-
1
-
-
0024041732
-
Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1
-
Sauer B., Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. U.S.A. 1988, 85:5166-5170.
-
(1988)
Proc. Natl. Acad. Sci. U.S.A.
, vol.85
, pp. 5166-5170
-
-
Sauer, B.1
Henderson, N.2
-
2
-
-
0028843052
-
The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae
-
Sadowski P.D. The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog. Nucleic Acid Res. Mol. Bio. 1995, 51:53-91.
-
(1995)
Prog. Nucleic Acid Res. Mol. Bio.
, vol.51
, pp. 53-91
-
-
Sadowski, P.D.1
-
3
-
-
0346503889
-
Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice
-
Branda C.S., Dymecki S.M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 2004, 6:7-28.
-
(2004)
Dev. Cell
, vol.6
, pp. 7-28
-
-
Branda, C.S.1
Dymecki, S.M.2
-
4
-
-
0035883706
-
Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility
-
Chevalier B.S., Stoddard B.L. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic acids Res. 2001, 29:3757-3774.
-
(2001)
Nucleic acids Res.
, vol.29
, pp. 3757-3774
-
-
Chevalier, B.S.1
Stoddard, B.L.2
-
5
-
-
33847246298
-
Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy
-
Paques F., Duchateau P. Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr. Gene Ther. 2007, 7:49-66.
-
(2007)
Curr. Gene Ther.
, vol.7
, pp. 49-66
-
-
Paques, F.1
Duchateau, P.2
-
6
-
-
0030032063
-
Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain
-
Kim Y.G., et al. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:1156-1160.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 1156-1160
-
-
Kim, Y.G.1
-
7
-
-
67650045497
-
Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly
-
Kim H.J., et al. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 2009, 19:1279-1288.
-
(2009)
Genome Res.
, vol.19
, pp. 1279-1288
-
-
Kim, H.J.1
-
8
-
-
77955867185
-
Genome editing with engineered zinc finger nucleases
-
Urnov F.D., et al. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11:636-646.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 636-646
-
-
Urnov, F.D.1
-
9
-
-
78951479577
-
Targeting DNA double-strand breaks with TAL effector nucleases
-
Christian M., et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010, 186:757-761.
-
(2010)
Genetics
, vol.186
, pp. 757-761
-
-
Christian, M.1
-
10
-
-
79551685675
-
A TALE nuclease architecture for efficient genome editing
-
Miller J.C., et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 2011, 29:143-148.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 143-148
-
-
Miller, J.C.1
-
11
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G., et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2579-E2586.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
-
12
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337:816-821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
13
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819-823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
14
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P., et al. RNA-guided human genome engineering via Cas9. Science 2013, 339:823-826.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
-
15
-
-
84874624936
-
Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
-
Cho S.W., et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013, 31:230-232.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 230-232
-
-
Cho, S.W.1
-
16
-
-
84898778301
-
A guide to genome engineering with programmable nucleases
-
Kim H., Kim J.S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 2014, 15:321-334.
-
(2014)
Nat. Rev. Genet.
, vol.15
, pp. 321-334
-
-
Kim, H.1
Kim, J.S.2
-
17
-
-
84908031939
-
Making designer mutants in model organisms
-
Peng Y., et al. Making designer mutants in model organisms. Development 2014, 141:4042-4054.
-
(2014)
Development
, vol.141
, pp. 4042-4054
-
-
Peng, Y.1
-
18
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander J.D., Joung J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32:347-355.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
19
-
-
84923106217
-
Therapeutic genome editing: prospects and challenges
-
Cox D.B., et al. Therapeutic genome editing: prospects and challenges. Nat. Med. 2015, 21:121-131.
-
(2015)
Nat. Med.
, vol.21
, pp. 121-131
-
-
Cox, D.B.1
-
20
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
-
Tsai S.Q., et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 2015, 33:187-197.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 187-197
-
-
Tsai, S.Q.1
-
21
-
-
84923846574
-
Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells
-
Kim D., et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 2015, 12:237-243.
-
(2015)
Nat. Methods
, vol.12
, pp. 237-243
-
-
Kim, D.1
-
22
-
-
84872506987
-
Phenotypic impact of genomic structural variation: insights from and for human disease
-
Weischenfeldt J., et al. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet. 2013, 14:125-138.
-
(2013)
Nat. Rev. Genet.
, vol.14
, pp. 125-138
-
-
Weischenfeldt, J.1
-
23
-
-
70350221909
-
Copy number variation in human health, disease, and evolution
-
Zhang F., et al. Copy number variation in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 2009, 10:451-481.
-
(2009)
Annu. Rev. Genomics Hum. Genet.
, vol.10
, pp. 451-481
-
-
Zhang, F.1
-
24
-
-
31144469134
-
Structural variation in the human genome
-
Feuk L., et al. Structural variation in the human genome. Nat. Rev. Genet. 2006, 7:85-97.
-
(2006)
Nat. Rev. Genet.
, vol.7
, pp. 85-97
-
-
Feuk, L.1
-
25
-
-
79954672317
-
Genome structural variation discovery and genotyping
-
Alkan C., et al. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 2011, 12:363-376.
-
(2011)
Nat. Rev. Genet.
, vol.12
, pp. 363-376
-
-
Alkan, C.1
-
26
-
-
77954402321
-
Inversion variants in the human genome: role in disease and genome architecture
-
Feuk L. Inversion variants in the human genome: role in disease and genome architecture. Genome Med. 2010, 2:11.
-
(2010)
Genome Med.
, vol.2
, pp. 11
-
-
Feuk, L.1
-
27
-
-
0035368225
-
From mouse to man: generating megabase chromosome rearrangements
-
Mills A.A., Bradley A. From mouse to man: generating megabase chromosome rearrangements. Trends Genet. 2001, 17:331-339.
-
(2001)
Trends Genet.
, vol.17
, pp. 331-339
-
-
Mills, A.A.1
Bradley, A.2
-
28
-
-
0037206935
-
Induction of multiple double-strand breaks within an hsr by meganucleaseI-SceI expression or fragile site activation leads to formation of double minutes and other chromosomal rearrangements
-
Coquelle A., et al. Induction of multiple double-strand breaks within an hsr by meganucleaseI-SceI expression or fragile site activation leads to formation of double minutes and other chromosomal rearrangements. Oncogene 2002, 21:7671-7679.
-
(2002)
Oncogene
, vol.21
, pp. 7671-7679
-
-
Coquelle, A.1
-
29
-
-
0042196461
-
Applications of the Saccharomyces cerevisiae Flp-FRT system in bacterial genetics
-
Schweizer H.P. Applications of the Saccharomyces cerevisiae Flp-FRT system in bacterial genetics. J. Mol. Microbiol. Biotechnol. 2003, 5:67-77.
-
(2003)
J. Mol. Microbiol. Biotechnol.
, vol.5
, pp. 67-77
-
-
Schweizer, H.P.1
-
30
-
-
84863275797
-
Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases
-
Lee H.J., et al. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 2012, 22:539-548.
-
(2012)
Genome Res.
, vol.22
, pp. 539-548
-
-
Lee, H.J.1
-
31
-
-
74949133880
-
Targeted chromosomal deletions in human cells using zinc finger nucleases
-
Lee H.J., et al. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 2010, 20:81-89.
-
(2010)
Genome Res.
, vol.20
, pp. 81-89
-
-
Lee, H.J.1
-
32
-
-
84867911474
-
Efficient TALEN-mediated gene knockout in livestock
-
Carlson D.F., et al. Efficient TALEN-mediated gene knockout in livestock. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:17382-17387.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 17382-17387
-
-
Carlson, D.F.1
-
33
-
-
84878731165
-
Targeted chromosomal deletions and inversions in zebrafish
-
Gupta A., et al. Targeted chromosomal deletions and inversions in zebrafish. Genome Res. 2013, 23:1008-1017.
-
(2013)
Genome Res.
, vol.23
, pp. 1008-1017
-
-
Gupta, A.1
-
34
-
-
84880117972
-
Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish
-
Xiao A., et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic acids Res. 2013, 41:e141.
-
(2013)
Nucleic acids Res.
, vol.41
-
-
Xiao, A.1
-
35
-
-
84879468295
-
A simple strategy for heritable chromosomal deletions in zebrafish via the combinatorial action of targeting nucleases
-
Lim S., et al. A simple strategy for heritable chromosomal deletions in zebrafish via the combinatorial action of targeting nucleases. Genome Biol. 2013, 14:R69.
-
(2013)
Genome Biol.
, vol.14
, pp. R69
-
-
Lim, S.1
-
36
-
-
84892468621
-
Multiplex genomic structure variation mediated by TALEN and ssODN
-
Ma S., et al. Multiplex genomic structure variation mediated by TALEN and ssODN. BMC genomics 2014, 15:41.
-
(2014)
BMC genomics
, vol.15
, pp. 41
-
-
Ma, S.1
-
37
-
-
84899570883
-
TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii
-
Bannister S., et al. TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii. Genetics 2014, 197:77-89.
-
(2014)
Genetics
, vol.197
, pp. 77-89
-
-
Bannister, S.1
-
38
-
-
84903212620
-
TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity
-
Mussolino C., et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic acids Res. 2014, 42:6762-6773.
-
(2014)
Nucleic acids Res.
, vol.42
, pp. 6762-6773
-
-
Mussolino, C.1
-
39
-
-
84905388288
-
Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells
-
Canver M.C., et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 2014, 289:21312-21324.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 21312-21324
-
-
Canver, M.C.1
-
40
-
-
84938932957
-
Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9
-
Li J., et al. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. J. Mol. Cell Biol. 2015, 7:284-298.
-
(2015)
J. Mol. Cell Biol.
, vol.7
, pp. 284-298
-
-
Li, J.1
-
41
-
-
84923384373
-
Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice
-
Kraft K., et al. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep. 2015, 10:833-839.
-
(2015)
Cell Rep.
, vol.10
, pp. 833-839
-
-
Kraft, K.1
-
42
-
-
84931291783
-
Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis
-
Seruggia D., et al. Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis. Nucleic acids Res. 2015, 43:4855-4867.
-
(2015)
Nucleic acids Res.
, vol.43
, pp. 4855-4867
-
-
Seruggia, D.1
-
43
-
-
84930091577
-
Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions
-
Lupianez D.G., et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 2015, 161:1012-1025.
-
(2015)
Cell
, vol.161
, pp. 1012-1025
-
-
Lupianez, D.G.1
-
44
-
-
84906878325
-
Highly efficient multiplex targeted mutagenesis and genomic structure variation in Bombyx mori cells using CRISPR/Cas9
-
Liu Y., et al. Highly efficient multiplex targeted mutagenesis and genomic structure variation in Bombyx mori cells using CRISPR/Cas9. Insect Biochem. Mol. Biol. 2014, 49:35-42.
-
(2014)
Insect Biochem. Mol. Biol.
, vol.49
, pp. 35-42
-
-
Liu, Y.1
-
45
-
-
84903191807
-
Multiple genome modifications by the CRISPR/Cas9 system in zebrafish
-
Ota S., et al. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes Cells 2014, 19:555-564.
-
(2014)
Genes Cells
, vol.19
, pp. 555-564
-
-
Ota, S.1
-
46
-
-
84891501836
-
Genome engineering of mammalian haploid embryonic stem cells using the Cas9/RNA system
-
Horii T., et al. Genome engineering of mammalian haploid embryonic stem cells using the Cas9/RNA system. PeerJ 2013, 1:e230.
-
(2013)
PeerJ
, vol.1
-
-
Horii, T.1
-
47
-
-
84885831885
-
Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases
-
Qi Y., et al. Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 2013, 3:1707-1715.
-
(2013)
G3
, vol.3
, pp. 1707-1715
-
-
Qi, Y.1
-
48
-
-
84880737219
-
Rapid and efficient gene modification in rice and Brachypodium using TALENs
-
Shan Q., et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol. Plant 2013, 6:1365-1368.
-
(2013)
Mol. Plant
, vol.6
, pp. 1365-1368
-
-
Shan, Q.1
-
49
-
-
84919838986
-
CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum
-
Gao J., et al. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol. Biol. 2015, 87:99-110.
-
(2015)
Plant Mol. Biol.
, vol.87
, pp. 99-110
-
-
Gao, J.1
-
50
-
-
84937702694
-
Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation
-
Fan D., et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci. Rep. 2015, 5:12217.
-
(2015)
Sci. Rep.
, vol.5
, pp. 12217
-
-
Fan, D.1
-
51
-
-
84961288301
-
Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
-
Zuris J.A., et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 2015, 33:73-80.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 73-80
-
-
Zuris, J.A.1
-
52
-
-
84901834420
-
Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
-
Kim S., et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014, 24:1012-1019.
-
(2014)
Genome Res.
, vol.24
, pp. 1012-1019
-
-
Kim, S.1
-
53
-
-
84940453002
-
Non-GMO genetically edited crop plants
-
Kanchiswamy C.N., et al. Non-GMO genetically edited crop plants. Trends Biotechnol. 2015, 33:489-491.
-
(2015)
Trends Biotechnol.
, vol.33
, pp. 489-491
-
-
Kanchiswamy, C.N.1
-
54
-
-
0027520025
-
Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A
-
Lakich D., et al. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat. Genet. 1993, 5:236-241.
-
(1993)
Nat. Genet.
, vol.5
, pp. 236-241
-
-
Lakich, D.1
-
55
-
-
0028926890
-
Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome
-
Bondeson M.L., et al. Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum. Mol. Genet. 1995, 4:615-621.
-
(1995)
Hum. Mol. Genet.
, vol.4
, pp. 615-621
-
-
Bondeson, M.L.1
-
56
-
-
0031005848
-
Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats
-
Small K., et al. Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nat. Genet. 1997, 16:96-99.
-
(1997)
Nat. Genet.
, vol.16
, pp. 96-99
-
-
Small, K.1
-
57
-
-
84867716702
-
Structural mutations in cancer: mechanistic and functional insights
-
Inaki K., Liu E.T. Structural mutations in cancer: mechanistic and functional insights. Trends Genet. 2012, 28:550-559.
-
(2012)
Trends Genet.
, vol.28
, pp. 550-559
-
-
Inaki, K.1
Liu, E.T.2
-
58
-
-
84903436131
-
Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs
-
Park C.Y., et al. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:9253-9258.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 9253-9258
-
-
Park, C.Y.1
-
59
-
-
84938751866
-
Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9
-
Park C.Y., et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 2015, 17:213-220.
-
(2015)
Cell Stem Cell
, vol.17
, pp. 213-220
-
-
Park, C.Y.1
-
60
-
-
84899490344
-
Targeted genomic rearrangements using CRISPR/Cas technology
-
Choi P.S., Meyerson M. Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun. 2014, 5:3728.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3728
-
-
Choi, P.S.1
Meyerson, M.2
-
61
-
-
84912078930
-
Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology
-
Blasco R.B., et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 2014, 9:1219-1227.
-
(2014)
Cell Rep.
, vol.9
, pp. 1219-1227
-
-
Blasco, R.B.1
-
62
-
-
84922735816
-
In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system
-
Maddalo D., et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 2014, 516:423-427.
-
(2014)
Nature
, vol.516
, pp. 423-427
-
-
Maddalo, D.1
-
63
-
-
84881101184
-
End-joining, translocations and cancer
-
Bunting S.F., Nussenzweig A. End-joining, translocations and cancer. Nat. Rev. Cancer 2013, 13:443-454.
-
(2013)
Nat. Rev. Cancer
, vol.13
, pp. 443-454
-
-
Bunting, S.F.1
Nussenzweig, A.2
-
64
-
-
33746463949
-
Chromosomal translocation engineering to recapitulate primary events of human cancer
-
Forster A., et al. Chromosomal translocation engineering to recapitulate primary events of human cancer. Cold Spring Harb. Symp. Quant. Biol. 2005, 70:275-282.
-
(2005)
Cold Spring Harb. Symp. Quant. Biol.
, vol.70
, pp. 275-282
-
-
Forster, A.1
-
65
-
-
0028345402
-
Cre recombinase-mediated site-specific recombination between plant chromosomes
-
Qin M., et al. Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc. Natl. Acad. Sci. U.S.A. 1994, 91:1706-1710.
-
(1994)
Proc. Natl. Acad. Sci. U.S.A.
, vol.91
, pp. 1706-1710
-
-
Qin, M.1
-
66
-
-
0028950996
-
A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination
-
Smith A.J., et al. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat. Genet. 1995, 9:376-385.
-
(1995)
Nat. Genet.
, vol.9
, pp. 376-385
-
-
Smith, A.J.1
-
67
-
-
0029119145
-
Cre-mediated site-specific translocation between nonhomologous mouse chromosomes
-
Van Deursen J., et al. Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:7376-7380.
-
(1995)
Proc. Natl. Acad. Sci. U.S.A.
, vol.92
, pp. 7376-7380
-
-
Van Deursen, J.1
-
68
-
-
0034252564
-
Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse
-
Buchholz F., et al. Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Rep. 2000, 1:133-139.
-
(2000)
EMBO Rep.
, vol.1
, pp. 133-139
-
-
Buchholz, F.1
-
69
-
-
0034252206
-
Inter-chromosomal recombination of Mll and Af9 genes mediated by cre-loxP in mouse development
-
Collins E.C., et al. Inter-chromosomal recombination of Mll and Af9 genes mediated by cre-loxP in mouse development. EMBO Rep. 2000, 1:127-132.
-
(2000)
EMBO Rep.
, vol.1
, pp. 127-132
-
-
Collins, E.C.1
-
70
-
-
27144493049
-
Mll fusions generated by Cre-loxP-mediated de novo translocations can induce lineage reassignment in tumorigenesis
-
Drynan L.F., et al. Mll fusions generated by Cre-loxP-mediated de novo translocations can induce lineage reassignment in tumorigenesis. EMBO J. 2005, 24:3136-3146.
-
(2005)
EMBO J.
, vol.24
, pp. 3136-3146
-
-
Drynan, L.F.1
-
71
-
-
0345582392
-
Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer
-
Forster A., et al. Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell 2003, 3:449-458.
-
(2003)
Cancer Cell
, vol.3
, pp. 449-458
-
-
Forster, A.1
-
72
-
-
0034621854
-
Frequent chromosomal translocations induced by DNA double-strand breaks
-
Richardson C., Jasin M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 2000, 405:697-700.
-
(2000)
Nature
, vol.405
, pp. 697-700
-
-
Richardson, C.1
Jasin, M.2
-
73
-
-
52149095466
-
Induction of chromosomal translocations in mouse and human cells using site-specific endonucleases
-
Weinstock D.M., et al. Induction of chromosomal translocations in mouse and human cells using site-specific endonucleases. J. Natl. Cancer Inst. Monogr. 2008, 20-24.
-
(2008)
J. Natl. Cancer Inst. Monogr.
, pp. 20-24
-
-
Weinstock, D.M.1
-
74
-
-
67649757162
-
Chromosomal translocations induced at specified loci in human stem cells
-
Brunet E., et al. Chromosomal translocations induced at specified loci in human stem cells. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:10620-10625.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 10620-10625
-
-
Brunet, E.1
-
75
-
-
84880062591
-
Cancer translocations in human cells induced by zinc finger and TALE nucleases
-
Piganeau M., et al. Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res. 2013, 23:1182-1193.
-
(2013)
Genome Res.
, vol.23
, pp. 1182-1193
-
-
Piganeau, M.1
-
76
-
-
84925423305
-
Creating cancer translocations in human cells using Cas9 DSBs and nCas9 paired nicks
-
Renouf B., et al. Creating cancer translocations in human cells using Cas9 DSBs and nCas9 paired nicks. Methods Enzymol. 2014, 546:251-271.
-
(2014)
Methods Enzymol.
, vol.546
, pp. 251-271
-
-
Renouf, B.1
-
77
-
-
84901951241
-
Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system
-
Torres R., et al. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat. Commun. 2014, 5:3964.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3964
-
-
Torres, R.1
-
78
-
-
84924404064
-
Modeling of the human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosome translocation in mouse myoblasts using CRISPR-Cas9 nuclease
-
Lagutina I.V., et al. Modeling of the human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosome translocation in mouse myoblasts using CRISPR-Cas9 nuclease. PLoS Genet. 2015, 11:e1004951.
-
(2015)
PLoS Genet.
, vol.11
-
-
Lagutina, I.V.1
-
79
-
-
84891710947
-
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases
-
Cho S.W., et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014, 24:132-141.
-
(2014)
Genome Res.
, vol.24
, pp. 132-141
-
-
Cho, S.W.1
-
80
-
-
84872406212
-
Zinc finger nuclease induced DNA double stranded breaks and rearrangements in MLL
-
Do T.U., et al. Zinc finger nuclease induced DNA double stranded breaks and rearrangements in MLL. Mutat. Res. 2012, 740:34-42.
-
(2012)
Mutat. Res.
, vol.740
, pp. 34-42
-
-
Do, T.U.1
-
81
-
-
79959814259
-
DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation
-
Simsek D., et al. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet. 2011, 7:e1002080.
-
(2011)
PLoS Genet.
, vol.7
-
-
Simsek, D.1
-
82
-
-
84907976219
-
Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining
-
Ghezraoui H., et al. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol. Cell 2014, 55:829-842.
-
(2014)
Mol. Cell
, vol.55
, pp. 829-842
-
-
Ghezraoui, H.1
-
83
-
-
84923275611
-
Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases
-
Frock R.L., et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 2015, 33:179-186.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 179-186
-
-
Frock, R.L.1
-
84
-
-
77958109197
-
Mechanisms of trinucleotide repeat instability during human development
-
McMurray C.T. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 2010, 11:786-799.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 786-799
-
-
McMurray, C.T.1
-
85
-
-
2642614786
-
Expansions and contractions in a tandem repeat induced by double-strand break repair
-
Paques F., et al. Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol. Cell. Biol. 1998, 18:2045-2054.
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 2045-2054
-
-
Paques, F.1
-
86
-
-
0342965192
-
Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats
-
Richard G.F., et al. Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats. Mol. Gen. Genet. 1999, 261:871-882.
-
(1999)
Mol. Gen. Genet.
, vol.261
, pp. 871-882
-
-
Richard, G.F.1
-
87
-
-
0034658187
-
Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex
-
Richard G.F., et al. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. EMBO J. 2000, 19:2381-2390.
-
(2000)
EMBO J.
, vol.19
, pp. 2381-2390
-
-
Richard, G.F.1
-
88
-
-
67649858822
-
Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells
-
Mittelman D., et al. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9607-9612.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 9607-9612
-
-
Mittelman, D.1
-
89
-
-
77955923161
-
Replication-dependent instability at (CTG) × (CAG) repeat hairpins in human cells
-
Liu G., et al. Replication-dependent instability at (CTG) × (CAG) repeat hairpins in human cells. Nat. Chem. Biol. 2010, 6:652-659.
-
(2010)
Nat. Chem. Biol.
, vol.6
, pp. 652-659
-
-
Liu, G.1
-
90
-
-
84899696778
-
Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast
-
Richard G.F., et al. Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast. PLoS ONE 2014, 9:e95611.
-
(2014)
PLoS ONE
, vol.9
-
-
Richard, G.F.1
-
91
-
-
84891320889
-
Tandem repeat modification during double-strand break repair induced by an engineered TAL effector nuclease in zebrafish genome
-
Huang W., et al. Tandem repeat modification during double-strand break repair induced by an engineered TAL effector nuclease in zebrafish genome. PLoS ONE 2013, 8:e84176.
-
(2013)
PLoS ONE
, vol.8
-
-
Huang, W.1
-
92
-
-
84925402617
-
Polyglutamine disease modeling: epitope based screen for homologous recombination using CRISPR/Cas9 system
-
Published online April 15, 2014
-
An M.C., et al. Polyglutamine disease modeling: epitope based screen for homologous recombination using CRISPR/Cas9 system. PLoS Curr. 2014, Published online April 15, 2014. 10.1371/currents.hd.0242d2e7ad72225efa72f6964589369a.
-
(2014)
PLoS Curr.
-
-
An, M.C.1
-
93
-
-
84930180094
-
Excision of expanded GAA repeats alleviates the molecular phenotype of Friedreich's ataxia
-
Li Y., et al. Excision of expanded GAA repeats alleviates the molecular phenotype of Friedreich's ataxia. Mol. Ther. 2015, 23:1055-1065.
-
(2015)
Mol. Ther.
, vol.23
, pp. 1055-1065
-
-
Li, Y.1
-
94
-
-
84944037049
-
Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons
-
Park C.Y., et al. Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Rep. 2015, 13:234-241.
-
(2015)
Cell Rep.
, vol.13
, pp. 234-241
-
-
Park, C.Y.1
-
95
-
-
84929832278
-
Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells
-
Xia G., et al. Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells. Stem Cells 2015, 33:1829-1838.
-
(2015)
Stem Cells
, vol.33
, pp. 1829-1838
-
-
Xia, G.1
-
96
-
-
84864631163
-
Genetic correction of Huntington's disease phenotypes in induced pluripotent stem cells
-
An M.C., et al. Genetic correction of Huntington's disease phenotypes in induced pluripotent stem cells. Cell stem cell 2012, 11:253-263.
-
(2012)
Cell stem cell
, vol.11
, pp. 253-263
-
-
An, M.C.1
-
97
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran F.A., et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015, 520:186-191.
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
|