-
1
-
-
68749083515
-
Roadmap for implementation of quality by design (QbD) for biotechnology products
-
Rathore AS. Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol. 2009;27:546–553. doi:10.1016/j.tibtech.2009.06.006.
-
(2009)
Trends Biotechnol.
, vol.27
, pp. 546-553
-
-
Rathore, A.S.1
-
2
-
-
84862212634
-
Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach
-
Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog. 2012;28:608–622. doi:10.1002/btpr.1548.
-
(2012)
Biotechnol Prog.
, vol.28
, pp. 608-622
-
-
Eon-Duval, A.1
Broly, H.2
Gleixner, R.3
-
3
-
-
61649087668
-
Glycosylation as a strategy to improve antibody-based therapeutics
-
Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev. 2009;8:226–234. doi:10.1038/nrd2804.
-
(2009)
Nat Rev.
, vol.8
, pp. 226-234
-
-
Jefferis, R.1
-
4
-
-
33845590523
-
Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types
-
Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, Kakita S, Shitara K, Satoh M. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology. 2007;17:104–118. doi:10.1093/glycob/cwl057.
-
(2007)
Glycobiology.
, vol.17
, pp. 104-118
-
-
Kanda, Y.1
Yamada, T.2
Mori, K.3
Okazaki, A.4
Inoue, M.5
Kitajima-Miyama, K.6
Kuni-Kamochi, R.7
Nakano, R.8
Yano, K.9
Kakita, S.10
Shitara, K.11
Satoh, M.12
-
5
-
-
33751253486
-
Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality
-
Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol. 2007;44:1524–1534. doi:10.1016/j.molimm.2006.09.005.
-
(2007)
Mol Immunol.
, vol.44
, pp. 1524-1534
-
-
Scallon, B.J.1
Tam, S.H.2
McCarthy, S.G.3
Cai, A.N.4
Raju, T.S.5
-
6
-
-
28844463354
-
Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro
-
Hodoniczky J, Zheng YZ, James DC. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog. 2005;21:1644–1652. doi:10.1021/bp050228w.
-
(2005)
Biotechnol Prog.
, vol.21
, pp. 1644-1652
-
-
Hodoniczky, J.1
Zheng, Y.Z.2
James, D.C.3
-
7
-
-
84890517373
-
Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry
-
Gong B, Burnina I, Stadheim TA, Li H. Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry. J Mass Spectrom. 2013;48:1308–1317. doi:10.1002/jms.3291.
-
(2013)
J Mass Spectrom.
, vol.48
, pp. 1308-1317
-
-
Gong, B.1
Burnina, I.2
Stadheim, T.A.3
Li, H.4
-
8
-
-
36049007201
-
Recombinant EPO production—points the nephrologist should know
-
Jelkmann W. Recombinant EPO production—points the nephrologist should know. Nephrol Dial Transplant. 2007;22:2749–2753. doi:10.1093/ndt/gfm392.
-
(2007)
Nephrol Dial Transplant.
, vol.22
, pp. 2749-2753
-
-
Jelkmann, W.1
-
9
-
-
0035937505
-
Intracellular functions of N-linked glycans
-
Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science. 2001;291:2364–2369. doi:10.1126/science.291.5512.2364.
-
(2001)
Science.
, vol.291
, pp. 2364-2369
-
-
Helenius, A.1
Aebi, M.2
-
10
-
-
33744939453
-
Elevated Golgi pH in breast and colorectal cancer cells correlates with the expression of oncofetal carbohydrate T-antigen
-
Rivinoja A, Kokkonen N, Kellokumpu I, Kellokumpu S. Elevated Golgi pH in breast and colorectal cancer cells correlates with the expression of oncofetal carbohydrate T-antigen. J Cell Physiol. 2006;208:167–174. doi:10.1002/jcp.20653.
-
(2006)
J Cell Physiol.
, vol.208
, pp. 167-174
-
-
Rivinoja, A.1
Kokkonen, N.2
Kellokumpu, I.3
Kellokumpu, S.4
-
11
-
-
65549131351
-
Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases
-
Rivinoja A, Hassinen A, Kokkonen N, Kauppila A, Kellokumpu S. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol. 2009;220:144–154. http://www.ncbi.nlm.nih.gov/pubmed/19277980.
-
(2009)
J Cell Physiol.
, vol.220
, pp. 144-154
-
-
Rivinoja, A.1
Hassinen, A.2
Kokkonen, N.3
Kauppila, A.4
Kellokumpu, S.5
-
12
-
-
60549114878
-
Glycosylation of antibody therapeutics: optimisation for purpose
-
Jefferis R. Glycosylation of antibody therapeutics: optimisation for purpose. Methods Mol Biol. 2009;483:223–238. doi:10.1007/978-1-59745-407-0_13.
-
(2009)
Methods Mol Biol.
, vol.483
, pp. 223-238
-
-
Jefferis, R.1
-
13
-
-
84959339855
-
Analysis of site-specific N-glycan remodelling in the ER and the Golgi
-
251335–1349
-
Hang I, Lin C, Grant OC, Fleurkens S, Villiger TK, Soos M, Morbidelli M, Woods RJ, Gauss R, Aebi M. Analysis of site-specific N-glycan remodelling in the ER and the Golgi. Glycobiology. 2015;25:1335–1349. doi:10.1093/glycob/cwv058.
-
(2015)
Glycobiology.
-
-
Hang, I.1
Lin, C.2
Grant, O.C.3
Fleurkens, S.4
Villiger, T.K.5
Soos, M.6
Morbidelli, M.7
Woods, R.J.8
Gauss, R.9
Aebi, M.10
-
14
-
-
79956155356
-
Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose
-
Gramer MJ, Eckblad JJ, Donahue R, Brown J, Shultz C, Vickerman K, Priem P, van den Bremer ETJ, Gerritsen J, van Berkel PHC. Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng. 2011;108:1591–1602. doi:10.1002/bit.23075.
-
(2011)
Biotechnol Bioeng.
, vol.108
, pp. 1591-1602
-
-
Gramer, M.J.1
Eckblad, J.J.2
Donahue, R.3
Brown, J.4
Shultz, C.5
Vickerman, K.6
Priem, P.7
van den Bremer, E.T.J.8
Gerritsen, J.9
van Berkel, P.H.C.10
-
15
-
-
0035922885
-
Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells
-
Hills AE, Patel AK, Boyd PN, James DC. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnol Bioeng. 2000;75:239–251. http://kar.kent.ac.uk/16213/.
-
(2000)
Biotechnol Bioeng.
, vol.75
, pp. 239-251
-
-
Hills, A.E.1
Patel, A.K.2
Boyd, P.N.3
James, D.C.4
-
16
-
-
68149141804
-
Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells
-
Gawlitzek M, Estacio M, Fürch T, Kiss R. Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells. Biotechnol Bioeng. 2009;103:1164–1175. http://www.ncbi.nlm.nih.gov/pubmed/19418565.
-
(2009)
Biotechnol Bioeng.
, vol.103
, pp. 1164-1175
-
-
Gawlitzek, M.1
Estacio, M.2
Fürch, T.3
Kiss, R.4
-
17
-
-
46249121065
-
Influence of intracellular nucleotide and nucleotide sugar contents on recombinant interferon-gamma glycosylation during batch and fed-batch cultures of CHO cells
-
Kochanowski N, Blanchard F, Cacan R, Chirat F, Guedon E, Marc A, Goergen J-L. Influence of intracellular nucleotide and nucleotide sugar contents on recombinant interferon-gamma glycosylation during batch and fed-batch cultures of CHO cells. Biotechnol Bioeng. 2008;100:721–733. doi:10.1002/bit.21816.
-
(2008)
Biotechnol Bioeng.
, vol.100
, pp. 721-733
-
-
Kochanowski, N.1
Blanchard, F.2
Cacan, R.3
Chirat, F.4
Guedon, E.5
Marc, A.6
Goergen, J.-L.7
-
18
-
-
78149311455
-
Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase
-
von Horsten HH, Ogorek C, Blanchard V, Demmler C, Giese C, Winkler K, Kaup M, Berger M, Jordan I, Sandig V. Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase. Glycobiology. 2010;20:1607–1618. doi:10.1093/glycob/cwq109.
-
(2010)
Glycobiology.
, vol.20
, pp. 1607-1618
-
-
von Horsten, H.H.1
Ogorek, C.2
Blanchard, V.3
Demmler, C.4
Giese, C.5
Winkler, K.6
Kaup, M.7
Berger, M.8
Jordan, I.9
Sandig, V.10
-
19
-
-
77955289215
-
Inhibition of Golgi apparatus glycosylation causes endoplasmic reticulum stress and decreased protein synthesis
-
Xu YX, Liu L, Caffaro CE, Hirschberg CB. Inhibition of Golgi apparatus glycosylation causes endoplasmic reticulum stress and decreased protein synthesis. J Biol Chem. 2010;285:24600–24608. doi:10.1074/jbc.M110.134544.
-
(2010)
J Biol Chem.
, vol.285
, pp. 24600-24608
-
-
Xu, Y.X.1
Liu, L.2
Caffaro, C.E.3
Hirschberg, C.B.4
-
20
-
-
84922838909
-
Modulation of mAb quality attributes using microliter scale fed-batch cultures
-
Rouiller Y, Périlleux A, Vesin M-N, Stettler M, Jordan M, Broly H. Modulation of mAb quality attributes using microliter scale fed-batch cultures. Biotechnol Prog. 2014;30:571–583. doi:10.1002/btpr.1921.
-
(2014)
Biotechnol Prog.
, vol.30
, pp. 571-583
-
-
Rouiller, Y.1
Périlleux, A.2
Vesin, M.-N.3
Stettler, M.4
Jordan, M.5
Broly, H.6
-
21
-
-
84881157972
-
Assessment of AMBR as a model for high-throughput cell culture process development strategy
-
Moses S. Assessment of AMBR as a model for high-throughput cell culture process development strategy. Adv Biosci Biotechnol. 2012;3:918–927. doi:10.4236/abb.2012.37113.
-
(2012)
Adv Biosci Biotechnol.
, vol.3
, pp. 918-927
-
-
Moses, S.1
-
22
-
-
84868461356
-
Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors
-
Hsu W-T, Aulakh RPS, Traul DL, Yuk IH. Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology. 2012;64:667–678. doi:10.1007/s10616-012-9446-1.
-
(2012)
Cytotechnology.
, vol.64
, pp. 667-678
-
-
Hsu, W.-T.1
Aulakh, R.P.S.2
Traul, D.L.3
Yuk, I.H.4
-
23
-
-
84923007754
-
High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control
-
Rameez S, Mostafa SS, Miller C, Shukla AA. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Biotechnol Prog. 2014;30:718–727. doi:10.1002/btpr.1874.
-
(2014)
Biotechnol Prog.
, vol.30
, pp. 718-727
-
-
Rameez, S.1
Mostafa, S.S.2
Miller, C.3
Shukla, A.A.4
-
24
-
-
84964852946
-
High-throughput profiling of nucleotides and nucleotide sugars to evaluate their impact on antibody N-glycosylation
-
Villiger TK, Steinhoff RF, Ivarsson M, Solacroup T, Stettler M, Broly H, Krismer J, Pabst M, Zenobi R, Morbidelli M, Soos M. High-throughput profiling of nucleotides and nucleotide sugars to evaluate their impact on antibody N-glycosylation. J Biotechnol. 2016:229;3–12.
-
(2016)
J Biotechnol.
, vol.229
, pp. 3-12
-
-
Villiger, T.K.1
Steinhoff, R.F.2
Ivarsson, M.3
Solacroup, T.4
Stettler, M.5
Broly, H.6
Krismer, J.7
Pabst, M.8
Zenobi, R.9
Morbidelli, M.10
Soos, M.11
-
25
-
-
84885636807
-
An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture
-
Doherty M, Bones J, McLoughlin N, Telford JE, Harmon B, DeFelippis MR, Rudd PM. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture. Anal Biochem. 2013;442:10–18. doi:10.1016/j.ab.2013.07.005.
-
(2013)
Anal Biochem.
, vol.442
, pp. 10-18
-
-
Doherty, M.1
Bones, J.2
McLoughlin, N.3
Telford, J.E.4
Harmon, B.5
DeFelippis, M.R.6
Rudd, P.M.7
-
26
-
-
84868553080
-
High-throughput work flow for IgG Fc-glycosylation analysis of biotechnological samples
-
Reusch D, Haberger M, Selman MHJ, Bulau P, Deelder AM, Wuhrer M, Engler N. High-throughput work flow for IgG Fc-glycosylation analysis of biotechnological samples. Anal Biochem. 2013;432:82–89. doi:10.1016/j.ab.2012.09.032.
-
(2013)
Anal Biochem.
, vol.432
, pp. 82-89
-
-
Reusch, D.1
Haberger, M.2
Selman, M.H.J.3
Bulau, P.4
Deelder, A.M.5
Wuhrer, M.6
Engler, N.7
-
27
-
-
84884264843
-
Automated, high-throughput IgG-antibody glycoprofiling platform
-
Stöckmann H, Adamczyk B, Hayes J, Rudd PM. Automated, high-throughput IgG-antibody glycoprofiling platform. Anal Chem. 2013;85:8841–8849. doi:10.1021/ac402068r.
-
(2013)
Anal Chem.
, vol.85
, pp. 8841-8849
-
-
Stöckmann, H.1
Adamczyk, B.2
Hayes, J.3
Rudd, P.M.4
-
28
-
-
84901654992
-
Hybrid modeling for quality by design and PAT-benefits and challenges of applications in biopharmaceutical industry
-
von Stosch M, Davy S, Francois K, Galvanauskas V, Hamelink JM, Luebbert A, Mayer M, Oliveira R, O'Kennedy R, Rice P, Glassey J. Hybrid modeling for quality by design and PAT-benefits and challenges of applications in biopharmaceutical industry. Biotechnol J. 2014;9:719–726. doi:10.1002/biot.201300385.
-
(2014)
Biotechnol J.
, vol.9
, pp. 719-726
-
-
von Stosch, M.1
Davy, S.2
Francois, K.3
Galvanauskas, V.4
Hamelink, J.M.5
Luebbert, A.6
Mayer, M.7
Oliveira, R.8
O'Kennedy, R.9
Rice, P.10
Glassey, J.11
-
29
-
-
0030570080
-
A modeling framework for the study of protein glycosylation
-
Shelikoff M, Sinskey AJ, Stephanopoulos G. A modeling framework for the study of protein glycosylation. Biotechnol Bioeng. 1996;50:73–90. http://www.ncbi.nlm.nih.gov/pubmed/18626901.
-
(1996)
Biotechnol Bioeng.
, vol.50
, pp. 73-90
-
-
Shelikoff, M.1
Sinskey, A.J.2
Stephanopoulos, G.3
-
30
-
-
0343581263
-
A mathematical model of N-linked glycoform biosynthesis
-
Umaña P, Bailey JE. A mathematical model of N-linked glycoform biosynthesis. Biotechnol Bioeng. 1997;55:890–908. http://www.ncbi.nlm.nih.gov/pubmed/18636599.
-
(1997)
Biotechnol Bioeng.
, vol.55
, pp. 890-908
-
-
Umaña, P.1
Bailey, J.E.2
-
31
-
-
40249093192
-
-
Systems analysis of N-glycan processing in mammalian cells., PLoS On
-
Hossler P, Mulukutla BC, Hu W-S. Systems analysis of N-glycan processing in mammalian cells. PLoS One. 2007;2:e713. doi:10.1371/journal.pone.0000713.
-
(2007)
, vol.2
-
-
Hossler, P.1
Mulukutla, B.C.2
Hu, W.-S.3
-
32
-
-
28844473175
-
A mathematical model of N-linked glycosylation
-
Krambeck FJ, Betenbaugh MJ. A mathematical model of N-linked glycosylation. Biotechnol Bioeng. 2005;92:711–728. doi:10.1002/bit.20645.
-
(2005)
Biotechnol Bioeng.
, vol.92
, pp. 711-728
-
-
Krambeck, F.J.1
Betenbaugh, M.J.2
-
33
-
-
82955237386
-
A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus
-
Jimenez Del Val I, Nagy JM, Kontoravdi C. A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus. Biotechnol Prog. 2011;44:1–14. doi:10.1002/btpr.688.
-
(2011)
Biotechnol Prog.
, vol.44
, pp. 1-14
-
-
Jimenez Del Val, I.1
Nagy, J.M.2
Kontoravdi, C.3
-
34
-
-
84904365784
-
Identification of manipulated variables for a glycosylation control strategy
-
St Amand MM, Radhakrishnan D, Robinson AS, Ogunnaike BA, St. Amand MM. Identification of manipulated variables for a glycosylation control strategy. Biotechnol Bioeng. 2014;111:1957–1970. doi:10.1002/bit.25251.
-
(2014)
Biotechnol Bioeng.
, vol.111
, pp. 1957-1970
-
-
St Amand, M.M.1
Radhakrishnan, D.2
Robinson, A.S.3
Ogunnaike, B.A.4
St. Amand, M.M.5
-
35
-
-
84894639207
-
Controllability analysis of protein glycosylation in CHO cells
-
St Amand MM, Tran K, Radhakrishnan D, Robinson AS, Ogunnaike BA. Controllability analysis of protein glycosylation in CHO cells. PLoS One. 2014;9:e87973. doi:10.1371/journal.pone.0087973.
-
(2014)
PLoS One.
, vol.9
-
-
St Amand, M.M.1
Tran, K.2
Radhakrishnan, D.3
Robinson, A.S.4
Ogunnaike, B.A.5
-
36
-
-
84914142511
-
Galactosyltransferase 4 is a major control point for glycan branching in N-linked glycosylation
-
McDonald AG, Hayes JM, Bezak T, G uchowska SA, Cosgrave EFJ, Struwe WB, Stroop CJM, Kok H, van de Laar T, Rudd PM, Tipton KF, Davey GP. Galactosyltransferase 4 is a major control point for glycan branching in N-linked glycosylation. J Cell Sci 2014;127:5014–5026. doi:10.1242/jcs.151878.
-
(2014)
J Cell Sci
, vol.127
, pp. 5014-5026
-
-
McDonald, A.G.1
Hayes, J.M.2
Bezak, T.3
G uchowska, S.A.4
Cosgrave, E.F.J.5
Struwe, W.B.6
Stroop, C.J.M.7
Kok, H.8
van de Laar, T.9
Rudd, P.M.10
Tipton, K.F.11
Davey, G.P.12
-
37
-
-
84896474989
-
Towards controlling the glycoform: a model framework linking extracellular metabolites to antibody glycosylation
-
Jedrzejewski PM, del Val IJ, Constantinou A, Dell A, Haslam SM, Polizzi KM, Kontoravdi C. Towards controlling the glycoform: a model framework linking extracellular metabolites to antibody glycosylation. Int J Mol Sci. 2014;15:4492–4522. doi:10.3390/ijms15034492.
-
(2014)
Int J Mol Sci.
, vol.15
, pp. 4492-4522
-
-
Jedrzejewski, P.M.1
del Val, I.J.2
Constantinou, A.3
Dell, A.4
Haslam, S.M.5
Polizzi, K.M.6
Kontoravdi, C.7
-
38
-
-
80054688998
-
Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping
-
Bongers J, Devincentis J, Fu J, Huang P, Kirkley DH, Leister K, Liu P, Ludwig R, Rumney K, Tao L, Wu W, Russell RJ. Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping. J Chromatogr A. 2011;1218:8140–8149. doi:10.1016/j.chroma.2011.08.089.
-
(2011)
J Chromatogr A.
, vol.1218
, pp. 8140-8149
-
-
Bongers, J.1
Devincentis, J.2
Fu, J.3
Huang, P.4
Kirkley, D.H.5
Leister, K.6
Liu, P.7
Ludwig, R.8
Rumney, K.9
Tao, L.10
Wu, W.11
Russell, R.J.12
-
39
-
-
33847155568
-
Development of a dynamic model of monoclonal antibody production and glycosylation for product quality monitoring
-
Kontoravdi C, Asprey SP, Pistikopoulos EN, Mantalaris A. Development of a dynamic model of monoclonal antibody production and glycosylation for product quality monitoring. Comput Chem Eng. 2007;31:392–400. doi:10.1016/j.compchemeng.2006.04.009.
-
(2007)
Comput Chem Eng.
, vol.31
, pp. 392-400
-
-
Kontoravdi, C.1
Asprey, S.P.2
Pistikopoulos, E.N.3
Mantalaris, A.4
-
40
-
-
84864824103
-
Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells
-
Croset A, Delafosse L, Gaudry J-P, Arod C, Glez L, Losberger C, Begue D, Krstanovic A, Robert F, Vilbois F, Chevalet L, Antonsson B. Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J Biotechnol. 2012;161:336–348. doi:10.1016/j.jbiotec.2012.06.038.
-
(2012)
J Biotechnol.
, vol.161
, pp. 336-348
-
-
Croset, A.1
Delafosse, L.2
Gaudry, J.-P.3
Arod, C.4
Glez, L.5
Losberger, C.6
Begue, D.7
Krstanovic, A.8
Robert, F.9
Vilbois, F.10
Chevalet, L.11
Antonsson, B.12
-
41
-
-
0031799347
-
Jones AJ. A high-throughput microscale method to release N-linked oligosaccharides from glycoproteins for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis
-
Accessed September 2, 2014
-
Papac DI, Briggs JB, Chin ET, Jones AJ. A high-throughput microscale method to release N-linked oligosaccharides from glycoproteins for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Glycobiology. 1998;8:445–454. http://www.ncbi.nlm.nih.gov/pubmed/9597542. Accessed September 2, 2014.
-
(1998)
Glycobiology.
, vol.8
, pp. 445-454
-
-
Papac, D.I.1
Briggs, J.B.2
Chin, E.T.3
-
42
-
-
0035369256
-
Determination of nucleotides and sugar nucleotides involved in protein glycosylation by high-performance anion-exchange chromatography: sugar nucleotide contents in cultured insect cells and mammalian cells
-
Tomiya N, Ailor E, Lawrence SM, Betenbaugh MJ, Lee YC. Determination of nucleotides and sugar nucleotides involved in protein glycosylation by high-performance anion-exchange chromatography: sugar nucleotide contents in cultured insect cells and mammalian cells. Anal Biochem. 2001;293:129–137. http://www.ncbi.nlm.nih.gov/pubmed/11373089.
-
(2001)
Anal Biochem.
, vol.293
, pp. 129-137
-
-
Tomiya, N.1
Ailor, E.2
Lawrence, S.M.3
Betenbaugh, M.J.4
Lee, Y.C.5
-
43
-
-
84921496117
-
High-throughput nucleoside phosphate monitoring in mammalian cell fed-batch cultivation using quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
-
Steinhoff RF, Ivarsson M, Habicher T, Villiger TK, Boertz J, Krismer J, Fagerer SR, Soos M, Morbidelli M, Pabst M, Zenobi R. High-throughput nucleoside phosphate monitoring in mammalian cell fed-batch cultivation using quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Biotechnol J. 2015;10:190–198. doi:10.1002/biot.201400292.
-
(2015)
Biotechnol J.
, vol.10
, pp. 190-198
-
-
Steinhoff, R.F.1
Ivarsson, M.2
Habicher, T.3
Villiger, T.K.4
Boertz, J.5
Krismer, J.6
Fagerer, S.R.7
Soos, M.8
Morbidelli, M.9
Pabst, M.10
Zenobi, R.11
-
44
-
-
84955198136
-
Optimal model-based design of the twin-column CaptureSMB process improves capacity utilization and productivity in protein A affinity capture
-
Baur D, Angarita M, Müller-Späth T, Morbidelli M. Optimal model-based design of the twin-column CaptureSMB process improves capacity utilization and productivity in protein A affinity capture. Biotechnol J. 2016;11:135–145. doi:10.1002/biot.201500223.
-
(2016)
Biotechnol J.
, vol.11
, pp. 135-145
-
-
Baur, D.1
Angarita, M.2
Müller-Späth, T.3
Morbidelli, M.4
-
45
-
-
0001811061
-
ODEPACK: A systematized collection of ODE solvers
-
citeulike-article-id2644528
-
Hindmarsh AC. ODEPACK: A systematized collection of ODE solvers. IMACS Trans Sci Comput. 1983;1:55–64. citeulike-article-id:2644528.
-
(1983)
IMACS Trans Sci Comput.
, vol.1
, pp. 55-64
-
-
Hindmarsh, A.C.1
-
46
-
-
0344641983
-
An unstructured kinetic model of macromolecular metabolism in batch and fed-batch cultures of hybridoma cells producing monoclonal antibody
-
Deog J, Barford JP. An unstructured kinetic model of macromolecular metabolism in batch and fed-batch cultures of hybridoma cells producing monoclonal antibody. Biochem Eng J. 2006;4:153–168.
-
(2006)
Biochem Eng J.
, vol.4
, pp. 153-168
-
-
Deog, J.1
Barford, J.P.2
-
47
-
-
0026254349
-
Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 2. Effects of serum concentration, dissolved oxygen concentration, and medium pH in a batch reactor
-
Ozturk SS, Palsson BO. Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 2. Effects of serum concentration, dissolved oxygen concentration, and medium pH in a batch reactor. Biotechnol Prog. 1991;7:481–494. doi:10.1021/bp00012a002.
-
(1991)
Biotechnol Prog.
, vol.7
, pp. 481-494
-
-
Ozturk, S.S.1
Palsson, B.O.2
-
48
-
-
0020626852
-
Synthesis of N-acetylneuraminic acid and of CMP-N-acetylneuraminic acid in the rat liver cell
-
Ferwerda W, Blok CM, Van Rinsum J. Synthesis of N-acetylneuraminic acid and of CMP-N-acetylneuraminic acid in the rat liver cell. Biochem J. 1983;216:87–92.
-
(1983)
Biochem J.
, vol.216
, pp. 87-92
-
-
Ferwerda, W.1
Blok, C.M.2
Van Rinsum, J.3
-
49
-
-
0018801562
-
Purification and characterization of a rat liver Golgi alpha-mannosidase capable of processing asparagine-linked oligosaccharides
-
Accessed June 27, 2014
-
Tabas I, Kornfeld S. Purification and characterization of a rat liver Golgi alpha-mannosidase capable of processing asparagine-linked oligosaccharides. J Biol Chem. 1979;254:11655–11663. http://www.ncbi.nlm.nih.gov/pubmed/500665. Accessed June 27, 2014.
-
(1979)
J Biol Chem.
, vol.254
, pp. 11655-11663
-
-
Tabas, I.1
Kornfeld, S.2
-
50
-
-
0025948387
-
Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact enzyme
-
Moremen KW, Touster O, Robbins PW. Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact enzyme. J Biol Chem. 1991;266:16876–16885.
-
(1991)
J Biol Chem.
, vol.266
, pp. 16876-16885
-
-
Moremen, K.W.1
Touster, O.2
Robbins, P.W.3
-
51
-
-
0027174523
-
Cell type-dependent variations in the subcellular distribution of alpha-mannosidase I and II
-
Accessed February 17, 2014
-
Velasco A, Hendricks L, Moremen KW, Tulsiani DR, Touster O, Farquhar MG. Cell type-dependent variations in the subcellular distribution of alpha-mannosidase I and II. J Cell Biol. 1993;122:39–51. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2119607&tool=pmcentrez&rendertype=abstract. Accessed February 17, 2014.
-
(1993)
J Cell Biol.
, vol.122
, pp. 39-51
-
-
Velasco, A.1
Hendricks, L.2
Moremen, K.W.3
Tulsiani, D.R.4
Touster, O.5
Farquhar, M.G.6
-
52
-
-
0034675845
-
X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily
-
Unligil UM, Zhou S, Yuwaraj S, Sarkar M, Schachter H, Rini JM. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. Embo J. 2000;19:5269–5280. doi:10.1093/emboj/19.20.5269.
-
(2000)
Embo J.
, vol.19
, pp. 5269-5280
-
-
Unligil, U.M.1
Zhou, S.2
Yuwaraj, S.3
Sarkar, M.4
Schachter, H.5
Rini, J.M.6
-
53
-
-
0023664322
-
Control of glycoprotein synthesis. Purification of UDP-N-acetylglucosamine:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver
-
Bendiak B, Schachter H. Control of glycoprotein synthesis. Purification of UDP-N-acetylglucosamine:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver. J Biol Chem. 1987;262:5775–5783.
-
(1987)
J Biol Chem.
, vol.262
, pp. 5775-5783
-
-
Bendiak, B.1
Schachter, H.2
-
54
-
-
4744344735
-
Structure and catalytic cycle of beta-1,4-galactosyltransferase
-
Ramakrishnan B, Boeggeman E, Ramasamy V, Qasba PK. Structure and catalytic cycle of beta-1,4-galactosyltransferase. Curr Opin Struct Biol. 2004;14:593–600. doi:10.1016/j.sbi.2004.09.006.
-
(2004)
Curr Opin Struct Biol.
, vol.14
, pp. 593-600
-
-
Ramakrishnan, B.1
Boeggeman, E.2
Ramasamy, V.3
Qasba, P.K.4
-
55
-
-
49449087287
-
Glycosyltransferases: structures, functions, and mechanisms
-
Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem. 2008;77:521–555. doi:10.1146/annurev.biochem.76.061005.092322.
-
(2008)
Annu Rev Biochem.
, vol.77
, pp. 521-555
-
-
Lairson, L.L.1
Henrissat, B.2
Davies, G.J.3
Withers, S.G.4
-
56
-
-
34447313692
-
Crystal structure of mammalian alpha1,6-fucosyltransferase, FUT8
-
Ihara H, Ikeda Y, Toma S, Wang X, Suzuki T, Gu J, Miyoshi E, Tsukihara T, Honke K, Matsumoto A, Nakagawa A, Taniguchi N. Crystal structure of mammalian alpha1,6-fucosyltransferase, FUT8. Glycobiology. 2007;17:455–466. doi:10.1093/glycob/cwl079.
-
(2007)
Glycobiology.
, vol.17
, pp. 455-466
-
-
Ihara, H.1
Ikeda, Y.2
Toma, S.3
Wang, X.4
Suzuki, T.5
Gu, J.6
Miyoshi, E.7
Tsukihara, T.8
Honke, K.9
Matsumoto, A.10
Nakagawa, A.11
Taniguchi, N.12
-
57
-
-
0020484313
-
Kinetic parameters of a beta-D-galactoside alpha 2 leads to 6 sialyltransferase from embryonic chicken liver
-
Bendiak B, Cook GM. Kinetic parameters of a beta-D-galactoside alpha 2 leads to 6 sialyltransferase from embryonic chicken liver. Eur J Biochem. 1982;128:355–362.
-
(1982)
Eur J Biochem.
, vol.128
, pp. 355-362
-
-
Bendiak, B.1
Cook, G.M.2
-
58
-
-
0032499784
-
Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins
-
Accessed August 26, 2013
-
Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A. 1998;95:6803–6808. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=22642&tool=pmcentrez&rendertype=abstract. Accessed August 26, 2013.
-
(1998)
Proc Natl Acad Sci U S A.
, vol.95
, pp. 6803-6808
-
-
Llopis, J.1
McCaffery, J.M.2
Miyawaki, A.3
Farquhar, M.G.4
Tsien, R.Y.5
-
59
-
-
0034843704
-
Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins
-
Axelsson MA, Karlsson NG, Steel DM, Ouwendijk J, Nilsson T, Hansson GC. Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins. Glycobiology. 2001;11:633–644. http://www.ncbi.nlm.nih.gov/pubmed/11479274.
-
(2001)
Glycobiology.
, vol.11
, pp. 633-644
-
-
Axelsson, M.A.1
Karlsson, N.G.2
Steel, D.M.3
Ouwendijk, J.4
Nilsson, T.5
Hansson, G.C.6
-
60
-
-
0034647915
-
Determinants of the pH of the golgi complex
-
Schapiro FB, Grinstein S. Determinants of the pH of the golgi complex. J Biol Chem. 2000;275:21025–21032. http://www.ncbi.nlm.nih.gov/pubmed/10748071.
-
(2000)
J Biol Chem.
, vol.275
, pp. 21025-21032
-
-
Schapiro, F.B.1
Grinstein, S.2
-
61
-
-
84860448067
-
Glycosylation and post-translational modification gene expression analysis by DNA microarrays for cultured mammalian cells
-
Brodsky AN, Caldwell M, Harcum SW. Glycosylation and post-translational modification gene expression analysis by DNA microarrays for cultured mammalian cells. Methods 2012;56:408–417. doi:10.1016/j.ymeth.2011.10.004.
-
(2012)
Methods
, vol.56
, pp. 408-417
-
-
Brodsky, A.N.1
Caldwell, M.2
Harcum, S.W.3
-
62
-
-
33644825884
-
Effects of elevated ammonium on glycosylation gene expression in CHO cells
-
Chen P, Harcum SW. Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab Eng. 2006;8:123–132. doi:10.1016/j.ymben.2005.10.002.
-
(2006)
Metab Eng.
, vol.8
, pp. 123-132
-
-
Chen, P.1
Harcum, S.W.2
-
63
-
-
84932199513
-
Understanding of altered N-glycosylation-related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting
-
Ha TK, Kim Y-G, Lee GM. Understanding of altered N-glycosylation-related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting. Biotechnol Bioeng. 2015;112:1583–1593.
-
(2015)
Biotechnol Bioeng.
, vol.112
, pp. 1583-1593
-
-
Ha, T.K.1
Kim, Y.-G.2
Lee, G.M.3
-
64
-
-
20144368638
-
Integrated genomic and proteomic analyses of gene expression in Mammalian cells
-
Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE. Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics. 2004;3:960–969. doi:10.1074/mcp.M400055-MCP200.
-
(2004)
Mol Cell Proteomics.
, vol.3
, pp. 960-969
-
-
Tian, Q.1
Stepaniants, S.B.2
Mao, M.3
Weng, L.4
Feetham, M.C.5
Doyle, M.J.6
Yi, E.C.7
Dai, H.8
Thorsson, V.9
Eng, J.10
Goodlett, D.11
Berger, J.P.12
Gunter, B.13
Linseley, P.S.14
Stoughton, R.B.15
Aebersold, R.16
Collins, S.J.17
Hanlon, W.A.18
Hood, L.E.19
-
65
-
-
25444510601
-
Iterative approach to model identification of biological networks
-
Gadkar KG, Gunawan R, Doyle FJ. Iterative approach to model identification of biological networks. BMC Bioinf. 2005;6:155. doi:10.1186/1471-2105-6-155.
-
(2005)
BMC Bioinf.
, vol.6
, pp. 155
-
-
Gadkar, K.G.1
Gunawan, R.2
Doyle, F.J.3
-
66
-
-
79952564075
-
Understanding dynamics using sensitivity analysis: caveat and solution
-
Perumal TM, Gunawan R. Understanding dynamics using sensitivity analysis: caveat and solution. BMC Syst Biol. 2011;5:41. doi:10.1186/1752-0509-5-41.
-
(2011)
BMC Syst Biol.
, vol.5
, pp. 41
-
-
Perumal, T.M.1
Gunawan, R.2
-
67
-
-
70349978981
-
A mathematical model to derive N-glycan structures and cellular enzyme activities from mass spectrometric data
-
Krambeck FJ, Bennun SV, Narang S, Choi S, Yarema KJ, Betenbaugh MJ. A mathematical model to derive N-glycan structures and cellular enzyme activities from mass spectrometric data. Glycobiology. 2009;19:1163–1175. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2757573&tool=pmcentrez&rendertype=abstract.
-
(2009)
Glycobiology.
, vol.19
, pp. 1163-1175
-
-
Krambeck, F.J.1
Bennun, S.V.2
Narang, S.3
Choi, S.4
Yarema, K.J.5
Betenbaugh, M.J.6
|