메뉴 건너뛰기




Volumn 35, Issue 9, 2015, Pages 1588-1605

Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density

Author keywords

[No Author keywords available]

Indexed keywords

AGAROSE; CHROMODOMAIN HELICASE DNA BINDING PROTEIN 1; DNA BINDING PROTEIN; DNA FRAGMENT; DROSOPHILA PROTEIN; ISWI PROTEIN; UNCLASSIFIED DRUG; ADENOSINE TRIPHOSPHATASE; CHD1 PROTEIN, S CEREVISIAE; NUCLEOSOME; SACCHAROMYCES CEREVISIAE PROTEIN; TRANSCRIPTION FACTOR;

EID: 84929207966     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.01070-14     Document Type: Article
Times cited : (40)

References (76)
  • 1
    • 0033529565 scopus 로고    scopus 로고
    • Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
    • Kornberg RD, Lorch Y. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285-294. http://dx.doi.org/10.1016/S0092-8674(00)81958-3.
    • (1999) Cell , vol.98 , pp. 285-294
    • Kornberg, R.D.1    Lorch, Y.2
  • 2
    • 0003903126 scopus 로고
    • 1st Springer, New York, NY
    • Van Holde KE. 1988. Chromatin, 1st ed. Springer, New York, NY.
    • (1988) Chromatin
    • Van Holde, K.E.1
  • 3
    • 60349089645 scopus 로고    scopus 로고
    • Nucleosome positioning and gene regulation: advances through genomics
    • Jiang C, Pugh BF. 2009. Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10:161-172. http://dx.doi.org/10.1038/nrg2522.
    • (2009) Nat Rev Genet , vol.10 , pp. 161-172
    • Jiang, C.1    Pugh, B.F.2
  • 5
    • 84875196326 scopus 로고    scopus 로고
    • Determinants of nucleosome positioning
    • Struhl K, Segal E. 2013. Determinants of nucleosome positioning. Nat Struct Mol Biol 20:267-273. http://dx.doi.org/10.1038/nsmb.2506.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 267-273
    • Struhl, K.1    Segal, E.2
  • 6
    • 77955045449 scopus 로고    scopus 로고
    • The role of nucleosome positioning in the evolution of gene regulation
    • Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ. 2010. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8:e1000414. http://dx.doi.org/10.1371/journal.pbio.1000414.
    • (2010) PLoS Biol , vol.8
    • Tsankov, A.M.1    Thompson, D.A.2    Socha, A.3    Regev, A.4    Rando, O.J.5
  • 7
    • 76349103252 scopus 로고    scopus 로고
    • Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae
    • Lantermann AB, Straub T, Stralfors A, Yuan GC, Ekwall K, Korber P. 2010. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 17:251-257. http://dx.doi.org/10.1038/nsmb.1741.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 251-257
    • Lantermann, A.B.1    Straub, T.2    Stralfors, A.3    Yuan, G.C.4    Ekwall, K.5    Korber, P.6
  • 8
    • 79959557189 scopus 로고    scopus 로고
    • Determinants of nucleosome organization in primary human cells
    • Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A. 2011. Determinants of nucleosome organization in primary human cells. Nature 474:516-520. http://dx.doi.org/10.1038/nature10002.
    • (2011) Nature , vol.474 , pp. 516-520
    • Valouev, A.1    Johnson, S.M.2    Boyd, S.D.3    Smith, C.L.4    Fire, A.Z.5    Sidow, A.6
  • 9
    • 78049415820 scopus 로고    scopus 로고
    • Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure
    • Berbenetz NM, Nislow C, Brown GW. 2010. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 6:e1001092. http://dx.doi.org/10.1371/journal.pgen.1001092.
    • (2010) PLoS Genet , vol.6
    • Berbenetz, N.M.1    Nislow, C.2    Brown, G.W.3
  • 10
    • 77950962157 scopus 로고    scopus 로고
    • Conserved nucleosome positioning defines replication origins
    • Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM. 2010. Conserved nucleosome positioning defines replication origins. Genes Dev 24:748-753. http://dx.doi.org/10.1101/gad.1913210.
    • (2010) Genes Dev , vol.24 , pp. 748-753
    • Eaton, M.L.1    Galani, K.2    Kang, S.3    Bell, S.P.4    MacAlpine, D.M.5
  • 11
    • 65349131971 scopus 로고    scopus 로고
    • The folding and unfolding of eukaryotic chromatin
    • Bassett A, Cooper S, Wu C, Travers A. 2009. The folding and unfolding of eukaryotic chromatin. Curr Opin Genet Dev 19:159-165. http://dx.doi.org/10.1016/j.gde.2009.02.010.
    • (2009) Curr Opin Genet Dev , vol.19 , pp. 159-165
    • Bassett, A.1    Cooper, S.2    Wu, C.3    Travers, A.4
  • 12
    • 84872432477 scopus 로고    scopus 로고
    • Nucleosome spacing and chromatin higher-order folding
    • Grigoryev SA. 2012. Nucleosome spacing and chromatin higher-order folding. Nucleus 3:493-499. http://dx.doi.org/10.4161/nucl.22168.
    • (2012) Nucleus , vol.3 , pp. 493-499
    • Grigoryev, S.A.1
  • 13
    • 79952113300 scopus 로고    scopus 로고
    • Nucleosome dynamics and epigenetic stability
    • Korber P, Becker PB. 2010. Nucleosome dynamics and epigenetic stability. Essays Biochem 48:63-74. http://dx.doi.org/10.1042/bse0480063.
    • (2010) Essays Biochem , vol.48 , pp. 63-74
    • Korber, P.1    Becker, P.B.2
  • 14
    • 48249103503 scopus 로고    scopus 로고
    • Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure
    • Routh A, Sandin S, Rhodes D. 2008. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc Natl Acad Sci U S A 105:8872-8877. http://dx.doi.org/10.1073/pnas.0802336105.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 8872-8877
    • Routh, A.1    Sandin, S.2    Rhodes, D.3
  • 15
    • 0035085098 scopus 로고    scopus 로고
    • Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin
    • Sun FL, Cuaycong MH, Elgin SC. 2001. Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin. Mol Cell Biol 21:2867-2879. http://dx.doi.org/10.1128/MCB.21.8.2867-2879.2001.
    • (2001) Mol Cell Biol , vol.21 , pp. 2867-2879
    • Sun, F.L.1    Cuaycong, M.H.2    Elgin, S.C.3
  • 16
    • 84868679486 scopus 로고    scopus 로고
    • Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription
    • Hennig BP, Bendrin K, Zhou Y, Fischer T. 2012. Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription. EMBO Rep 13:997-1003. http://dx.doi.org/10.1038/embor.2012.146.
    • (2012) EMBO Rep , vol.13 , pp. 997-1003
    • Hennig, B.P.1    Bendrin, K.2    Zhou, Y.3    Fischer, T.4
  • 18
    • 84870575288 scopus 로고    scopus 로고
    • Hrp3 controls nucleosome positioning to suppress non-coding transcription in eu- and heterochromatin
    • Shim YS, Choi Y, Kang K, Cho K, Oh S, Lee J, Grewal SI, Lee D. 2012. Hrp3 controls nucleosome positioning to suppress non-coding transcription in eu- and heterochromatin. EMBO J 31:4375-4387. http://dx.doi.org/10.1038/emboj.2012.267.
    • (2012) EMBO J , vol.31 , pp. 4375-4387
    • Shim, Y.S.1    Choi, Y.2    Kang, K.3    Cho, K.4    Oh, S.5    Lee, J.6    Grewal, S.I.7    Lee, D.8
  • 19
    • 84866114872 scopus 로고    scopus 로고
    • Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange
    • Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, Florens L, Washburn MP, Workman JL. 2012. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 19:884-892. http://dx.doi.org/10.1038/nsmb.2312.
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 884-892
    • Smolle, M.1    Venkatesh, S.2    Gogol, M.M.3    Li, H.4    Zhang, Y.5    Florens, L.6    Washburn, M.P.7    Workman, J.L.8
  • 20
    • 33745122231 scopus 로고    scopus 로고
    • Identification of multiple distinct Snf2 subfamilies with conserved structural motifs
    • Flaus A, Martin DM, Barton GJ, Owen-Hughes T. 2006. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34:2887-2905. http://dx.doi.org/10.1093/nar/gkl295.
    • (2006) Nucleic Acids Res , vol.34 , pp. 2887-2905
    • Flaus, A.1    Martin, D.M.2    Barton, G.J.3    Owen-Hughes, T.4
  • 21
    • 67650725820 scopus 로고    scopus 로고
    • The biology of chromatin remodeling complexes
    • Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273-304. http://dx.doi.org/10.1146/annurev.biochem.77.062706.153223.
    • (2009) Annu Rev Biochem , vol.78 , pp. 273-304
    • Clapier, C.R.1    Cairns, B.R.2
  • 23
    • 0031444148 scopus 로고    scopus 로고
    • ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor
    • Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT. 1997. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90:145-155. http://dx.doi.org/10.1016/S0092-8674(00)80321-9.
    • (1997) Cell , vol.90 , pp. 145-155
    • Ito, T.1    Bulger, M.2    Pazin, M.J.3    Kobayashi, R.4    Kadonaga, J.T.5
  • 24
    • 15544369061 scopus 로고    scopus 로고
    • Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly
    • Lusser A, Urwin DL, Kadonaga JT. 2005. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol 12:160-166. http://dx.doi.org/10.1038/nsmb884.
    • (2005) Nat Struct Mol Biol , vol.12 , pp. 160-166
    • Lusser, A.1    Urwin, D.L.2    Kadonaga, J.T.3
  • 25
    • 0030839857 scopus 로고    scopus 로고
    • Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II
    • Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB. 1997. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388:598-602. http://dx.doi.org/10.1038/41587.
    • (1997) Nature , vol.388 , pp. 598-602
    • Varga-Weisz, P.D.1    Wilm, M.2    Bonte, E.3    Dumas, K.4    Mann, M.5    Becker, P.B.6
  • 26
    • 84883732664 scopus 로고    scopus 로고
    • Nucleosome sliding mechanisms: new twists in a looped history
    • Mueller-Planitz F, Klinker H, Becker PB. 2013. Nucleosome sliding mechanisms: new twists in a looped history. Nat Struct Mol Biol 20:1026-1032. http://dx.doi.org/10.1038/nsmb.2648.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 1026-1032
    • Mueller-Planitz, F.1    Klinker, H.2    Becker, P.B.3
  • 27
    • 84881166117 scopus 로고    scopus 로고
    • Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes
    • Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. 2013. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154:490-503. http://dx.doi.org/10.1016/j.cell.2013.07.011.
    • (2013) Cell , vol.154 , pp. 490-503
    • Narlikar, G.J.1    Sundaramoorthy, R.2    Owen-Hughes, T.3
  • 28
    • 33845356072 scopus 로고    scopus 로고
    • The chromatin- remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing
    • Yang JG, Madrid TS, Sevastopoulos E, Narlikar GJ. 2006. The chromatin- remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat Struct Mol Biol 13:1078-1083. http://dx.doi.org/10.1038/nsmb1170.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 1078-1083
    • Yang, J.G.1    Madrid, T.S.2    Sevastopoulos, E.3    Narlikar, G.J.4
  • 29
    • 78049434489 scopus 로고    scopus 로고
    • Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites
    • Mobius W, Gerland U. 2010. Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites. PLoS Comput Biol 6(8):e1000891. http://dx.doi.org/10.1371/journal.pcbi.1000891.
    • (2010) PLoS Comput Biol , vol.6 , Issue.8
    • Mobius, W.1    Gerland, U.2
  • 30
    • 0023777538 scopus 로고
    • Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism
    • Kornberg RD, Stryer L. 1988. Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res 16: 6677-6690. http://dx.doi.org/10.1093/nar/16.14.6677.
    • (1988) Nucleic Acids Res , vol.16 , pp. 6677-6690
    • Kornberg, R.D.1    Stryer, L.2
  • 31
    • 79956316470 scopus 로고    scopus 로고
    • A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome
    • Zhang Z, Wippo CJ, Wal M, Ward E, Korber P, Pugh BF. 2011. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332:977-980. http://dx.doi.org/10.1126/science.1200508.
    • (2011) Science , vol.332 , pp. 977-980
    • Zhang, Z.1    Wippo, C.J.2    Wal, M.3    Ward, E.4    Korber, P.5    Pugh, B.F.6
  • 33
    • 84864059329 scopus 로고    scopus 로고
    • In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae
    • Gossett AJ, Lieb JD. 2012. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. PLoS Genet 8:e1002771. http://dx.doi.org/10.1371/journal.pgen.1002771.
    • (2012) PLoS Genet , vol.8
    • Gossett, A.J.1    Lieb, J.D.2
  • 34
    • 84893931097 scopus 로고    scopus 로고
    • Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging
    • Hu Z, Chen K, Xia Z, Chavez M, Pal S, Seol JH, Chen CC, Li W, Tyler JK. 2014. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28:396-408. http://dx.doi.org/10.1101/gad.233221.113.
    • (2014) Genes Dev , vol.28 , pp. 396-408
    • Hu, Z.1    Chen, K.2    Xia, Z.3    Chavez, M.4    Pal, S.5    Seol, J.H.6    Chen, C.C.7    Li, W.8    Tyler, J.K.9
  • 35
    • 84878473105 scopus 로고    scopus 로고
    • A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription
    • van Bakel H, Tsui K, Gebbia M, Mnaimneh S, Hughes TR, Nislow C. 2013. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription. PLoS Genet 9:e1003479. http://dx.doi.org/10.1371/journal.pgen.1003479.
    • (2013) PLoS Genet , vol.9
    • van Bakel, H.1    Tsui, K.2    Gebbia, M.3    Mnaimneh, S.4    Hughes, T.R.5    Nislow, C.6
  • 37
    • 79953775721 scopus 로고    scopus 로고
    • The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes
    • Wippo CJ, Israel L, Watanabe S, Hochheimer A, Peterson CL, Korber P. 2011. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO J 30:1277-1288. http://dx.doi.org/10.1038/emboj.2011.43.
    • (2011) EMBO J , vol.30 , pp. 1277-1288
    • Wippo, C.J.1    Israel, L.2    Watanabe, S.3    Hochheimer, A.4    Peterson, C.L.5    Korber, P.6
  • 38
    • 0018435056 scopus 로고
    • A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite
    • Simon RH, Felsenfeld G. 1979. A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res 6:689-696. http://dx.doi.org/10.1093/nar/6.2.689.
    • (1979) Nucleic Acids Res , vol.6 , pp. 689-696
    • Simon, R.H.1    Felsenfeld, G.2
  • 39
    • 84865499724 scopus 로고    scopus 로고
    • Genome-wide in vitro reconstitution of yeast chromatin with in vivo-like nucleosome positioning
    • Krietenstein N, Wippo CJ, Lieleg C, Korber P. 2012. Genome-wide in vitro reconstitution of yeast chromatin with in vivo-like nucleosome positioning. Methods Enzymol 513:205-232. http://dx.doi.org/10.1016/B978-0-12-391938-0.00009-4.
    • (2012) Methods Enzymol , vol.513 , pp. 205-232
    • Krietenstein, N.1    Wippo, C.J.2    Lieleg, C.3    Korber, P.4
  • 40
    • 0032512794 scopus 로고    scopus 로고
    • New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning
    • Lowary PT, Widom J. 1998. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19-42. http://dx.doi.org/10.1006/jmbi.1997.1494.
    • (1998) J Mol Biol , vol.276 , pp. 19-42
    • Lowary, P.T.1    Widom, J.2
  • 42
    • 83755181609 scopus 로고    scopus 로고
    • Identification of residues in chromodomain helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding
    • Patel A, McKnight JN, Genzor P, Bowman GD. 2011. Identification of residues in chromodomain helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding. J Biol Chem 286:43984-43993. http://dx.doi.org/10.1074/jbc. M111.282970.
    • (2011) J Biol Chem , vol.286 , pp. 43984-43993
    • Patel, A.1    McKnight, J.N.2    Genzor, P.3    Bowman, G.D.4
  • 43
    • 84889078670 scopus 로고    scopus 로고
    • No need for a power stroke in ISWI-mediated nucleosome sliding
    • Ludwigsen J, Klinker H, Mueller-Planitz F. 2013. No need for a power stroke in ISWI-mediated nucleosome sliding. EMBO Rep 14:1092-1097. http://dx.doi.org/10.1038/embor.2013.160.
    • (2013) EMBO Rep , vol.14 , pp. 1092-1097
    • Ludwigsen, J.1    Klinker, H.2    Mueller-Planitz, F.3
  • 44
    • 84859874809 scopus 로고    scopus 로고
    • Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry
    • M111.012088
    • Forne I, Ludwigsen J, Imhof A, Becker PB, Mueller-Planitz F. 2012. Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry. Mol Cell Proteomics 11(4):M111.012088. http://dx.doi.org/10.1074/mcp. M111.012088.
    • (2012) Mol Cell Proteomics , vol.11 , Issue.4
    • Forne, I.1    Ludwigsen, J.2    Imhof, A.3    Becker, P.B.4    Mueller-Planitz, F.5
  • 45
    • 84895514809 scopus 로고    scopus 로고
    • ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4
    • Klinker H, Mueller-Planitz F, Yang R, Forne I, Liu CF, Nordenskiold L, Becker PB. 2014. ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4. PLoS One 9:e88411. http://dx.doi.org/10.1371/journal.pone.0088411.
    • (2014) PLoS One , vol.9
    • Klinker, H.1    Mueller-Planitz, F.2    Yang, R.3    Forne, I.4    Liu, C.F.5    Nordenskiold, L.6    Becker, P.B.7
  • 46
    • 0842302172 scopus 로고
    • Folding of theDNAdouble helix in chromatin-like structures from simian virus 40
    • Germond JE, Hirt B, Oudet P, Gross-Bellark M, Chambon P. 1975. Folding of theDNAdouble helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci U S A 72:1843-1847. http://dx.doi.org/10.1073/pnas.72.5.1843.
    • (1975) Proc Natl Acad Sci U S A , vol.72 , pp. 1843-1847
    • Germond, J.E.1    Hirt, B.2    Oudet, P.3    Gross-Bellark, M.4    Chambon, P.5
  • 47
    • 18744373022 scopus 로고    scopus 로고
    • Strategies for the reconstitution of chromatin
    • Lusser A, Kadonaga JT. 2004. Strategies for the reconstitution of chromatin. Nat Methods 1:19-26. http://dx.doi.org/10.1038/nmeth709.
    • (2004) Nat Methods , vol.1 , pp. 19-26
    • Lusser, A.1    Kadonaga, J.T.2
  • 48
    • 0019321987 scopus 로고
    • Self-assembly of single and closely spaced nucleosome core particles
    • Noll M, Zimmer S, Engel A, Dubochet J. 1980. Self-assembly of single and closely spaced nucleosome core particles. Nucleic Acids Res 8:21-42. http://dx.doi.org/10.1093/nar/8.1.21.
    • (1980) Nucleic Acids Res , vol.8 , pp. 21-42
    • Noll, M.1    Zimmer, S.2    Engel, A.3    Dubochet, J.4
  • 49
    • 0018165902 scopus 로고
    • The same amount of DNA is organized in in vitro-assembled nucleosomes irrespective of the origin of the histones
    • Spadafora C, Oudet P, Chambon P. 1978. The same amount of DNA is organized in in vitro-assembled nucleosomes irrespective of the origin of the histones. Nucleic Acids Res 5:3479-3489. http://dx.doi.org/10.1093/nar/5.10.3479.
    • (1978) Nucleic Acids Res , vol.5 , pp. 3479-3489
    • Spadafora, C.1    Oudet, P.2    Chambon, P.3
  • 50
    • 0035704707 scopus 로고    scopus 로고
    • Role of DNA sequence in nucleosome stability and dynamics
    • Widom J. 2001. Role of DNA sequence in nucleosome stability and dynamics. Q Rev Biophys 34:269-324. http://dx.doi.org/10.1017/S0033583 501003699.
    • (2001) Q Rev Biophys , vol.34 , pp. 269-324
    • Widom, J.1
  • 53
    • 0016687530 scopus 로고
    • Electron microscopic and biochemical evidence that chromatin structure is a repeating unit
    • Oudet P, Gross-Bellard M, Chambon P. 1975. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4:281-300. http://dx.doi.org/10.1016/0092-8674(75)90149-X.
    • (1975) Cell , vol.4 , pp. 281-300
    • Oudet, P.1    Gross-Bellard, M.2    Chambon, P.3
  • 55
    • 0018534827 scopus 로고
    • Rearrangement of chromatin structure induced by increasing ionic strength and temperature
    • Spadafora C, Oudet P, Chambon P. 1979. Rearrangement of chromatin structure induced by increasing ionic strength and temperature. Eur J Biochem 100:225-235. http://dx.doi.org/10.1111/j.1432-1033.1979.tb02053.x.
    • (1979) Eur J Biochem , vol.100 , pp. 225-235
    • Spadafora, C.1    Oudet, P.2    Chambon, P.3
  • 57
    • 84882655459 scopus 로고    scopus 로고
    • ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling
    • Torigoe SE, Patel A, Khuong MT, Bowman GD, Kadonaga JT. 2013. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling. eLife 2:e00863. http://dx.doi.org/10.7554/eLife.00863.
    • (2013) eLife , vol.2
    • Torigoe, S.E.1    Patel, A.2    Khuong, M.T.3    Bowman, G.D.4    Kadonaga, J.T.5
  • 58
    • 0035137666 scopus 로고    scopus 로고
    • Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI
    • Clapier CR, Langst G, Corona DF, Becker PB, Nightingale KP. 2001. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol Cell Biol 21:875-883. http://dx.doi.org/10.1128/MCB.21.3.875-883.2001.
    • (2001) Mol Cell Biol , vol.21 , pp. 875-883
    • Clapier, C.R.1    Langst, G.2    Corona, D.F.3    Becker, P.B.4    Nightingale, K.P.5
  • 59
    • 0033603212 scopus 로고    scopus 로고
    • Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer
    • Langst G, Bonte EJ, Corona DF, Becker PB. 1999. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97:843-852. http://dx.doi.org/10.1016/S0092-8674(00)80797-7.
    • (1999) Cell , vol.97 , pp. 843-852
    • Langst, G.1    Bonte, E.J.2    Corona, D.F.3    Becker, P.B.4
  • 60
    • 34848842846 scopus 로고    scopus 로고
    • Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations
    • Korolev N, Vorontsova OV, Nordenskiold L. 2007. Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations. Prog Biophys Mol Biol 95:23-49. http://dx.doi.org/10.1016/j.pbiomolbio.2006.11.003.
    • (2007) Prog Biophys Mol Biol , vol.95 , pp. 23-49
    • Korolev, N.1    Vorontsova, O.V.2    Nordenskiold, L.3
  • 61
    • 36849004886 scopus 로고    scopus 로고
    • Domain architecture of the catalytic subunit in the ISW2-nucleosome complex
    • Dang W, Bartholomew B. 2007. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol Cell Biol 27:8306-8317. http://dx.doi.org/10.1128/MCB.01351-07.
    • (2007) Mol Cell Biol , vol.27 , pp. 8306-8317
    • Dang, W.1    Bartholomew, B.2
  • 62
    • 2942561969 scopus 로고    scopus 로고
    • Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling
    • Kagalwala MN, Glaus BJ, Dang W, Zofall M, Bartholomew B. 2004. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J 23:2092-2104. http://dx.doi.org/10.1038/sj.emboj.7600220.
    • (2004) EMBO J , vol.23 , pp. 2092-2104
    • Kagalwala, M.N.1    Glaus, B.J.2    Dang, W.3    Zofall, M.4    Bartholomew, B.5
  • 63
    • 83255185775 scopus 로고    scopus 로고
    • Extranucleosomal DNA binding directs nucleosome sliding by Chd1
    • McKnight JN, Jenkins KR, Nodelman IM, Escobar T, Bowman GD. 2011. Extranucleosomal DNA binding directs nucleosome sliding by Chd1. Mol Cell Biol 31:4746-4759. http://dx.doi.org/10.1128/MCB.05735-11.
    • (2011) Mol Cell Biol , vol.31 , pp. 4746-4759
    • McKnight, J.N.1    Jenkins, K.R.2    Nodelman, I.M.3    Escobar, T.4    Bowman, G.D.5
  • 65
    • 79960065933 scopus 로고    scopus 로고
    • The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains
    • Ryan DP, Sundaramoorthy R, Martin D, Singh V, Owen-Hughes T. 2011. The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J 30:2596-2609. http://dx.doi.org/10.1038/emboj.2011.166.
    • (2011) EMBO J , vol.30 , pp. 2596-2609
    • Ryan, D.P.1    Sundaramoorthy, R.2    Martin, D.3    Singh, V.4    Owen-Hughes, T.5
  • 66
    • 84897475985 scopus 로고    scopus 로고
    • Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure
    • Pepenella S, Murphy KJ, Hayes JJ. 2014. Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. Chromosoma 123:3-13. http://dx.doi.org/10.1007/s00412-013-0435-8.
    • (2014) Chromosoma , vol.123 , pp. 3-13
    • Pepenella, S.1    Murphy, K.J.2    Hayes, J.J.3
  • 67
    • 84899570718 scopus 로고    scopus 로고
    • Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units
    • Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu RM, Zhu P, Li G. 2014. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344:376-380. http://dx.doi.org/10.1126/science.1251413.
    • (2014) Science , vol.344 , pp. 376-380
    • Song, F.1    Chen, P.2    Sun, D.3    Wang, M.4    Dong, L.5    Liang, D.6    Xu, R.M.7    Zhu, P.8    Li, G.9
  • 68
    • 0026754072 scopus 로고
    • Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos
    • Becker PB, Wu C. 1992. Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol Cell Biol 12:2241-2249.
    • (1992) Mol Cell Biol , vol.12 , pp. 2241-2249
    • Becker, P.B.1    Wu, C.2
  • 69
    • 0942290537 scopus 로고    scopus 로고
    • Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo
    • Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT. 2004. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev 18:170-183. http://dx.doi.org/10.1101/gad.1139604.
    • (2004) Genes Dev , vol.18 , pp. 170-183
    • Fyodorov, D.V.1    Blower, M.D.2    Karpen, G.H.3    Kadonaga, J.T.4
  • 70
    • 0029085907 scopus 로고
    • Electrostatic mechanism of nucleosome spacing
    • Blank TA, Becker PB. 1995. Electrostatic mechanism of nucleosome spacing. J Mol Biol 252:305-313. http://dx.doi.org/10.1006/jmbi.1995.0498.
    • (1995) J Mol Biol , vol.252 , pp. 305-313
    • Blank, T.A.1    Becker, P.B.2
  • 71
    • 84884719203 scopus 로고    scopus 로고
    • The embryonic linker histoneH1variant of Drosophila, dBigH1, regulates zygotic genome activation
    • Perez-Montero S, Carbonell A, Moran T, Vaquero A, Azorin F. 2013. The embryonic linker histoneH1variant of Drosophila, dBigH1, regulates zygotic genome activation. Dev Cell 26:578-590. http://dx.doi.org/10.1016/j.devcel.2013.08.011.
    • (2013) Dev Cell , vol.26 , pp. 578-590
    • Perez-Montero, S.1    Carbonell, A.2    Moran, T.3    Vaquero, A.4    Azorin, F.5
  • 72
    • 74949110964 scopus 로고    scopus 로고
    • High-resolution nucleosome mapping reveals transcription-dependent promoter packaging
    • Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N. 2010. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20:90-100. http://dx.doi.org/10.1101/gr.098509.109.
    • (2010) Genome Res , vol.20 , pp. 90-100
    • Weiner, A.1    Hughes, A.2    Yassour, M.3    Rando, O.J.4    Friedman, N.5
  • 73
    • 80455162312 scopus 로고    scopus 로고
    • Genome-wide function of H2B ubiquitylation in promoter and genic regions
    • Batta K, Zhang Z, Yen K, Goffman DB, Pugh BF. 2011. Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev 25:2254-2265. http://dx.doi.org/10.1101/gad.177238.111.
    • (2011) Genes Dev , vol.25 , pp. 2254-2265
    • Batta, K.1    Zhang, Z.2    Yen, K.3    Goffman, D.B.4    Pugh, B.F.5
  • 74
    • 84867371116 scopus 로고    scopus 로고
    • A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern
    • Hughes AL, Jin Y, Rando OJ, Struhl K. 2012. A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. Mol Cell 48:5-15. http://dx.doi.org/10.1016/j.molcel.2012.07.003.
    • (2012) Mol Cell , vol.48 , pp. 5-15
    • Hughes, A.L.1    Jin, Y.2    Rando, O.J.3    Struhl, K.4
  • 76
    • 84875873326 scopus 로고    scopus 로고
    • Toward a unified physical model of nucleosome patterns flanking transcription start sites
    • Mobius W, Osberg B, Tsankov AM, Rando OJ, Gerland U. 2013. Toward a unified physical model of nucleosome patterns flanking transcription start sites. Proc Natl Acad Sci U S A 110:5719-5724. http://dx.doi.org/10.1073/pnas.1214048110.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 5719-5724
    • Mobius, W.1    Osberg, B.2    Tsankov, A.M.3    Rando, O.J.4    Gerland, U.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.