B et al (2010) Prediction of the acute toxicity of chemical compounds to the fathead minnow by machine learning approaches. Chemometr Intell Lab Syst 100:66–73
-
(2010)
Chemometr Intell Lab Syst
, vol.100
, pp. 66-73
-
-
Tan, N.-X.1
Li, P.2
Rao, H.-B.3
-
19
-
-
67949118928
-
How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR)
-
Dearden JC, Cronin MTD, Kaiser KLE (2009) How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ Res 20:241–266
-
(2009)
SAR QSAR Environ Res
, vol.20
, pp. 241-266
-
-
Dearden, J.C.1
Cronin, M.2
Kaiser, K.3
-
20
-
-
0036490199
-
An approach to the interpretation of backpropagation neural network models in QSAR studies
-
Baskin II, Ait AO, Halberstam NM et al (2002) An approach to the interpretation of backpropagation neural network models in QSAR studies. SAR QSAR Environ Res 13: 35–41
-
(2002)
SAR QSAR Environ Res
, vol.13
, pp. 35-41
-
-
Baskin, I.I.1
Ait, A.O.2
Halberstam, N.M.3
-
21
-
-
20444409456
-
Interpreting computational neural network QSAR models: A measure of descriptor importance
-
Guha R, Jurs PC (2005) Interpreting computational neural network QSAR models: a measure of descriptor importance. J Chem Inf Model 45:800–806
-
(2005)
J Chem Inf Model
, vol.45
, pp. 800-806
-
-
Guha, R.1
Jurs, P.C.2
-
22
-
-
23844539732
-
Interpreting computational neural network QSAR models: A detailed interpretation of the weights and biases
-
Guha R, Stanton DT, Jurs PC (2005) Interpreting computational neural network QSAR models: a detailed interpretation of the weights and biases. J Chem Inf Model 45: 1109–1121
-
(2005)
J Chem Inf Model
, vol.45
, pp. 1109-1121
-
-
Guha, R.1
Stanton, D.T.2
Jurs, P.C.3
-
23
-
-
77955342898
-
Global QSAR models of skin sensitisers for regulatory purposes
-
Chaudhry Q, Piclin N, Cotterill J et al (2010) Global QSAR models of skin sensitisers for regulatory purposes. Chem Cent J 4(Suppl 1): S1–S6
-
(2010)
Chem Cent J
, vol.4
, pp. S1-S6
-
-
Chaudhry, Q.1
Piclin, N.2
Cotterill, J.3
-
24
-
-
39449135396
-
The trouble with QSAR (or how I learned to stop worrying and embrace fallacy)
-
Johnson SR (2008) The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). J Chem Inf Model 48:25–26
-
(2008)
J Chem Inf Model
, vol.48
, pp. 25-26
-
-
Johnson, S.R.1
-
25
-
-
53849113018
-
Identifcation of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach
-
Enoch SJ, Madden JC, Cronin MTD (2008) Identifcation of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach. SAR QSAR Environ Res 19:555–578
-
(2008)
SAR QSAR Environ Res
, vol.19
, pp. 555-578
-
-
Enoch, S.J.1
Madden, J.C.2
Cronin, M.3
-
26
-
-
33745808006
-
Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: A case study
-
Vračko M, Bandelj V, Barbier P et al (2006) Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study. SAR QSAR Environ Res 17:265–284
-
(2006)
SAR QSAR Environ Res
, vol.17
, pp. 265-284
-
-
Vračko, M.1
Bandelj, V.2
Barbier, P.3
-
27
-
-
85073142597
-
The role of QSAR methodology in the regulatory assessment of chemicals
-
In: Puzyn T, Leszczynski J, Cronin MTD, Springer, Dordrecht
-
Worth AP (2010) The role of QSAR methodology in the regulatory assessment of chemicals. In: Puzyn T, Leszczynski J, Cronin MTD (eds) Recent advances in QSAR studies: methods and applications. Springer, Dordrecht, pp 367–382
-
(2010)
Recent Advances in QSAR Studies: Methods and Applications
, pp. 367-382
-
-
Worth, A.P.1
-
28
-
-
84917672508
-
-
Accessed 16 Jan 2014
-
QSAR Model Reporting Format. Available at http://qsardb.jrc.it/qmrf. Accessed 16 Jan 2014
-
(Q)SAR Model Reporting Format
-
-
-
31
-
-
84891550691
-
QSPR prediction of physico-chemical properties for REACH
-
Dearden JC, Rotureau P, Fayet G (2013) QSPR prediction of physico-chemical properties for REACH. SAR QSAR Environ Res 24:279–318
-
(2013)
SAR QSAR Environ Res
, vol.24
, pp. 279-318
-
-
Dearden, J.C.1
Rotureau, P.2
Fayet, G.3
-
32
-
-
0043235835
-
Prediction of physicochemical properties based on neural network modelling
-
Taskinen J, Yliruusi J (2003) Prediction of physicochemical properties based on neural network modelling. Adv Drug Deliv Rev 55:1163–1183
-
(2003)
Adv Drug Deliv Rev
, vol.55
, pp. 1163-1183
-
-
Taskinen, J.1
Yliruusi, J.2
-
33
-
-
33746322753
-
An improved structure-property model for predicting melting-point temperatures
-
Godavarthy SS, Robinson RL, Gasem KAM (2006) An improved structure-property model for predicting melting-point temperatures. Ind Eng Chem Res 45:5117–5126
-
(2006)
Ind Eng Chem Res
, vol.45
, pp. 5117-5126
-
-
Godavarthy, S.S.1
Robinson, R.L.2
Gasem, K.3
-
34
-
-
20444362720
-
General melting point prediction based on a diverse compound data set and artifcial neural networks
-
Karthikeyan M, Glen RC, Bender A (2005) General melting point prediction based on a diverse compound data set and artifcial neural networks. J Chem Inf Model 45:581–590
-
(2005)
J Chem Inf Model
, vol.45
, pp. 581-590
-
-
Karthikeyan, M.1
Glen, R.C.2
Bender, A.3
-
35
-
-
0000497238
-
Boiling point and critical temperature of a heterogeneous data set. QSAR with atom type electrotopological state indices using artifcial neural networks
-
Hall LH, Story CT (1996) Boiling point and critical temperature of a heterogeneous data set. QSAR with atom type electrotopological state indices using artifcial neural networks. J Chem Inf Comput Sci 36:1004–1014
-
(1996)
J Chem Inf Comput Sci
, vol.36
, pp. 1004-1014
-
-
Hall, L.H.1
Story, C.T.2
-
36
-
-
0035272009
-
A quantum mechanical/neural network model for boiling points with error estimation
-
Chalk AJ, Beck B, Clark T (2001) A quantum mechanical/neural network model for boiling points with error estimation. J Chem Inf Comput Sci 41:457–462
-
(2001)
J Chem Inf Comput Sci
, vol.41
, pp. 457-462
-
-
Chalk, A.J.1
Beck, B.2
Clark, T.3
-
37
-
-
0028465825
-
Neural network-graph theory approach to the prediction of the physical properties of organic compounds
-
Gakh AA, Gakh EG, Sumpter BG et al (1994) Neural network-graph theory approach to the prediction of the physical properties of organic compounds. J Chem Inf Comput Sci 34:832–839
-
(1994)
J Chem Inf Comput Sci
, vol.34
, pp. 832-839
-
-
Gakh, A.A.1
Gakh, E.G.2
Sumpter, B.G.3
-
38
-
-
65349166294
-
Density of ionic liquids using group contribution and artifcial neural networks
-
Valderrama JO, Reátegui A, Rojas RE (2009) Density of ionic liquids using group contribution and artifcial neural networks. Ind Eng Chem Res 48:3254–3259
-
(2009)
Ind Eng Chem Res
, vol.48
, pp. 3254-3259
-
-
Valderrama, J.O.1
Reátegui, A.2
Rojas, R.E.3
-
39
-
-
0001626393
-
Quantitative structure-property relationships for the prediction of vapor pressures of organic compounds from molecular structure
-
McClelland HE, Jurs PC (2000) Quantitative structure-property relationships for the prediction of vapor pressures of organic compounds from molecular structure. J Chem Inf Comput Sci 40:967–975
-
(2000)
J Chem Inf Comput Sci
, vol.40
, pp. 967-975
-
-
McClelland, H.E.1
Jurs, P.C.2
-
40
-
-
0035412810
-
A temperature- dependent quantum mechanical/ neural net model for vapor pressure
-
Chalk AJ, Beck B, Clark T (2001) A temperature- dependent quantum mechanical/ neural net model for vapor pressure. J Chem Inf Comput Sci 41:1053–1059
-
(2001)
J Chem Inf Comput Sci
, vol.41
, pp. 1053-1059
-
-
Chalk, A.J.1
Beck, B.2
Clark, T.3
-
41
-
-
84855774694
-
Artifcial neural network modeling of surface tension for pure organic compounds
-
Roosta A, Setoodeh P, Jahanmiri A (2012) Artifcial neural network modeling of surface tension for pure organic compounds. Ind Eng Chem Res 51:561–566
-
(2012)
Ind Eng Chem Res
, vol.51
, pp. 561-566
-
-
Roosta, A.1
Setoodeh, P.2
Jahanmiri, A.3
-
42
-
-
79955886615
-
Use of artifcial neural network- group contribution method to determine surface tension of pure compounds
-
Gharagheizi F, Eslamimanesh A, Mohammadi AH et al (2011) Use of artifcial neural network- group contribution method to determine surface tension of pure compounds. J Chem Eng Data 56:2587–2601
-
(2011)
J Chem Eng Data
, vol.56
, pp. 2587-2601
-
-
Gharagheizi, F.1
Eslamimanesh, A.2
Mohammadi, A.H.3
-
43
-
-
33846891907
-
In silico prediction of aqueous solubility
-
Dearden JC (2006) In silico prediction of aqueous solubility. Expert Opin Drug Discov 1:31–52
-
(2006)
Expert Opin Drug Discov
, vol.1
, pp. 31-52
-
-
Dearden, J.C.1
-
44
-
-
0037361981
-
Prediction of aqueous solubility of organic compounds based on a 3D structure representation
-
Yan A, Gasteiger J (2003) Prediction of aqueous solubility of organic compounds based on a 3D structure representation. J Chem Inf Comput Sci 43:429–434
-
(2003)
J Chem Inf Comput Sci
, vol.43
, pp. 429-434
-
-
Yan, A.1
Gasteiger, J.2
-
45
-
-
0001011568
-
QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coeffcients
-
Katritzky AR, Wang Y, Sild S et al (1998) QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coeffcients. J Chem Inf Comput Sci 38:720–725
-
(1998)
J Chem Inf Comput Sci
, vol.38
, pp. 720-725
-
-
Katritzky, A.R.1
Wang, Y.2
Sild, S.3
-
46
-
-
0035526164
-
Search for predictive generic model of aqueous solubility using Bayesian neural nets
-
Bruneau P (2001) Search for predictive generic model of aqueous solubility using Bayesian neural nets. J Chem Inf Comput Sci 41:1605–1616
-
(2001)
J Chem Inf Comput Sci
, vol.41
, pp. 1605-1616
-
-
Bruneau, P.1
-
47
-
-
0038282314
-
Theoretical property predictions
-
Livingstone DJ (2003) Theoretical property predictions. Curr Top Med Chem 3: 1171–1192
-
(2003)
Curr Top Med Chem
, vol.3
, pp. 1171-1192
-
-
Livingstone, D.J.1
-
48
-
-
14544278461
-
Recent methodologies for the estimation of n-octanol-water partition coeffcients and their use in the prediction of membrane transport properties of drugs
-
Klopman G, Zhu H (2005) Recent methodologies for the estimation of n-octanol-water partition coeffcients and their use in the prediction of membrane transport properties of drugs. Mini Rev Med Chem 5:127–133
-
(2005)
Mini Rev Med Chem
, vol.5
, pp. 127-133
-
-
Klopman, G.1
Zhu, H.2
-
49
-
-
67651249916
-
In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression
-
Chen H-F (2009) In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression. Chem Biol Drug Des 74:142–147
-
(2009)
Chem Biol Drug Des
, vol.74
, pp. 142-147
-
-
Chen, H.-F.1
-
50
-
-
0035470269
-
Prediction of n-octanol-water partition coeffcients from PHYSPROP database using artifcial neural networks and E-state indices
-
Tetko IV, Tanchuk VY, Villa AEP (2001) Prediction of n-octanol-water partition coeffcients from PHYSPROP database using artifcial neural networks and E-state indices. J Chem Inf Comput Sci 41: 1407–1421
-
(2001)
J Chem Inf Comput Sci
, vol.41
, pp. 1407-1421
-
-
Tetko, I.V.1
Tanchuk, V.Y.2
Villa, A.3
-
53
-
-
54049139304
-
A new neural network-group contri bution method for estimation of fash point temperature of pure components
-
Gharagheizi F, Alamdari RF, Angaji MT (2008) A new neural network-group contri bution method for estimation of fash point temperature of pure components. Energy Fuel 22:1628–1635
-
(2008)
Energy Fuel
, vol.22
, pp. 1628-1635
-
-
Gharagheizi, F.1
Alamdari, R.F.2
Angaji, M.T.3
-
54
-
-
77954796539
-
Chemical structure-based model for estimation of the upper fam-mability limit of pure compounds
-
Gharagheizi F (2010) Chemical structure-based model for estimation of the upper fam-mability limit of pure compounds. Energy Fuel 24:3867–3871
-
(2010)
Energy Fuel
, vol.24
, pp. 3867-3871
-
-
Gharagheizi, F.1
-
55
-
-
67649394207
-
Prediction of upper fammability limit percent of pure compounds from their molecular structures
-
Gharagheizi F (2009) Prediction of upper fammability limit percent of pure compounds from their molecular structures. J Hazard Mater 167:507–510
-
(2009)
J Hazard Mater
, vol.167
, pp. 507-510
-
-
Gharagheizi, F.1
-
56
-
-
53849091731
-
Quantitative structure- property relationship for prediction of the lower fammability limit of pure compounds
-
Gharagheizi F (2008) Quantitative structure- property relationship for prediction of the lower fammability limit of pure compounds. Energy Fuel 22:3037–3039
-
(2008)
Energy Fuel
, vol.22
, pp. 3037-3039
-
-
Gharagheizi, F.1
-
57
-
-
69249213956
-
A new group contribution- based model for estimation of lower fammability limit of pure compounds
-
Gharagheizi F (2009) A new group contribution- based model for estimation of lower fammability limit of pure compounds. J Hazard Mater 170:595–604
-
(2009)
J Hazard Mater
, vol.170
, pp. 595-604
-
-
Gharagheizi, F.1
-
58
-
-
16444381420
-
Optimization of neural networks architecture for impact sensitivity of energetic molecules
-
Cho SG, No KT, Goh EM et al (2005) Optimization of neural networks architecture for impact sensitivity of energetic molecules. Bull Korean Chem Soc 26:399–408
-
(2005)
Bull Korean Chem Soc
, vol.26
, pp. 399-408
-
-
Cho, S.G.1
No, K.T.2
Goh, E.M.3
-
59
-
-
67349117399
-
Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological- state indices
-
Wang R, Jiang J, Pan Y et al (2009) Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological- state indices. J Hazard Mater 166:155–186
-
(2009)
J Hazard Mater
, vol.166
, pp. 155-186
-
-
Wang, R.1
Jiang, J.2
Pan, Y.3
-
60
-
-
0029959906
-
Optimisation of radial basis and backpropaga-tion neural networks for modelling auto-ignition temperature by quantitative structure-property relationships
-
Tetteh J, Metcalfe E, Howells SL (1996) Optimisation of radial basis and backpropaga-tion neural networks for modelling auto-ignition temperature by quantitative structure-property relationships. Chemometr Intell Lab Syst 32:177–191
-
(1996)
Chemometr Intell Lab Syst
, vol.32
, pp. 177-191
-
-
Tetteh, J.1
Metcalfe, E.2
Howells, S.L.3
-
61
-
-
46449109393
-
Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices
-
Pan Y, Jiang J, Wang R et al (2008) Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices. J Hazard Mater 157:510–517
-
(2008)
J Hazard Mater
, vol.157
, pp. 510-517
-
-
Pan, Y.1
Jiang, J.2
Wang, R.3
-
62
-
-
20344407072
-
QSAR analysis of soil sorption coeffcients for polar organic chemicals: Substituted anilines and phenols
-
Liu GS, Yu JG (2005) QSAR analysis of soil sorption coeffcients for polar organic chemicals: substituted anilines and phenols. Water Res 39:2048–2055
-
(2005)
Water Res
, vol.39
, pp. 2048-2055
-
-
Liu, G.S.1
Yu, J.G.2
-
63
-
-
68249117442
-
QSPR modeling of soil sorption coef- fcients (Koc) of pesticides using SPA-ANN and SPA-MLR
-
Goudarzi N, Goodarzi M, Araujo MCU et al (2009) QSPR modeling of soil sorption coef- fcients (Koc) of pesticides using SPA-ANN and SPA-MLR. J Agric Food Chem 57: 7153–7158
-
(2009)
J Agric Food Chem
, vol.57
, pp. 7153-7158
-
-
Goudarzi, N.1
Goodarzi, M.2
Araujo, M.3
-
64
-
-
24044549995
-
Prediction of pKa for neutral and basic drugs based on radial basis function neural networks and the heuristic method
-
Luan F, Ma W, Zhang H et al (2005) Prediction of pKa for neutral and basic drugs based on radial basis function neural networks and the heuristic method. Pharm Res 22: 1454–1460
-
(2005)
Pharm Res
, vol.22
, pp. 1454-1460
-
-
Luan, F.1
Ma, W.2
Zhang, H.3
-
65
-
-
84917712780
-
-
Accessed 26 Jan 2014
-
CODESSA software. Available at www.semi-chem.com. Accessed 26 Jan 2014
-
-
-
CODESSA software1
-
66
-
-
31744441243
-
Prediction acidity constant of various benzoic acids and phenols in water using linear and nonlinear QSPR models
-
Habibi-Yangjeh A, Danandeh-Jenagharad M, Nooshyar M (2005) Prediction acidity constant of various benzoic acids and phenols in water using linear and nonlinear QSPR models. Bull Korean Chem Soc 26:2007–2016
-
(2005)
Bull Korean Chem Soc
, vol.26
, pp. 2007-2016
-
-
Habibi-Yangjeh, A.1
Danandeh-Jenagharad, M.2
Nooshyar, M.3
-
67
-
-
0035272647
-
Prediction of surface tension, viscosity and thermal conductivity for common organic solvents using quantitative structure-property relationships
-
Kauffman GW, Jurs PC (2001) Prediction of surface tension, viscosity and thermal conductivity for common organic solvents using quantitative structure-property relationships. J Chem Inf Comput Sci 41:408–418
-
(2001)
J Chem Inf Comput Sci
, vol.41
, pp. 408-418
-
-
Kauffman, G.W.1
Jurs, P.C.2
-
68
-
-
0035497866
-
Prediction of physical properties of organic compounds using artifcial neural networks within the substructure approach
-
Artemenko NV, Baskin II, Palyulin VA et al (2001) Prediction of physical properties of organic compounds using artifcial neural networks within the substructure approach. Doklady Chem 381:317–320
-
(2001)
Doklady Chem
, vol.381
, pp. 317-320
-
-
Artemenko, N.V.1
Baskin, I.I.2
Palyulin, V.A.3
-
69
-
-
33846096494
-
QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach
-
Modarresi H, Modarress H, Dearden JC (2007) QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach. Chemosphere 66:2067–2076
-
(2007)
Chemosphere
, vol.66
, pp. 2067-2076
-
-
Modarresi, H.1
Modarress, H.2
Dearden, J.C.3
-
70
-
-
77958020996
-
Prediction of Henry’s law constant of organic compounds in water from a new group-contribution- based method
-
Gharagheizi F, Abbasi R, Tirandazi B (2010) Prediction of Henry’s law constant of organic compounds in water from a new group-contribution- based method. Ind Eng Chem Res 49:10149–10152
-
(2010)
Ind Eng Chem Res
, vol.49
, pp. 10149-10152
-
-
Gharagheizi, F.1
Abbasi, R.2
Tirandazi, B.3
-
72
-
-
38849171093
-
A review of QSAR models for skin and eye irritation and corrosion
-
Salina AG, Patlewicz G, Worth AP (2008) A review of QSAR models for skin and eye irritation and corrosion. QSAR Comb Sci 27: 49–59
-
(2008)
QSAR Comb Sci
, vol.27
, pp. 49-59
-
-
Salina, A.G.1
Patlewicz, G.2
Worth, A.P.3
-
73
-
-
58149179927
-
Quantitative structure-property relationships modeling of skin irritation
-
Golla S, Madihally S, Robinson RL et al (2009) Quantitative structure-property relationships modeling of skin irritation. Toxicol In Vitro 23:176–184
-
(2009)
Toxicol in Vitro
, vol.23
, pp. 176-184
-
-
Golla, S.1
Madihally, S.2
Robinson, R.L.3
-
74
-
-
0029887895
-
Quantitative structure-activity relationships (QSARs) for skin corro-sivity of organic acids, bases and phenols: Principal components and neural networks analysis of extended datasets
-
Barratt MD (1996) Quantitative structure-activity relationships (QSARs) for skin corro-sivity of organic acids, bases and phenols: principal components and neural networks analysis of extended datasets. Toxicol In Vitro 10:85–94
-
(1996)
Toxicol in Vitro
, vol.10
, pp. 85-94
-
-
Barratt, M.D.1
-
75
-
-
0030982242
-
QSARs for the eye irritation potential of neutral organic chemicals
-
Barratt MD (1997) QSARs for the eye irritation potential of neutral organic chemicals. Toxicol In Vitro 11:1–8
-
(1997)
Toxicol in Vitro
, vol.11
, pp. 1-8
-
-
Barratt, M.D.1
-
76
-
-
0033995693
-
A QSAR model for the eye irritation of cat-ionic surfactants
-
Patlewicz GY, Rodford RA, Ellis G et al (2000) A QSAR model for the eye irritation of cat-ionic surfactants. Toxicol In Vitro 14:79–84
-
(2000)
Toxicol in Vitro
, vol.14
, pp. 79-84
-
-
Patlewicz, G.Y.1
Rodford, R.A.2
Ellis, G.3
-
77
-
-
41649099510
-
A minireview of available skin sensitization (Q)SARs/expert systems
-
Patlewicz G, Roberts DW, Uriarte E (2008) A minireview of available skin sensitization (Q)SARs/expert systems. Chem Res Toxicol 21:521–541
-
(2008)
Chem Res Toxicol
, vol.21
, pp. 521-541
-
-
Patlewicz, G.1
Roberts, D.W.2
Uriarte, E.3
-
78
-
-
0033838582
-
A neural network SAR model for allergic contact dermatitis
-
Devillers J (2000) A neural network SAR model for allergic contact dermatitis. Toxicol Methods 10:181–193
-
(2000)
Toxicol Methods
, vol.10
, pp. 181-193
-
-
Devillers, J.1
-
79
-
-
0028191789
-
Multivariate QSAR analysis of a skin sensiti-zation database
-
Cronin MTD, Basketter DA (1994) Multivariate QSAR analysis of a skin sensiti-zation database. SAR QSAR Environ Res 2: 159–179
-
(1994)
SAR QSAR Environ Res
, vol.2
, pp. 159-179
-
-
Cronin, M.1
Basketter, D.A.2
-
80
-
-
60549110633
-
Quantitative structure-property relationship modeling of skin sensitization: A quantitative prediction
-
Golla S, Madihally S, Robinson RL et al (2009) Quantitative structure-property relationship modeling of skin sensitization: a quantitative prediction. Toxicol In Vitro 23: 454–465
-
(2009)
Toxicol in Vitro
, vol.23
, pp. 454-465
-
-
Golla, S.1
Madihally, S.2
Robinson, R.L.3
-
82
-
-
84869996743
-
In silico prediction of chemical Ames mutagenicity
-
Xu C, Cheng F, Chen L et al (2012) In silico prediction of chemical Ames mutagenicity. J Chem Inf Model 52:2840–2847
-
(2012)
J Chem Inf Model
, vol.52
, pp. 2840-2847
-
-
Xu, C.1
Cheng, F.2
Chen, L.3
-
83
-
-
77955085075
-
Predicting mutagenicity of aromatic amines by various machine learning approaches
-
Leong MK, Lin S-W, Chen H-B et al (2010) Predicting mutagenicity of aromatic amines by various machine learning approaches. Toxicol Sci 116:498–513
-
(2010)
Toxicol Sci
, vol.116
, pp. 498-513
-
-
Leong, M.K.1
Lin, S.-W.2
Chen, H.-B.3
-
85
-
-
8344231675
-
Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modelling
-
Devillers J (2004) Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modelling. SAR QSAR Environ Res 15:501–510
-
(2004)
SAR QSAR Environ Res
, vol.15
, pp. 501-510
-
-
Devillers, J.1
-
86
-
-
72049089038
-
A tentative quantitative structure-toxicity relationship study of benzodiazepine drugs
-
Funar-Timofei S, Ionescu D, Suzuki T (2010) A tentative quantitative structure-toxicity relationship study of benzodiazepine drugs. Toxicol In Vitro 24:184–200
-
(2010)
Toxicol in Vitro
, vol.24
, pp. 184-200
-
-
Funar-Timofei, S.1
Ionescu, D.2
Suzuki, T.3
-
87
-
-
0035145572
-
Modeling acute toxicity of chemicals to Daphnia magna: A probabilistic neural network approach
-
Kaiser KLE, Niculescu SP (2001) Modeling acute toxicity of chemicals to Daphnia magna: a probabilistic neural network approach. Environ Toxicol Chem 20:420–431
-
(2001)
Environ Toxicol Chem
, vol.20
, pp. 420-431
-
-
Kaiser, K.1
Niculescu, S.P.2
-
88
-
-
37249035097
-
Modeling the toxicity of chemicals to Tetrahymena pyrifor-mis using heuristic multilinear regression and heuristic back-propagation neural networks
-
Kahn I, Sild S, Maran U (2007) Modeling the toxicity of chemicals to Tetrahymena pyrifor-mis using heuristic multilinear regression and heuristic back-propagation neural networks. J Chem Inf Model 47:2271–2279
-
(2007)
J Chem Inf Model
, vol.47
, pp. 2271-2279
-
-
Kahn, I.1
Sild, S.2
Maran, U.3
-
89
-
-
84869887397
-
Elicitation of the most important structural properties of ionic liquids affecting ecotoxic-ity in limnic green algae: A QSAR approach
-
Izadiyan P, Fatemi MH, Izadiyan M (2013) Elicitation of the most important structural properties of ionic liquids affecting ecotoxic-ity in limnic green algae: a QSAR approach. Ecotoxicol Environ Saf 87:42–48
-
(2013)
Ecotoxicol Environ Saf
, vol.87
, pp. 42-48
-
-
Izadiyan, P.1
Fatemi, M.H.2
Izadiyan, M.3
-
90
-
-
0027900053
-
Estimating pesticide feld half-lives from a backpropagation neural network
-
Domine D, Devillers J, Chastrette M et al (1993) Estimating pesticide feld half-lives from a backpropagation neural network. SAR QSAR Environ Res 1:211–219
-
(1993)
SAR QSAR Environ Res
, vol.1
, pp. 211-219
-
-
Domine, D.1
Devillers, J.2
Chastrette, M.3
-
91
-
-
79956081809
-
Quantitative structure-biodegradability relationship study about the aerobic biodegrada-tion of some aromatic compounds
-
Jing G-H, Li X-L, Zhou Z-M (2011) Quantitative structure-biodegradability relationship study about the aerobic biodegrada-tion of some aromatic compounds. Chin J Struct Chem 30:368–375
-
(2011)
Chin J Struct Chem
, vol.30
, pp. 368-375
-
-
Jing, G.-H.1
Li, X.-L.2
Zhou, Z.-M.3
-
92
-
-
34250824089
-
In silico screening of estrogen-like chemicals based on different nonlinear classifcation models
-
Liu H, Papa E, Walker JD et al (2007) In silico screening of estrogen-like chemicals based on different nonlinear classifcation models. J Mol Graph Model 26:135–144
-
(2007)
J Mol Graph Model
, vol.26
, pp. 135-144
-
-
Liu, H.1
Papa, E.2
Walker, J.D.3
-
93
-
-
57349166641
-
Binary classifcation models for endocrine disrupter effects mediated through the estrogen receptor
-
Roncaglioni A, Piclin N, Pintore M et al (2008) Binary classifcation models for endocrine disrupter effects mediated through the estrogen receptor. SAR QSAR Environ Res 19:697–733
-
(2008)
SAR QSAR Environ Res
, vol.19
, pp. 697-733
-
-
Roncaglioni, A.1
Piclin, N.2
Pintore, M.3
-
94
-
-
0036892637
-
Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis
-
Wajima T, Fukumura K, Yano Y et al (2002) Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis. J Pharm Sci 91:2489–2499
-
(2002)
J Pharm Sci
, vol.91
, pp. 2489-2499
-
-
Wajima, T.1
Fukumura, K.2
Yano, Y.3
-
95
-
-
0030803990
-
Application of neural networks to population pharmacokinetic data analysis
-
Chow H-H, Tolle KM, Roe DJ et al (1997) Application of neural networks to population pharmacokinetic data analysis. J Pharm Sci 86:840–845
-
(1997)
J Pharm Sci
, vol.86
, pp. 840-845
-
-
Chow, H.-H.1
Tolle, K.M.2
Roe, D.J.3
-
96
-
-
84880324511
-
Predicting acute aqueous toxicity of structurally diverse chemicals in fsh using artifcial intelligence approaches
-
Singh KP, Gupta S, Rai P (2013) Predicting acute aqueous toxicity of structurally diverse chemicals in fsh using artifcial intelligence approaches. Ecotoxicol Environ Saf 95: 221–232
-
(2013)
Ecotoxicol Environ Saf
, vol.95
, pp. 221-232
-
-
Singh, K.P.1
Gupta, S.2
Rai, P.3
-
97
-
-
55249126163
-
Quantitative structure-activity relationship study on fsh toxicity of substituted benzenes
-
Gong Z, Xia B, Zhang R et al (2008) Quantitative structure-activity relationship study on fsh toxicity of substituted benzenes. QSAR Comb Sci 27:967–976
-
(2008)
QSAR Comb Sci
, vol.27
, pp. 967-976
-
-
Gong, Z.1
Xia, B.2
Zhang, R.3
-
98
-
-
0033103912
-
Molecular level studies of the origin of toxicity: Determination of key variables and selection of descriptors
-
Okey RW, Martis MC (1999) Molecular level studies of the origin of toxicity: determination of key variables and selection of descriptors. Chemosphere 38:1419–1427
-
(1999)
Chemosphere
, vol.38
, pp. 1419-1427
-
-
Okey, R.W.1
Martis, M.C.2
-
99
-
-
0036763729
-
Quantitative structure-conditions- property relationship studies. Neural network modelling of the acid hydrolysis of esters
-
Halberstam NM, Baskin II, Palyulin VA et al (2002) Quantitative structure-conditions- property relationship studies. Neural network modelling of the acid hydrolysis of esters. Mendeleev Commun 12(5):185–186
-
(2002)
Mendeleev Commun
, vol.12
, Issue.5
, pp. 185-186
-
-
Halberstam, N.M.1
Baskin, I.I.2
Palyulin, V.A.3
-
100
-
-
84871769654
-
Evaluation of the threshold of toxicological concern (TTC)—challenges and approaches
-
Dewhurst I, Renwick AG (2013) Evaluation of the threshold of toxicological concern (TTC)—challenges and approaches. Regul Toxicol Pharmacol 65:168–177
-
(2013)
Regul Toxicol Pharmacol
, vol.65
, pp. 168-177
-
-
Dewhurst, I.1
Renwick, A.G.2
-
101
-
-
48049090727
-
A feed-forward arti-fcial neural network for prediction of the aquatic ecotoxicity of alcohol ethoxylate
-
Meng Y, Lin B-L (2008) A feed-forward arti-fcial neural network for prediction of the aquatic ecotoxicity of alcohol ethoxylate. Ecotoxicol Environ Saf 71:172–186
-
(2008)
Ecotoxicol Environ Saf
, vol.71
, pp. 172-186
-
-
Meng, Y.1
Lin, B.-L.2
-
102
-
-
0037533737
-
Prediction of bioconcentration factor using genetic algorithm and artifcial neural network
-
Fatemi MH, Jalali-Heravi M, Konuze E (2003) Prediction of bioconcentration factor using genetic algorithm and artifcial neural network. Anal Chim Acta 486:101–108
-
(2003)
Anal Chim Acta
, vol.486
, pp. 101-108
-
-
Fatemi, M.H.1
Jalali-Heravi, M.2
Konuze, E.3
-
103
-
-
55249098367
-
A new hybrid system of QSAR models for prediction bioconcentration factors (BCF)
-
Zhao C, Boriani E, Chana A et al (2008) A new hybrid system of QSAR models for prediction bioconcentration factors (BCF). Chemosphere 73:1701–1707
-
(2008)
Chemosphere
, vol.73
, pp. 1701-1707
-
-
Zhao, C.1
Boriani, E.2
Chana, A.3
-
105
-
-
40749086750
-
Quantitative structure-activity relationship (QSAR) studies for fungicidal activities of thiazoline derivatives against rice blast
-
Song JS, Moon T, Nam KD et al (2008) Quantitative structure-activity relationship (QSAR) studies for fungicidal activities of thiazoline derivatives against rice blast. Bioorg Med Chem Lett 18:2133–2142
-
(2008)
Bioorg Med Chem Lett
, vol.18
, pp. 2133-2142
-
-
Song, J.S.1
Moon, T.2
Nam, K.D.3
-
106
-
-
78650176178
-
Quantitative and qualitative models for carci-nogenicity prediction for non-congeneric chemicals using CP NN method for regulatory uses
-
Fjodorova N, Vračko M, Tušar M et al (2010) Quantitative and qualitative models for carci-nogenicity prediction for non-congeneric chemicals using CP NN method for regulatory uses. Mol Divers 14:581–594
-
(2010)
Mol Divers
, vol.14
, pp. 581-594
-
-
Fjodorova, N.1
Vračko, M.2
Tušar, M.3
-
107
-
-
84884148379
-
Predicting carcinogenicity of diverse chemicals using probabilistic neural network modelling approaches
-
Singh KP, Gupta S, Rai P (2013) Predicting carcinogenicity of diverse chemicals using probabilistic neural network modelling approaches. Toxicol Appl Pharmacol 272: 465–475
-
(2013)
Toxicol Appl Pharmacol
, vol.272
, pp. 465-475
-
-
Singh, K.P.1
Gupta, S.2
Rai, P.3
-
108
-
-
84897493756
-
Expert systems for tox-icity prediction
-
In: Cronin MTD, Madden JC, Royal Society of Chemistry, London
-
Dearden JC (2010) Expert systems for tox-icity prediction. In: Cronin MTD, Madden JC (eds) In silico toxicology: principles and applications. Royal Society of Chemistry, London, pp 478–507
-
(2010)
In Silico Toxicology: Principles and Applications
, pp. 478-507
-
-
Dearden, J.C.1
-
110
-
-
84917712778
-
-
Accessed 25 Jan 2014
-
Molecular Modeling Pro. Available at http://www.chemsw.com/Software-and-Solutions/Laboratory-Software/Drawing-and-Modeling-Tools/Molecular-Modeling-Pro.aspx. Accessed 25 Jan 2014
-
-
-
Molecular Modeling Pro1
-
111
-
-
84972939236
-
Estimation of pure-component properties from group-contributions
-
Joback KG, Reid RC (1987) Estimation of pure-component properties from group-contributions. Chem Eng Commun 57: 233–243
-
(1987)
Chem Eng Commun
, vol.57
, pp. 233-243
-
-
Joback, K.G.1
Reid, R.C.2
-
112
-
-
84917712777
-
-
Accessed 28 Jan 2014
-
ADMET Predictor. http://www.simulations-plus.com. Accessed 28 Jan 2014
-
-
-
ADMET Predictor1
-
113
-
-
84917712776
-
-
Accessed 28 Jan 2014
-
ChemSilico. Available at www.chemsilico.com. Accessed 28 Jan 2014
-
-
-
ChemSilico1
-
114
-
-
84917712775
-
-
Accessed 28 Jan 2014
-
TOPKAT. Available at www.accelrys.com. Accessed 28 Jan 2014
-
-
-
TOPKAT1
-
115
-
-
84917712774
-
-
Accessed 28 Jan 2014
-
TerraBase. Available at www.terrabase-inc.com. Accessed 28 Jan 2014
-
-
-
TerraBase1
-
116
-
-
0038069350
-
Neural networks for effect prediction in environmental health issues using large datasets
-
Kaiser KLE (2003) Neural networks for effect prediction in environmental health issues using large datasets. QSAR Comb Sci 22:185–190
-
(2003)
QSAR Comb Sci
, vol.22
, pp. 185-190
-
-
Kaiser, K.1
|