-
1
-
-
0033529565
-
Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
-
Kornberg RD, Lorch Y. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285-294. http://dx.doi.org/10.1016/S0092-8674(00)81958-3.
-
(1999)
Cell
, vol.98
, pp. 285-294
-
-
Kornberg, R.D.1
Lorch, Y.2
-
2
-
-
0003903126
-
-
1st Springer, New York, NY
-
Van Holde KE. 1988. Chromatin, 1st ed. Springer, New York, NY.
-
(1988)
Chromatin
-
-
Van Holde, K.E.1
-
3
-
-
60349089645
-
Nucleosome positioning and gene regulation: advances through genomics
-
Jiang C, Pugh BF. 2009. Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10:161-172. http://dx.doi.org/10.1038/nrg2522.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 161-172
-
-
Jiang, C.1
Pugh, B.F.2
-
4
-
-
46449112319
-
A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome
-
Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF. 2008. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18:1073-1083. http://dx.doi.org/10.1101/gr.078261.108.
-
(2008)
Genome Res
, vol.18
, pp. 1073-1083
-
-
Mavrich, T.N.1
Ioshikhes, I.P.2
Venters, B.J.3
Jiang, C.4
Tomsho, L.P.5
Qi, J.6
Schuster, S.C.7
Albert, I.8
Pugh, B.F.9
-
5
-
-
84875196326
-
Determinants of nucleosome positioning
-
Struhl K, Segal E. 2013. Determinants of nucleosome positioning. Nat Struct Mol Biol 20:267-273. http://dx.doi.org/10.1038/nsmb.2506.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 267-273
-
-
Struhl, K.1
Segal, E.2
-
6
-
-
77955045449
-
The role of nucleosome positioning in the evolution of gene regulation
-
Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ. 2010. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8:e1000414. http://dx.doi.org/10.1371/journal.pbio.1000414.
-
(2010)
PLoS Biol
, vol.8
-
-
Tsankov, A.M.1
Thompson, D.A.2
Socha, A.3
Regev, A.4
Rando, O.J.5
-
7
-
-
76349103252
-
Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae
-
Lantermann AB, Straub T, Stralfors A, Yuan GC, Ekwall K, Korber P. 2010. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 17:251-257. http://dx.doi.org/10.1038/nsmb.1741.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 251-257
-
-
Lantermann, A.B.1
Straub, T.2
Stralfors, A.3
Yuan, G.C.4
Ekwall, K.5
Korber, P.6
-
8
-
-
79959557189
-
Determinants of nucleosome organization in primary human cells
-
Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A. 2011. Determinants of nucleosome organization in primary human cells. Nature 474:516-520. http://dx.doi.org/10.1038/nature10002.
-
(2011)
Nature
, vol.474
, pp. 516-520
-
-
Valouev, A.1
Johnson, S.M.2
Boyd, S.D.3
Smith, C.L.4
Fire, A.Z.5
Sidow, A.6
-
9
-
-
78049415820
-
Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure
-
Berbenetz NM, Nislow C, Brown GW. 2010. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 6:e1001092. http://dx.doi.org/10.1371/journal.pgen.1001092.
-
(2010)
PLoS Genet
, vol.6
-
-
Berbenetz, N.M.1
Nislow, C.2
Brown, G.W.3
-
10
-
-
77950962157
-
Conserved nucleosome positioning defines replication origins
-
Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM. 2010. Conserved nucleosome positioning defines replication origins. Genes Dev 24:748-753. http://dx.doi.org/10.1101/gad.1913210.
-
(2010)
Genes Dev
, vol.24
, pp. 748-753
-
-
Eaton, M.L.1
Galani, K.2
Kang, S.3
Bell, S.P.4
MacAlpine, D.M.5
-
11
-
-
65349131971
-
The folding and unfolding of eukaryotic chromatin
-
Bassett A, Cooper S, Wu C, Travers A. 2009. The folding and unfolding of eukaryotic chromatin. Curr Opin Genet Dev 19:159-165. http://dx.doi.org/10.1016/j.gde.2009.02.010.
-
(2009)
Curr Opin Genet Dev
, vol.19
, pp. 159-165
-
-
Bassett, A.1
Cooper, S.2
Wu, C.3
Travers, A.4
-
12
-
-
84872432477
-
Nucleosome spacing and chromatin higher-order folding
-
Grigoryev SA. 2012. Nucleosome spacing and chromatin higher-order folding. Nucleus 3:493-499. http://dx.doi.org/10.4161/nucl.22168.
-
(2012)
Nucleus
, vol.3
, pp. 493-499
-
-
Grigoryev, S.A.1
-
13
-
-
79952113300
-
Nucleosome dynamics and epigenetic stability
-
Korber P, Becker PB. 2010. Nucleosome dynamics and epigenetic stability. Essays Biochem 48:63-74. http://dx.doi.org/10.1042/bse0480063.
-
(2010)
Essays Biochem
, vol.48
, pp. 63-74
-
-
Korber, P.1
Becker, P.B.2
-
14
-
-
48249103503
-
Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure
-
Routh A, Sandin S, Rhodes D. 2008. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc Natl Acad Sci U S A 105:8872-8877. http://dx.doi.org/10.1073/pnas.0802336105.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 8872-8877
-
-
Routh, A.1
Sandin, S.2
Rhodes, D.3
-
15
-
-
0035085098
-
Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin
-
Sun FL, Cuaycong MH, Elgin SC. 2001. Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin. Mol Cell Biol 21:2867-2879. http://dx.doi.org/10.1128/MCB.21.8.2867-2879.2001.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 2867-2879
-
-
Sun, F.L.1
Cuaycong, M.H.2
Elgin, S.C.3
-
16
-
-
84868679486
-
Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription
-
Hennig BP, Bendrin K, Zhou Y, Fischer T. 2012. Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription. EMBO Rep 13:997-1003. http://dx.doi.org/10.1038/embor.2012.146.
-
(2012)
EMBO Rep
, vol.13
, pp. 997-1003
-
-
Hennig, B.P.1
Bendrin, K.2
Zhou, Y.3
Fischer, T.4
-
17
-
-
84870510245
-
CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S
-
Pointner J, Persson J, Prasad P, Norman-Axelsson U, Stralfors A, Khorosjutina O, Krietenstein N, Svensson JP, Ekwall K, Korber P. 2012. CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J 31:4388-4403. http://dx.doi.org/10.1038/emboj.2012.289.
-
(2012)
pombe. EMBO J
, vol.31
, pp. 4388-4403
-
-
Pointner, J.1
Persson, J.2
Prasad, P.3
Norman-Axelsson, U.4
Stralfors, A.5
Khorosjutina, O.6
Krietenstein, N.7
Svensson, J.P.8
Ekwall, K.9
Korber, P.10
-
18
-
-
84870575288
-
Hrp3 controls nucleosome positioning to suppress non-coding transcription in eu- and heterochromatin
-
Shim YS, Choi Y, Kang K, Cho K, Oh S, Lee J, Grewal SI, Lee D. 2012. Hrp3 controls nucleosome positioning to suppress non-coding transcription in eu- and heterochromatin. EMBO J 31:4375-4387. http://dx.doi.org/10.1038/emboj.2012.267.
-
(2012)
EMBO J
, vol.31
, pp. 4375-4387
-
-
Shim, Y.S.1
Choi, Y.2
Kang, K.3
Cho, K.4
Oh, S.5
Lee, J.6
Grewal, S.I.7
Lee, D.8
-
19
-
-
84866114872
-
Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange
-
Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, Florens L, Washburn MP, Workman JL. 2012. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 19:884-892. http://dx.doi.org/10.1038/nsmb.2312.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 884-892
-
-
Smolle, M.1
Venkatesh, S.2
Gogol, M.M.3
Li, H.4
Zhang, Y.5
Florens, L.6
Washburn, M.P.7
Workman, J.L.8
-
20
-
-
33745122231
-
Identification of multiple distinct Snf2 subfamilies with conserved structural motifs
-
Flaus A, Martin DM, Barton GJ, Owen-Hughes T. 2006. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34:2887-2905. http://dx.doi.org/10.1093/nar/gkl295.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 2887-2905
-
-
Flaus, A.1
Martin, D.M.2
Barton, G.J.3
Owen-Hughes, T.4
-
21
-
-
67650725820
-
The biology of chromatin remodeling complexes
-
Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273-304. http://dx.doi.org/10.1146/annurev.biochem.77.062706.153223.
-
(2009)
Annu Rev Biochem
, vol.78
, pp. 273-304
-
-
Clapier, C.R.1
Cairns, B.R.2
-
22
-
-
0033082269
-
ISWI is an ATP-dependent nucleosome remodeling factor
-
Corona DF, Langst G, Clapier CR, Bonte EJ, Ferrari S, Tamkun JW, Becker PB. 1999. ISWI is an ATP-dependent nucleosome remodeling factor. Mol Cell 3:239-245. http://dx.doi.org/10.1016/S1097-2765(00) 80314-7.
-
(1999)
Mol Cell
, vol.3
, pp. 239-245
-
-
Corona, D.F.1
Langst, G.2
Clapier, C.R.3
Bonte, E.J.4
Ferrari, S.5
Tamkun, J.W.6
Becker, P.B.7
-
23
-
-
0031444148
-
ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor
-
Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT. 1997. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90:145-155. http://dx.doi.org/10.1016/S0092-8674(00)80321-9.
-
(1997)
Cell
, vol.90
, pp. 145-155
-
-
Ito, T.1
Bulger, M.2
Pazin, M.J.3
Kobayashi, R.4
Kadonaga, J.T.5
-
24
-
-
15544369061
-
Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly
-
Lusser A, Urwin DL, Kadonaga JT. 2005. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol 12:160-166. http://dx.doi.org/10.1038/nsmb884.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 160-166
-
-
Lusser, A.1
Urwin, D.L.2
Kadonaga, J.T.3
-
25
-
-
0030839857
-
Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II
-
Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB. 1997. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388:598-602. http://dx.doi.org/10.1038/41587.
-
(1997)
Nature
, vol.388
, pp. 598-602
-
-
Varga-Weisz, P.D.1
Wilm, M.2
Bonte, E.3
Dumas, K.4
Mann, M.5
Becker, P.B.6
-
26
-
-
84883732664
-
Nucleosome sliding mechanisms: new twists in a looped history
-
Mueller-Planitz F, Klinker H, Becker PB. 2013. Nucleosome sliding mechanisms: new twists in a looped history. Nat Struct Mol Biol 20:1026-1032. http://dx.doi.org/10.1038/nsmb.2648.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 1026-1032
-
-
Mueller-Planitz, F.1
Klinker, H.2
Becker, P.B.3
-
27
-
-
84881166117
-
Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes
-
Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. 2013. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154:490-503. http://dx.doi.org/10.1016/j.cell.2013.07.011.
-
(2013)
Cell
, vol.154
, pp. 490-503
-
-
Narlikar, G.J.1
Sundaramoorthy, R.2
Owen-Hughes, T.3
-
28
-
-
33845356072
-
The chromatin- remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing
-
Yang JG, Madrid TS, Sevastopoulos E, Narlikar GJ. 2006. The chromatin- remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat Struct Mol Biol 13:1078-1083. http://dx.doi.org/10.1038/nsmb1170.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 1078-1083
-
-
Yang, J.G.1
Madrid, T.S.2
Sevastopoulos, E.3
Narlikar, G.J.4
-
29
-
-
78049434489
-
Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites
-
Mobius W, Gerland U. 2010. Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites. PLoS Comput Biol 6(8):e1000891. http://dx.doi.org/10.1371/journal.pcbi.1000891.
-
(2010)
PLoS Comput Biol
, vol.6
, Issue.8
-
-
Mobius, W.1
Gerland, U.2
-
30
-
-
0023777538
-
Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism
-
Kornberg RD, Stryer L. 1988. Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res 16: 6677-6690. http://dx.doi.org/10.1093/nar/16.14.6677.
-
(1988)
Nucleic Acids Res
, vol.16
, pp. 6677-6690
-
-
Kornberg, R.D.1
Stryer, L.2
-
31
-
-
79956316470
-
A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome
-
Zhang Z, Wippo CJ, Wal M, Ward E, Korber P, Pugh BF. 2011. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332:977-980. http://dx.doi.org/10.1126/science.1200508.
-
(2011)
Science
, vol.332
, pp. 977-980
-
-
Zhang, Z.1
Wippo, C.J.2
Wal, M.3
Ward, E.4
Korber, P.5
Pugh, B.F.6
-
32
-
-
79959811626
-
Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output
-
Celona B, Weiner A, Di Felice F, Mancuso FM, Cesarini E, Rossi RL, Gregory L, Baban D, Rossetti G, Grianti P, Pagani M, Bonaldi T, Ragoussis J, Friedman N, Camilloni G, Bianchi ME, Agresti A. 2011. Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output. PLoS Biol 9:e1001086. http://dx.doi.org/10.1371/journal.pbio.1001086.
-
(2011)
PLoS Biol
, vol.9
-
-
Celona, B.1
Weiner, A.2
Di Felice, F.3
Mancuso, F.M.4
Cesarini, E.5
Rossi, R.L.6
Gregory, L.7
Baban, D.8
Rossetti, G.9
Grianti, P.10
Pagani, M.11
Bonaldi, T.12
Ragoussis, J.13
Friedman, N.14
Camilloni, G.15
Bianchi, M.E.16
Agresti, A.17
-
33
-
-
84864059329
-
In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae
-
Gossett AJ, Lieb JD. 2012. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. PLoS Genet 8:e1002771. http://dx.doi.org/10.1371/journal.pgen.1002771.
-
(2012)
PLoS Genet
, vol.8
-
-
Gossett, A.J.1
Lieb, J.D.2
-
34
-
-
84893931097
-
Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging
-
Hu Z, Chen K, Xia Z, Chavez M, Pal S, Seol JH, Chen CC, Li W, Tyler JK. 2014. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28:396-408. http://dx.doi.org/10.1101/gad.233221.113.
-
(2014)
Genes Dev
, vol.28
, pp. 396-408
-
-
Hu, Z.1
Chen, K.2
Xia, Z.3
Chavez, M.4
Pal, S.5
Seol, J.H.6
Chen, C.C.7
Li, W.8
Tyler, J.K.9
-
35
-
-
84878473105
-
A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription
-
van Bakel H, Tsui K, Gebbia M, Mnaimneh S, Hughes TR, Nislow C. 2013. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription. PLoS Genet 9:e1003479. http://dx.doi.org/10.1371/journal.pgen.1003479.
-
(2013)
PLoS Genet
, vol.9
-
-
van Bakel, H.1
Tsui, K.2
Gebbia, M.3
Mnaimneh, S.4
Hughes, T.R.5
Nislow, C.6
-
36
-
-
79955547248
-
Structure and mechanism of the chromatin remodelling factor ISW1a
-
Yamada K, Frouws TD, Angst B, Fitzgerald DJ, DeLuca C, Schimmele K, Sargent DF, Richmond TJ. 2011. Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472:448-453. http://dx.doi.org/10.1038/nature09947.
-
(2011)
Nature
, vol.472
, pp. 448-453
-
-
Yamada, K.1
Frouws, T.D.2
Angst, B.3
Fitzgerald, D.J.4
DeLuca, C.5
Schimmele, K.6
Sargent, D.F.7
Richmond, T.J.8
-
37
-
-
79953775721
-
The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes
-
Wippo CJ, Israel L, Watanabe S, Hochheimer A, Peterson CL, Korber P. 2011. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO J 30:1277-1288. http://dx.doi.org/10.1038/emboj.2011.43.
-
(2011)
EMBO J
, vol.30
, pp. 1277-1288
-
-
Wippo, C.J.1
Israel, L.2
Watanabe, S.3
Hochheimer, A.4
Peterson, C.L.5
Korber, P.6
-
38
-
-
0018435056
-
A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite
-
Simon RH, Felsenfeld G. 1979. A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res 6:689-696. http://dx.doi.org/10.1093/nar/6.2.689.
-
(1979)
Nucleic Acids Res
, vol.6
, pp. 689-696
-
-
Simon, R.H.1
Felsenfeld, G.2
-
39
-
-
84865499724
-
Genome-wide in vitro reconstitution of yeast chromatin with in vivo-like nucleosome positioning
-
Krietenstein N, Wippo CJ, Lieleg C, Korber P. 2012. Genome-wide in vitro reconstitution of yeast chromatin with in vivo-like nucleosome positioning. Methods Enzymol 513:205-232. http://dx.doi.org/10.1016/B978-0-12-391938-0.00009-4.
-
(2012)
Methods Enzymol
, vol.513
, pp. 205-232
-
-
Krietenstein, N.1
Wippo, C.J.2
Lieleg, C.3
Korber, P.4
-
40
-
-
0032512794
-
New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning
-
Lowary PT, Widom J. 1998. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19-42. http://dx.doi.org/10.1006/jmbi.1997.1494.
-
(1998)
J Mol Biol
, vol.276
, pp. 19-42
-
-
Lowary, P.T.1
Widom, J.2
-
42
-
-
83755181609
-
Identification of residues in chromodomain helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding
-
Patel A, McKnight JN, Genzor P, Bowman GD. 2011. Identification of residues in chromodomain helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding. J Biol Chem 286:43984-43993. http://dx.doi.org/10.1074/jbc. M111.282970.
-
(2011)
J Biol Chem
, vol.286
, pp. 43984-43993
-
-
Patel, A.1
McKnight, J.N.2
Genzor, P.3
Bowman, G.D.4
-
43
-
-
84889078670
-
No need for a power stroke in ISWI-mediated nucleosome sliding
-
Ludwigsen J, Klinker H, Mueller-Planitz F. 2013. No need for a power stroke in ISWI-mediated nucleosome sliding. EMBO Rep 14:1092-1097. http://dx.doi.org/10.1038/embor.2013.160.
-
(2013)
EMBO Rep
, vol.14
, pp. 1092-1097
-
-
Ludwigsen, J.1
Klinker, H.2
Mueller-Planitz, F.3
-
44
-
-
84859874809
-
Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry
-
M111.012088
-
Forne I, Ludwigsen J, Imhof A, Becker PB, Mueller-Planitz F. 2012. Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry. Mol Cell Proteomics 11(4):M111.012088. http://dx.doi.org/10.1074/mcp. M111.012088.
-
(2012)
Mol Cell Proteomics
, vol.11
, Issue.4
-
-
Forne, I.1
Ludwigsen, J.2
Imhof, A.3
Becker, P.B.4
Mueller-Planitz, F.5
-
45
-
-
84895514809
-
ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4
-
Klinker H, Mueller-Planitz F, Yang R, Forne I, Liu CF, Nordenskiold L, Becker PB. 2014. ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4. PLoS One 9:e88411. http://dx.doi.org/10.1371/journal.pone.0088411.
-
(2014)
PLoS One
, vol.9
-
-
Klinker, H.1
Mueller-Planitz, F.2
Yang, R.3
Forne, I.4
Liu, C.F.5
Nordenskiold, L.6
Becker, P.B.7
-
46
-
-
0842302172
-
Folding of theDNAdouble helix in chromatin-like structures from simian virus 40
-
Germond JE, Hirt B, Oudet P, Gross-Bellark M, Chambon P. 1975. Folding of theDNAdouble helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci U S A 72:1843-1847. http://dx.doi.org/10.1073/pnas.72.5.1843.
-
(1975)
Proc Natl Acad Sci U S A
, vol.72
, pp. 1843-1847
-
-
Germond, J.E.1
Hirt, B.2
Oudet, P.3
Gross-Bellark, M.4
Chambon, P.5
-
47
-
-
18744373022
-
Strategies for the reconstitution of chromatin
-
Lusser A, Kadonaga JT. 2004. Strategies for the reconstitution of chromatin. Nat Methods 1:19-26. http://dx.doi.org/10.1038/nmeth709.
-
(2004)
Nat Methods
, vol.1
, pp. 19-26
-
-
Lusser, A.1
Kadonaga, J.T.2
-
48
-
-
0019321987
-
Self-assembly of single and closely spaced nucleosome core particles
-
Noll M, Zimmer S, Engel A, Dubochet J. 1980. Self-assembly of single and closely spaced nucleosome core particles. Nucleic Acids Res 8:21-42. http://dx.doi.org/10.1093/nar/8.1.21.
-
(1980)
Nucleic Acids Res
, vol.8
, pp. 21-42
-
-
Noll, M.1
Zimmer, S.2
Engel, A.3
Dubochet, J.4
-
49
-
-
0018165902
-
The same amount of DNA is organized in in vitro-assembled nucleosomes irrespective of the origin of the histones
-
Spadafora C, Oudet P, Chambon P. 1978. The same amount of DNA is organized in in vitro-assembled nucleosomes irrespective of the origin of the histones. Nucleic Acids Res 5:3479-3489. http://dx.doi.org/10.1093/nar/5.10.3479.
-
(1978)
Nucleic Acids Res
, vol.5
, pp. 3479-3489
-
-
Spadafora, C.1
Oudet, P.2
Chambon, P.3
-
50
-
-
0035704707
-
Role of DNA sequence in nucleosome stability and dynamics
-
Widom J. 2001. Role of DNA sequence in nucleosome stability and dynamics. Q Rev Biophys 34:269-324. http://dx.doi.org/10.1017/S0033583 501003699.
-
(2001)
Q Rev Biophys
, vol.34
, pp. 269-324
-
-
Widom, J.1
-
51
-
-
68249142923
-
Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo
-
Zhang Y, Moqtaderi Z, Rattner BP, Euskirchen G, Snyder M, Kadonaga JT, Liu XS, Struhl K. 2009. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat Struct Mol Biol 16:847-852. http://dx.doi.org/10.1038/nsmb.1636.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 847-852
-
-
Zhang, Y.1
Moqtaderi, Z.2
Rattner, B.P.3
Euskirchen, G.4
Snyder, M.5
Kadonaga, J.T.6
Liu, X.S.7
Struhl, K.8
-
52
-
-
62649085538
-
The DNA-encoded nucleosome organization of a eukaryotic genome
-
Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, LeProust EM, Hughes TR, Lieb JD, Widom J, Segal E. 2009. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362-366. http://dx.doi.org/10.1038/nature07667.
-
(2009)
Nature
, vol.458
, pp. 362-366
-
-
Kaplan, N.1
Moore, I.K.2
Fondufe-Mittendorf, Y.3
Gossett, A.J.4
Tillo, D.5
Field, Y.6
LeProust, E.M.7
Hughes, T.R.8
Lieb, J.D.9
Widom, J.10
Segal, E.11
-
53
-
-
0016687530
-
Electron microscopic and biochemical evidence that chromatin structure is a repeating unit
-
Oudet P, Gross-Bellard M, Chambon P. 1975. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4:281-300. http://dx.doi.org/10.1016/0092-8674(75)90149-X.
-
(1975)
Cell
, vol.4
, pp. 281-300
-
-
Oudet, P.1
Gross-Bellard, M.2
Chambon, P.3
-
55
-
-
0018534827
-
Rearrangement of chromatin structure induced by increasing ionic strength and temperature
-
Spadafora C, Oudet P, Chambon P. 1979. Rearrangement of chromatin structure induced by increasing ionic strength and temperature. Eur J Biochem 100:225-235. http://dx.doi.org/10.1111/j.1432-1033.1979.tb02053.x.
-
(1979)
Eur J Biochem
, vol.100
, pp. 225-235
-
-
Spadafora, C.1
Oudet, P.2
Chambon, P.3
-
57
-
-
84882655459
-
ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling
-
Torigoe SE, Patel A, Khuong MT, Bowman GD, Kadonaga JT. 2013. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling. eLife 2:e00863. http://dx.doi.org/10.7554/eLife.00863.
-
(2013)
eLife
, vol.2
-
-
Torigoe, S.E.1
Patel, A.2
Khuong, M.T.3
Bowman, G.D.4
Kadonaga, J.T.5
-
58
-
-
0035137666
-
Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI
-
Clapier CR, Langst G, Corona DF, Becker PB, Nightingale KP. 2001. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol Cell Biol 21:875-883. http://dx.doi.org/10.1128/MCB.21.3.875-883.2001.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 875-883
-
-
Clapier, C.R.1
Langst, G.2
Corona, D.F.3
Becker, P.B.4
Nightingale, K.P.5
-
59
-
-
0033603212
-
Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer
-
Langst G, Bonte EJ, Corona DF, Becker PB. 1999. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97:843-852. http://dx.doi.org/10.1016/S0092-8674(00)80797-7.
-
(1999)
Cell
, vol.97
, pp. 843-852
-
-
Langst, G.1
Bonte, E.J.2
Corona, D.F.3
Becker, P.B.4
-
60
-
-
34848842846
-
Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations
-
Korolev N, Vorontsova OV, Nordenskiold L. 2007. Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations. Prog Biophys Mol Biol 95:23-49. http://dx.doi.org/10.1016/j.pbiomolbio.2006.11.003.
-
(2007)
Prog Biophys Mol Biol
, vol.95
, pp. 23-49
-
-
Korolev, N.1
Vorontsova, O.V.2
Nordenskiold, L.3
-
61
-
-
36849004886
-
Domain architecture of the catalytic subunit in the ISW2-nucleosome complex
-
Dang W, Bartholomew B. 2007. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol Cell Biol 27:8306-8317. http://dx.doi.org/10.1128/MCB.01351-07.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 8306-8317
-
-
Dang, W.1
Bartholomew, B.2
-
62
-
-
2942561969
-
Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling
-
Kagalwala MN, Glaus BJ, Dang W, Zofall M, Bartholomew B. 2004. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J 23:2092-2104. http://dx.doi.org/10.1038/sj.emboj.7600220.
-
(2004)
EMBO J
, vol.23
, pp. 2092-2104
-
-
Kagalwala, M.N.1
Glaus, B.J.2
Dang, W.3
Zofall, M.4
Bartholomew, B.5
-
63
-
-
83255185775
-
Extranucleosomal DNA binding directs nucleosome sliding by Chd1
-
McKnight JN, Jenkins KR, Nodelman IM, Escobar T, Bowman GD. 2011. Extranucleosomal DNA binding directs nucleosome sliding by Chd1. Mol Cell Biol 31:4746-4759. http://dx.doi.org/10.1128/MCB.05735-11.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 4746-4759
-
-
McKnight, J.N.1
Jenkins, K.R.2
Nodelman, I.M.3
Escobar, T.4
Bowman, G.D.5
-
64
-
-
72949099482
-
The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes
-
Racki LR, Yang JG, Naber N, Partensky PD, Acevedo A, Purcell TJ, Cooke R, Cheng Y, Narlikar GJ. 2009. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462:1016-1021. http://dx.doi.org/10.1038/nature08621.
-
(2009)
Nature
, vol.462
, pp. 1016-1021
-
-
Racki, L.R.1
Yang, J.G.2
Naber, N.3
Partensky, P.D.4
Acevedo, A.5
Purcell, T.J.6
Cooke, R.7
Cheng, Y.8
Narlikar, G.J.9
-
65
-
-
79960065933
-
The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains
-
Ryan DP, Sundaramoorthy R, Martin D, Singh V, Owen-Hughes T. 2011. The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J 30:2596-2609. http://dx.doi.org/10.1038/emboj.2011.166.
-
(2011)
EMBO J
, vol.30
, pp. 2596-2609
-
-
Ryan, D.P.1
Sundaramoorthy, R.2
Martin, D.3
Singh, V.4
Owen-Hughes, T.5
-
66
-
-
84897475985
-
Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure
-
Pepenella S, Murphy KJ, Hayes JJ. 2014. Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. Chromosoma 123:3-13. http://dx.doi.org/10.1007/s00412-013-0435-8.
-
(2014)
Chromosoma
, vol.123
, pp. 3-13
-
-
Pepenella, S.1
Murphy, K.J.2
Hayes, J.J.3
-
67
-
-
84899570718
-
Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units
-
Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu RM, Zhu P, Li G. 2014. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344:376-380. http://dx.doi.org/10.1126/science.1251413.
-
(2014)
Science
, vol.344
, pp. 376-380
-
-
Song, F.1
Chen, P.2
Sun, D.3
Wang, M.4
Dong, L.5
Liang, D.6
Xu, R.M.7
Zhu, P.8
Li, G.9
-
68
-
-
0026754072
-
Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos
-
Becker PB, Wu C. 1992. Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol Cell Biol 12:2241-2249.
-
(1992)
Mol Cell Biol
, vol.12
, pp. 2241-2249
-
-
Becker, P.B.1
Wu, C.2
-
69
-
-
0942290537
-
Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo
-
Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT. 2004. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev 18:170-183. http://dx.doi.org/10.1101/gad.1139604.
-
(2004)
Genes Dev
, vol.18
, pp. 170-183
-
-
Fyodorov, D.V.1
Blower, M.D.2
Karpen, G.H.3
Kadonaga, J.T.4
-
70
-
-
0029085907
-
Electrostatic mechanism of nucleosome spacing
-
Blank TA, Becker PB. 1995. Electrostatic mechanism of nucleosome spacing. J Mol Biol 252:305-313. http://dx.doi.org/10.1006/jmbi.1995.0498.
-
(1995)
J Mol Biol
, vol.252
, pp. 305-313
-
-
Blank, T.A.1
Becker, P.B.2
-
71
-
-
84884719203
-
The embryonic linker histoneH1variant of Drosophila, dBigH1, regulates zygotic genome activation
-
Perez-Montero S, Carbonell A, Moran T, Vaquero A, Azorin F. 2013. The embryonic linker histoneH1variant of Drosophila, dBigH1, regulates zygotic genome activation. Dev Cell 26:578-590. http://dx.doi.org/10.1016/j.devcel.2013.08.011.
-
(2013)
Dev Cell
, vol.26
, pp. 578-590
-
-
Perez-Montero, S.1
Carbonell, A.2
Moran, T.3
Vaquero, A.4
Azorin, F.5
-
72
-
-
74949110964
-
High-resolution nucleosome mapping reveals transcription-dependent promoter packaging
-
Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N. 2010. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20:90-100. http://dx.doi.org/10.1101/gr.098509.109.
-
(2010)
Genome Res
, vol.20
, pp. 90-100
-
-
Weiner, A.1
Hughes, A.2
Yassour, M.3
Rando, O.J.4
Friedman, N.5
-
73
-
-
80455162312
-
Genome-wide function of H2B ubiquitylation in promoter and genic regions
-
Batta K, Zhang Z, Yen K, Goffman DB, Pugh BF. 2011. Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev 25:2254-2265. http://dx.doi.org/10.1101/gad.177238.111.
-
(2011)
Genes Dev
, vol.25
, pp. 2254-2265
-
-
Batta, K.1
Zhang, Z.2
Yen, K.3
Goffman, D.B.4
Pugh, B.F.5
-
74
-
-
84867371116
-
A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern
-
Hughes AL, Jin Y, Rando OJ, Struhl K. 2012. A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. Mol Cell 48:5-15. http://dx.doi.org/10.1016/j.molcel.2012.07.003.
-
(2012)
Mol Cell
, vol.48
, pp. 5-15
-
-
Hughes, A.L.1
Jin, Y.2
Rando, O.J.3
Struhl, K.4
-
75
-
-
0028196622
-
Unusual chromosome structure of fission yeast DNA in mouse cells
-
McManus J, Perry P, Sumner AT, Wright DM, Thomson EJ, Allshire RC, Hastie ND, Bickmore WA. 1994. Unusual chromosome structure of fission yeast DNA in mouse cells. J Cell Sci 107:469-486.
-
(1994)
J Cell Sci
, vol.107
, pp. 469-486
-
-
McManus, J.1
Perry, P.2
Sumner, A.T.3
Wright, D.M.4
Thomson, E.J.5
Allshire, R.C.6
Hastie, N.D.7
Bickmore, W.A.8
-
76
-
-
84875873326
-
Toward a unified physical model of nucleosome patterns flanking transcription start sites
-
Mobius W, Osberg B, Tsankov AM, Rando OJ, Gerland U. 2013. Toward a unified physical model of nucleosome patterns flanking transcription start sites. Proc Natl Acad Sci U S A 110:5719-5724. http://dx.doi.org/10.1073/pnas.1214048110.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 5719-5724
-
-
Mobius, W.1
Osberg, B.2
Tsankov, A.M.3
Rando, O.J.4
Gerland, U.5
|