-
1
-
-
67650725820
-
The biology of chromatin remodeling complexes
-
Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78: 273-304.
-
(2009)
Annu Rev Biochem
, vol.78
, pp. 273-304
-
-
Clapier, C.R.1
Cairns, B.R.2
-
2
-
-
33745122231
-
Identification of multiple distinct Snf2 subfamilies with conserved structural motifs
-
DOI 10.1093/nar/gkl295
-
Flaus A, Martin DM, Barton GJ, Owen-Hughes T (2006) Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34: 2887-2905. (Pubitemid 44540417)
-
(2006)
Nucleic Acids Research
, vol.34
, Issue.10
, pp. 2887-2905
-
-
Flaus, A.1
Martin, D.M.A.2
Barton, G.J.3
Owen-Hughes, T.4
-
4
-
-
79952468153
-
SnapShot: Chromatin remodeling: ISWI
-
Yadon AN, Tsukiyama T (2011) SnapShot: Chromatin remodeling: ISWI. Cell 144: 453-453 e451.
-
(2011)
Cell
, vol.144
-
-
Yadon, A.N.1
Tsukiyama, T.2
-
6
-
-
84881166117
-
Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes
-
Narlikar GJ, Sundaramoorthy R, Owen-Hughes T (2013) Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154: 490-503.
-
(2013)
Cell
, vol.154
, pp. 490-503
-
-
Narlikar, G.J.1
Sundaramoorthy, R.2
Owen-Hughes, T.3
-
7
-
-
0033082269
-
ISWI is an ATP-dependent nucleosome remodeling factor
-
DOI 10.1016/S1097-2765(00)80314-7
-
Corona DF, Langst G, Clapier CR, Bonte EJ, Ferrari S, et al. (1999) ISWI is an ATP-dependent nucleosome remodeling factor. Mol Cell 3: 239-245. (Pubitemid 29292624)
-
(1999)
Molecular Cell
, vol.3
, Issue.2
, pp. 239-245
-
-
Corona, D.F.V.1
Langst, G.2
Clapier, C.R.3
Bonte, E.J.4
Ferrari, S.5
Tamkun, J.W.6
Becker, P.B.7
-
8
-
-
0035016612
-
Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: Analyses using recombinant yeast histones and immobilized templates
-
DOI 10.1128/MCB.21.6.2098-2106.2001
-
Gelbart ME, Rechsteiner T, Richmond TJ, Tsukiyama T (2001) Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates. Mol Cell Biol 21: 2098-2106. (Pubitemid 32479631)
-
(2001)
Molecular and Cellular Biology
, vol.21
, Issue.6
, pp. 2098-2106
-
-
Gelbart, M.E.1
Rechsteiner, T.2
Richmond, T.J.3
Tsukiyama, T.4
-
9
-
-
33749396882
-
Human ACF1 alters the remodeling strategy of SNF2h
-
DOI 10.1074/jbc.M603008200
-
He X, Fan HY, Narlikar GJ, Kingston RE (2006) Human ACF1 alters the remodeling strategy of SNF2h. J Biol Chem 281: 28636-28647. (Pubitemid 44507006)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.39
, pp. 28636-28647
-
-
He, X.1
Fan, H.-Y.2
Narlikar, G.J.3
Kingston, R.E.4
-
10
-
-
0031444148
-
ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor
-
DOI 10.1016/S0092-8674(00)80321-9
-
Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90: 145-155. (Pubitemid 28009426)
-
(1997)
Cell
, vol.90
, Issue.1
, pp. 145-155
-
-
Ito, T.1
Bulger, M.2
Pazin, M.J.3
Kobayashi, R.4
Kadonaga, J.T.5
-
11
-
-
80051748137
-
Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF
-
Torigoe SE, Urwin DL, Ishii H, Smith DE, Kadonaga JT (2011) Identification of a rapidly formed nonnucleosomal histone-DNA intermediate that is converted into chromatin by ACF. Mol Cell 43: 638-648.
-
(2011)
Mol Cell
, vol.43
, pp. 638-648
-
-
Torigoe, S.E.1
Urwin, D.L.2
Ishii, H.3
Smith, D.E.4
Kadonaga, J.T.5
-
12
-
-
0030839857
-
Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II
-
DOI 10.1038/41587
-
Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, et al. (1997) Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388: 598-602. (Pubitemid 27340011)
-
(1997)
Nature
, vol.388
, Issue.6642
, pp. 598-602
-
-
Varga-Weisz, P.D.1
Wilm, M.2
Bonte, E.3
Dumas, K.4
Mann, M.5
Becker, P.B.6
-
13
-
-
1542358189
-
Multiple roles for ISWI in transcription, chromosome organization and DNA replication
-
DOI 10.1016/j.bbaexp.2003.09.018, PII S0167478103002835
-
Corona DF, Tamkun JW (2004) Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim Biophys Acta 1677: 113-119. (Pubitemid 38327095)
-
(2004)
Biochimica et Biophysica Acta - Gene Structure and Expression
, vol.1677
, Issue.1-3
, pp. 113-119
-
-
Corona, D.F.V.1
Tamkun, J.W.2
-
14
-
-
80052962505
-
Chromatin remodelling in mammalian cells by ISWI-type complexes-where, when and why?
-
Erdel F, Rippe K (2011) Chromatin remodelling in mammalian cells by ISWI-type complexes-where, when and why? FEBS J 278: 3608-3618.
-
(2011)
FEBS J
, vol.278
, pp. 3608-3618
-
-
Erdel, F.1
Rippe, K.2
-
15
-
-
33744916194
-
Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome
-
DOI 10.1038/nsmb1071, PII N1071
-
Zofall M, Persinger J, Kassabov SR, Bartholomew B (2006) Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat Struct Mol Biol 13: 339-346. (Pubitemid 43873505)
-
(2006)
Nature Structural and Molecular Biology
, vol.13
, Issue.4
, pp. 339-346
-
-
Zofall, M.1
Persinger, J.2
Kassabov, S.R.3
Bartholomew, B.4
-
16
-
-
33749626224
-
Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA
-
DOI 10.1128/MCB.01159-06
-
Dang W, Kagalwala MN, Bartholomew B (2006) Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA. Mol Cell Biol 26: 7388-7396. (Pubitemid 44547691)
-
(2006)
Molecular and Cellular Biology
, vol.26
, Issue.20
, pp. 7388-7396
-
-
Dang, W.1
Kagalwala, M.N.2
Bartholomew, B.3
-
17
-
-
4544266390
-
Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex
-
DOI 10.1074/jbc.M406060200
-
Schwanbeck R, Xiao H, Wu C (2004) Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J Biol Chem 279: 39933-39941. (Pubitemid 39258266)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.38
, pp. 39933-39941
-
-
Schwanbeck, R.1
Xiao, H.2
Wu, C.3
-
18
-
-
72949099482
-
The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes
-
Racki LR, Yang JG, Naber N, Partensky PD, Acevedo A, et al. (2009) The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462: 1016-1021.
-
(2009)
Nature
, vol.462
, pp. 1016-1021
-
-
Racki, L.R.1
Yang, J.G.2
Naber, N.3
Partensky, P.D.4
Acevedo, A.5
-
19
-
-
1842411320
-
Crystal structure of the nucleosome core particle at 2.8 A resolution
-
DOI 10.1038/38444
-
Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-260. (Pubitemid 27406632)
-
(1997)
Nature
, vol.389
, Issue.6648
, pp. 251-260
-
-
Luger, K.1
Mader, A.W.2
Richmond, R.K.3
Sargent, D.F.4
Richmond, T.J.5
-
20
-
-
0035137666
-
Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI
-
DOI 10.1128/MCB.21.3.875-883.2001
-
Clapier CR, Langst G, Corona DF, Becker PB, Nightingale KP (2001) Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol Cell Biol 21: 875-883. (Pubitemid 32104735)
-
(2001)
Molecular and Cellular Biology
, vol.21
, Issue.3
, pp. 875-883
-
-
Clapier, C.R.1
Langst, G.2
Corona, D.F.V.3
Becker, P.B.4
Nightingale, K.P.5
-
21
-
-
0035807901
-
Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF
-
DOI 10.1073/pnas.251421398
-
Hamiche A, Kang JG, Dennis C, Xiao H, Wu C (2001) Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. Proc Natl Acad Sci U S A 98: 14316-14321. (Pubitemid 33121389)
-
(2001)
Proceedings of the National Academy of Sciences of the United States of America
, vol.98
, Issue.25
, pp. 14316-14321
-
-
Hamiche, A.1
Kang, J.-G.2
Dennis, C.3
Xiao, H.4
Wu, C.5
-
22
-
-
0035898615
-
Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling
-
DOI 10.1093/emboj/20.14.3781
-
Eberharter A, Ferrari S, Langst G, Straub T, Imhof A, et al. (2001) Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J 20: 3781-3788. (Pubitemid 32691789)
-
(2001)
EMBO Journal
, vol.20
, Issue.14
, pp. 3781-3788
-
-
Eberharter, A.1
Ferrari, S.2
Langst, G.3
Straub, T.4
Imhof, A.5
Varga-Weisz, P.6
Wilm, M.7
Becker, P.B.8
-
23
-
-
0036464569
-
A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI
-
Clapier CR, Nightingale KP, Becker PB (2002) A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res 30: 649-655. (Pubitemid 34679629)
-
(2002)
Nucleic Acids Research
, vol.30
, Issue.3
, pp. 649-655
-
-
Clapier, C.R.1
Nightingale, K.P.2
Becker, P.B.3
-
24
-
-
27144533183
-
Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo
-
DOI 10.1128/MCB.25.21.9165-9174.2005
-
Fazzio TG, Gelbart ME, Tsukiyama T (2005) Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo. Mol Cell Biol 25: 9165-9174. (Pubitemid 41507820)
-
(2005)
Molecular and Cellular Biology
, vol.25
, Issue.21
, pp. 9165-9174
-
-
Fazzio, T.G.1
Gelbart, M.E.2
Tsukiyama, T.3
-
25
-
-
84897519151
-
Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure
-
Pepenella S, Murphy KJ, Hayes JJ (2013) Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. Chromosoma.
-
(2013)
Chromosoma
-
-
Pepenella, S.1
Murphy, K.J.2
Hayes, J.J.3
-
26
-
-
26644471508
-
The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays
-
DOI 10.1074/jbc.M507048200
-
Gordon F, Luger K, Hansen JC (2005) The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays. J Biol Chem 280: 33701-33706. (Pubitemid 41443087)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.40
, pp. 33701-33706
-
-
Gordon, F.1
Luger, K.2
Hansen, J.C.3
-
27
-
-
0037436410
-
Chromatin fiber folding: Requirement for the histone H4 N-terminal tail
-
DOI 10.1016/S0022-2836(03)00025-1
-
Dorigo B, Schalch T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327: 85-96. (Pubitemid 36293304)
-
(2003)
Journal of Molecular Biology
, vol.327
, Issue.1
, pp. 85-96
-
-
Dorigo, B.1
Schalch, T.2
Bystricky, K.3
Richmond, T.J.4
-
28
-
-
58249118858
-
The H4 tail domain participates in intra-and internucleosome interactions with protein and DNA during folding and oligomerization of nucleosome arrays
-
Kan PY, Caterino TL, Hayes JJ (2009) The H4 tail domain participates in intra-and internucleosome interactions with protein and DNA during folding and oligomerization of nucleosome arrays. Mol Cell Biol 29: 538-546.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 538-546
-
-
Kan, P.Y.1
Caterino, T.L.2
Hayes, J.J.3
-
29
-
-
37549023859
-
Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure
-
Wang X, Hayes JJ (2008) Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol 28: 227-236.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 227-236
-
-
Wang, X.1
Hayes, J.J.2
-
30
-
-
32444434989
-
Histone H4-K16 acetylation controls chromatin structure and protein interactions
-
DOI 10.1126/science.1124000
-
Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, et al. (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311: 844-847. (Pubitemid 43228847)
-
(2006)
Science
, vol.311
, Issue.5762
, pp. 844-847
-
-
Shogren-Knaak, M.1
Ishii, H.2
Sun, J.-M.3
Pazin, M.J.4
Davie, J.R.5
Peterson, C.L.6
-
31
-
-
48449106172
-
30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction
-
Robinson PJ, An W, Routh A, Martino F, Chapman L, et al. (2008) 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J Mol Biol 381: 816-825.
-
(2008)
J Mol Biol
, vol.381
, pp. 816-825
-
-
Robinson, P.J.1
An, W.2
Routh, A.3
Martino, F.4
Chapman, L.5
-
32
-
-
79953148278
-
The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association
-
Allahverdi A, Yang R, Korolev N, Fan Y, Davey CA, et al. (2011) The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Res 39: 1680-1691.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 1680-1691
-
-
Allahverdi, A.1
Yang, R.2
Korolev, N.3
Fan, Y.4
Davey, C.A.5
-
33
-
-
77952097668
-
Multifunctionality of the linker histones: An emerging role for protein-protein interactions
-
McBryant SJ, Lu X, Hansen JC (2010) Multifunctionality of the linker histones: an emerging role for protein-protein interactions. Cell Res 20: 519-528.
-
(2010)
Cell Res
, vol.20
, pp. 519-528
-
-
McBryant, S.J.1
Lu, X.2
Hansen, J.C.3
-
34
-
-
77954386433
-
Accessibility of the Drosophila genome discriminates PcG repression, H4K16 acetylation and replication timing
-
Bell O, Schwaiger M, Oakeley EJ, Lienert F, Beisel C, et al. (2010) Accessibility of the Drosophila genome discriminates PcG repression, H4K16 acetylation and replication timing. Nat Struct Mol Biol 17: 894-900.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 894-900
-
-
Bell, O.1
Schwaiger, M.2
Oakeley, E.J.3
Lienert, F.4
Beisel, C.5
-
35
-
-
33747818930
-
Histone H4 lysine 16 acetylation breaks the genome's silence
-
Shia WJ, Pattenden SG, Workman JL (2006) Histone H4 lysine 16 acetylation breaks the genome's silence. Genome Biol 7: 217.
-
(2006)
Genome Biol
, vol.7
, pp. 217
-
-
Shia, W.J.1
Pattenden, S.G.2
Workman, J.L.3
-
36
-
-
84855940430
-
Dosage compensation in Drosophila melanogaster: Epigenetic fine-tuning of chromosome-wide transcription
-
Conrad T, Akhtar A (2011) Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat Rev Genet 13: 123-134.
-
(2011)
Nat Rev Genet
, vol.13
, pp. 123-134
-
-
Conrad, T.1
Akhtar, A.2
-
37
-
-
35548941098
-
Histone Modifications Influence the Action of Snf2 Family Remodelling Enzymes by Different Mechanisms
-
DOI 10.1016/j.jmb.2007.09.059, PII S0022283607012016
-
Ferreira H, Flaus A, Owen-Hughes T (2007) Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol 374: 563-579. (Pubitemid 350018763)
-
(2007)
Journal of Molecular Biology
, vol.374
, Issue.3
, pp. 563-579
-
-
Ferreira, H.1
Flaus, A.2
Owen-Hughes, T.3
-
38
-
-
0036208153
-
Modulation of ISWI function by site-specific histone acetylation
-
DOI 10.1093/embo-reports/kvf056
-
Corona DF, Clapier CR, Becker PB, Tamkun JW (2002) Modulation of ISWI function by site-specific histone acetylation. EMBO Rep 3: 242-247. (Pubitemid 34269517)
-
(2002)
EMBO Reports
, vol.3
, Issue.3
, pp. 242-247
-
-
Corona, D.F.V.1
Clapier, C.R.2
Becker, P.B.3
Tamkun, J.W.4
-
39
-
-
35548993663
-
Acetylation increases access of remodelling complexes to their nucleosome targets to enhance initiation of V(D)J recombination
-
DOI 10.1093/nar/gkm650
-
Nightingale KP, Baumann M, Eberharter A, Mamais A, Becker PB, et al. (2007) Acetylation increases access of remodelling complexes to their nucleosome targets to enhance initiation of V(D)J recombination. Nucleic Acids Res 35: 6311-6321. (Pubitemid 350018591)
-
(2007)
Nucleic Acids Research
, vol.35
, Issue.18
, pp. 6311-6321
-
-
Nightingale, K.P.1
Baumann, M.2
Eberharter, A.3
Mamais, A.4
Becker, P.B.5
Boyes, J.6
-
40
-
-
0033867524
-
The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo
-
Deuring R, Fanti L, Armstrong JA, Sarte M, Papoulas O, et al. (2000) The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol Cell 5: 355-365. (Pubitemid 30628092)
-
(2000)
Molecular Cell
, vol.5
, Issue.2
, pp. 355-365
-
-
Deuring, R.1
Fanti, L.2
Armstrong, J.A.3
Sarte, M.4
Papoulas, O.5
Prestel, M.6
Daubresse, G.7
Verardo, M.8
Moseley, S.L.9
Berloco, M.10
Tsukiyama, T.11
Wu, C.12
Pimpinelli, S.13
Tamkun, J.W.14
-
41
-
-
34548664586
-
ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo
-
Corona DF, Siriaco G, Armstrong JA, Snarskaya N, McClymont SA, et al. (2007) ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo. PLoS Biol 5: e232.
-
(2007)
PLoS Biol
, vol.5
-
-
Corona, D.F.1
Siriaco, G.2
Armstrong, J.A.3
Snarskaya, N.4
McClymont, S.A.5
-
42
-
-
15544369061
-
Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly
-
Lusser A, Urwin DL, Kadonaga JT (2005) Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol 12: 160-166.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 160-166
-
-
Lusser, A.1
Urwin, D.L.2
Kadonaga, J.T.3
-
43
-
-
40949150335
-
ACF catalyses chromatosome movements in chromatin fibres
-
DOI 10.1038/sj.emboj.7601902, PII 7601902
-
Maier VK, Chioda M, Rhodes D, Becker PB (2008) ACF catalyses chromatosome movements in chromatin fibres. EMBO J 27: 817-826. (Pubitemid 351417165)
-
(2008)
EMBO Journal
, vol.27
, Issue.6
, pp. 817-826
-
-
Maier, V.K.1
Chioda, M.2
Rhodes, D.3
Becker, P.B.4
-
44
-
-
11844299709
-
A method for the in vitro reconstitution of a defined "30 nm" chromatin fibre containing stoichiometric amounts of the linker histone
-
DOI 10.1016/j.jmb.2004.10.075, PII S0022283604013968
-
Huynh VA, Robinson PJ, Rhodes D (2005) A method for the in vitro reconstitution of a defined "30 nm" chromatin fibre containing stoichiometric amounts of the linker histone. J Mol Biol 345: 957-968. (Pubitemid 40092217)
-
(2005)
Journal of Molecular Biology
, vol.345
, Issue.5
, pp. 957-968
-
-
Huynh, V.A.T.1
Robinson, P.J.J.2
Rhodes, D.3
-
45
-
-
0026754072
-
Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos
-
Becker PB, Wu C (1992) Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol Cell Biol 12: 2241-2249.
-
(1992)
Mol Cell Biol
, vol.12
, pp. 2241-2249
-
-
Becker, P.B.1
Wu, C.2
-
46
-
-
79960072799
-
A dual role of H4K16 acetylation in the establishment of yeast silent chromatin
-
Oppikofer M, Kueng S, Martino F, Soeroes S, Hancock SM, et al. (2011) A dual role of H4K16 acetylation in the establishment of yeast silent chromatin. EMBO J 30: 2610-2621.
-
(2011)
EMBO J
, vol.30
, pp. 2610-2621
-
-
Oppikofer, M.1
Kueng, S.2
Martino, F.3
Soeroes, S.4
Hancock, S.M.5
-
47
-
-
48249103503
-
Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure
-
Routh A, Sandin S, Rhodes D (2008) Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc Natl Acad Sci U S A 105: 8872-8877.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 8872-8877
-
-
Routh, A.1
Sandin, S.2
Rhodes, D.3
-
48
-
-
0028211484
-
HMG-D, the Drosophila melanogaster homologue of HMG 1 protein, is associated with early embryonic chromatin in the absence of histone H1
-
Ner SS, Travers AA (1994) HMG-D, the Drosophila melanogaster homologue of HMG 1 protein, is associated with early embryonic chromatin in the absence of histone H1. EMBO J 13: 1817-1822. (Pubitemid 24124514)
-
(1994)
EMBO Journal
, vol.13
, Issue.8
, pp. 1817-1822
-
-
Ner, S.S.1
Travers, A.A.2
-
49
-
-
53549124960
-
The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure
-
Lu X, Simon MD, Chodaparambil JV, Hansen JC, Shokat KM, et al. (2008) The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15: 1122-1124.
-
(2008)
Nat Struct Mol Biol
, vol.15
, pp. 1122-1124
-
-
Lu, X.1
Simon, M.D.2
Chodaparambil, J.V.3
Hansen, J.C.4
Shokat, K.M.5
-
50
-
-
33847386172
-
The Site-Specific Installation of Methyl-Lysine Analogs into Recombinant Histones
-
DOI 10.1016/j.cell.2006.12.041, PII S0092867407001158
-
Simon MD, Chu F, Racki LR, de la Cruz CC, Burlingame AL, et al. (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128: 1003-1012. (Pubitemid 46341408)
-
(2007)
Cell
, vol.128
, Issue.5
, pp. 1003-1012
-
-
Simon, M.D.1
Chu, F.2
Racki, L.R.3
De La, C.C.C.4
Burlingame, A.L.5
Panning, B.6
Narlikar, G.J.7
Shokat, K.M.8
-
51
-
-
0032512794
-
New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning
-
DOI 10.1006/jmbi.1997.1494
-
Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276: 19-42. (Pubitemid 28085408)
-
(1998)
Journal of Molecular Biology
, vol.276
, Issue.1
, pp. 19-42
-
-
Lowary, P.T.1
Widom, J.2
-
53
-
-
0028363760
-
Formation and stability of higher order chromatin structures. Contributions of the histone octamer
-
Schwarz PM, Hansen JC (1994) Formation and stability of higher order chromatin structures. Contributions of the histone octamer. J Biol Chem 269: 16284-16289.
-
(1994)
J Biol Chem
, vol.269
, pp. 16284-16289
-
-
Schwarz, P.M.1
Hansen, J.C.2
-
54
-
-
84871023769
-
Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes
-
Clapier CR, Cairns BR (2012) Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492: 280-284.
-
(2012)
Nature
, vol.492
, pp. 280-284
-
-
Clapier, C.R.1
Cairns, B.R.2
-
57
-
-
0030741529
-
Role of histone tails in nucleosome remodeling by Drosophila NURF
-
DOI 10.1093/emboj/16.15.4717
-
Georgel PT, Tsukiyama T, Wu C (1997) Role of histone tails in nucleosome remodeling by Drosophila NURF. EMBO J 16: 4717-4726. (Pubitemid 27326609)
-
(1997)
EMBO Journal
, vol.16
, Issue.15
, pp. 4717-4726
-
-
Georgel, P.T.1
Tsukiyama, T.2
Wu, C.3
-
58
-
-
0032564478
-
Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin
-
DOI 10.1073/pnas.95.24.14173
-
Bednar J, Horowitz RA, Grigoryev SA, Carruthers LM, Hansen JC, et al. (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci U S A 95: 14173-14178. (Pubitemid 28549340)
-
(1998)
Proceedings of the National Academy of Sciences of the United States of America
, vol.95
, Issue.24
, pp. 14173-14178
-
-
Bednar, J.1
Horowitz, R.A.2
Grigoryev, S.A.3
Carruthers, L.M.4
Hansen, J.C.5
Koster, A.J.6
Woodcock, C.L.7
-
60
-
-
0029091306
-
A positive role for nucleosome mobility in the transcriptional activity of chromatin templates: Restriction by linker histones
-
Ura K, Hayes JJ, Wolffe AP (1995) A positive role for nucleosome mobility in the transcriptional activity of chromatin templates: restriction by linker histones. EMBO J 14: 3752-3765.
-
(1995)
EMBO J
, vol.14
, pp. 3752-3765
-
-
Ura, K.1
Hayes, J.J.2
Wolffe, A.P.3
-
61
-
-
33845356072
-
The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing
-
DOI 10.1038/nsmb1170, PII NSMB1170
-
Yang JG, Madrid TS, Sevastopoulos E, Narlikar GJ (2006) The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat Struct Mol Biol 13: 1078-1083. (Pubitemid 44885917)
-
(2006)
Nature Structural and Molecular Biology
, vol.13
, Issue.12
, pp. 1078-1083
-
-
Yang, J.G.1
Madrid, T.S.2
Sevastopoulos, E.3
Narlikar, G.J.4
-
62
-
-
7644237443
-
Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2
-
DOI 10.1128/MCB.24.22.10047-10057.2004
-
Zofall M, Persinger J, Bartholomew B (2004) Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2. Mol Cell Biol 24: 10047-10057. (Pubitemid 39458828)
-
(2004)
Molecular and Cellular Biology
, vol.24
, Issue.22
, pp. 10047-10057
-
-
Zofall, M.1
Persinger, J.2
Bartholomew, B.3
-
63
-
-
2942561969
-
Topography of the ISW2-nucleosome complex: Insights into nucleosome spacing and chromatin remodeling
-
DOI 10.1038/sj.emboj.7600220
-
Kagalwala MN, Glaus BJ, Dang W, Zofall M, Bartholomew B (2004) Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J 23: 2092-2104. (Pubitemid 38737736)
-
(2004)
EMBO Journal
, vol.23
, Issue.10
, pp. 2092-2104
-
-
Kagalwala, M.N.1
Glaus, B.J.2
Dang, W.3
Zofall, M.4
Bartholomew, B.5
-
64
-
-
79955547248
-
Structure and mechanism of the chromatin remodelling factor ISW1a
-
Yamada K, Frouws TD, Angst B, Fitzgerald DJ, DeLuca C, et al. (2011) Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472: 448-453.
-
(2011)
Nature
, vol.472
, pp. 448-453
-
-
Yamada, K.1
Frouws, T.D.2
Angst, B.3
Fitzgerald, D.J.4
DeLuca, C.5
-
65
-
-
33745221438
-
Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes
-
Stockdale C, Flaus A, Ferreira H, Owen-Hughes T (2006) Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J Biol Chem 281: 16279-16288.
-
(2006)
J Biol Chem
, vol.281
, pp. 16279-16288
-
-
Stockdale, C.1
Flaus, A.2
Ferreira, H.3
Owen-Hughes, T.4
-
67
-
-
0029862983
-
A single high affinity binding site for histone H1 in a nucleosome containing the Xenopus borealis 5 S ribosomal RNA gene
-
DOI 10.1074/jbc.271.12.7090
-
Nightingale KP, Pruss D, Wolffe AP (1996) A single high affinity binding site for histone H1 in a nucleosome containing the Xenopus borealis 5 S ribosomal RNA gene. J Biol Chem 271: 7090-7094. (Pubitemid 26104146)
-
(1996)
Journal of Biological Chemistry
, vol.271
, Issue.12
, pp. 7090-7094
-
-
Nightingale, K.P.1
Pruss, D.2
Wolffe, A.P.3
-
68
-
-
0024962395
-
Assembly and properties of chromatin containing histone H1
-
Rodriguez-Campos A, Shimamura A, Worcel A (1989) Assembly and properties of chromatin containing histone H1. J Mol Biol 209: 135-150.
-
(1989)
J Mol Biol
, vol.209
, pp. 135-150
-
-
Rodriguez-Campos, A.1
Shimamura, A.2
Worcel, A.3
-
69
-
-
84860371870
-
Combinatorial complexity in chromatin structure and function: Revisiting the histone code
-
Rando OJ (2012) Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev 22: 148-155.
-
(2012)
Curr Opin Genet Dev
, vol.22
, pp. 148-155
-
-
Rando, O.J.1
-
70
-
-
36448949026
-
Multivalent engagement of chromatin modifications by linked binding modules
-
DOI 10.1038/nrm2298, PII NRM2298
-
Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8: 983-994. (Pubitemid 350174643)
-
(2007)
Nature Reviews Molecular Cell Biology
, vol.8
, Issue.12
, pp. 983-994
-
-
Ruthenburg, A.J.1
Li, H.2
Patel, D.J.3
David, A.C.4
-
71
-
-
0942290537
-
Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo
-
DOI 10.1101/gad.1139604
-
Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT (2004) Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev 18: 170-183. (Pubitemid 38141785)
-
(2004)
Genes and Development
, vol.18
, Issue.2
, pp. 170-183
-
-
Fyodorov, D.V.1
Blower, M.D.2
Karpen, G.H.3
Kadonaga, J.T.4
-
72
-
-
84859874809
-
Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry
-
Forne I, Ludwigsen J, Imhof A, Becker PB, Mueller-Planitz F (2012) Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry. Mol Cell Proteomics 11: M111 012088.
-
(2012)
Mol Cell Proteomics
, vol.11
-
-
Forne, I.1
Ludwigsen, J.2
Imhof, A.3
Becker, P.B.4
Mueller-Planitz, F.5
-
73
-
-
0033603238
-
ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF
-
DOI 10.1016/S0092-8674(00)80796-5
-
Hamiche A, Sandaltzopoulos R, Gdula DA, Wu C (1999) ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97: 833-842. (Pubitemid 29375043)
-
(1999)
Cell
, vol.97
, Issue.7
, pp. 833-842
-
-
Hamiche, A.1
Sandaltzopoulos, R.2
Gdula, D.A.3
Wu, C.4
-
74
-
-
0033564199
-
ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly
-
Ito T, Levenstein ME, Fyodorov DV, Kutach AK, Kobayashi R, et al. (1999) ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev 13: 1529-1539. (Pubitemid 29297921)
-
(1999)
Genes and Development
, vol.13
, Issue.12
, pp. 1529-1539
-
-
Ito, T.1
Levenstein, M.E.2
Fyodorov, D.V.3
Kutach, A.K.4
Kobayashi, R.5
Kadonaga, J.T.6
-
75
-
-
75749109799
-
Analysis of histone modifications by mass spectrometry
-
Chapter 14: Unit 14 10
-
Villar-Garea A, Israel L, Imhof A (2008) Analysis of histone modifications by mass spectrometry. Curr Protoc Protein Sci Chapter 14: Unit 14 10.
-
(2008)
Curr Protoc Protein Sci
-
-
Villar-Garea, A.1
Israel, L.2
Imhof, A.3
-
76
-
-
0031587289
-
Characterization of nucleosome core particles containing histone proteins made in bacteria
-
DOI 10.1006/jmbi.1997.1235
-
Luger K, Rechsteiner TJ, Flaus AJ, Waye MM, Richmond TJ (1997) Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol 272: 301-311. (Pubitemid 27410045)
-
(1997)
Journal of Molecular Biology
, vol.272
, Issue.3
, pp. 301-311
-
-
Luger, K.1
Rechsteiner, T.J.2
Flaus, A.J.3
Waye, M.M.Y.4
Richmond, T.J.5
-
77
-
-
0025726420
-
Sequence-specific antirepression of histone h1-mediated inhibition of basal RNA polymerase II transcription
-
Croston GE, Kerrigan LA, Lira LM, Marshak DR, Kadonaga JT (1991) Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 251: 643-649. (Pubitemid 21916885)
-
(1991)
Science
, vol.251
, Issue.4994
, pp. 643-649
-
-
Croston, G.E.1
Kerrigan, L.A.2
Lira, L.M.3
Marshak, D.R.4
Kadonaga, J.T.5
-
79
-
-
0022410254
-
Why does Coomassie Brilliant Blue R interact differently with different proteins? A partial answer
-
Tal M, Silberstein A, Nusser E (1985) Why does Coomassie Brilliant Blue R interact differently with different proteins? A partial answer. J Biol Chem 260: 9976-9980. (Pubitemid 16244080)
-
(1985)
Journal of Biological Chemistry
, vol.260
, Issue.18
, pp. 9976-9980
-
-
Tal, M.1
Silberstein, A.2
Nusser, E.3
|