메뉴 건너뛰기




Volumn 32, Issue 5, 2016, Pages 1135-1148

Controlling the time evolution of mAb N-linked glycosylation - Part II: Model-based predictions

Author keywords

media design; microbioreactors; model based optimization; N linked glycosylation; process parameters

Indexed keywords

ANTIBODIES; BATCH DATA PROCESSING; BIOREACTORS; CELL CULTURE; CELLS; CYTOLOGY; ENZYME ACTIVITY; GLYCOSYLATION; MONOCLONAL ANTIBODIES; SAFETY FACTOR; THROUGHPUT;

EID: 84978120414     PISSN: 87567938     EISSN: 15206033     Source Type: Journal    
DOI: 10.1002/btpr.2315     Document Type: Article
Times cited : (49)

References (67)
  • 1
    • 68749083515 scopus 로고    scopus 로고
    • Roadmap for implementation of quality by design (QbD) for biotechnology products
    • Rathore AS. Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol. 2009;27:546–553. doi:10.1016/j.tibtech.2009.06.006.
    • (2009) Trends Biotechnol. , vol.27 , pp. 546-553
    • Rathore, A.S.1
  • 2
    • 84862212634 scopus 로고    scopus 로고
    • Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach
    • Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog. 2012;28:608–622. doi:10.1002/btpr.1548.
    • (2012) Biotechnol Prog. , vol.28 , pp. 608-622
    • Eon-Duval, A.1    Broly, H.2    Gleixner, R.3
  • 3
    • 61649087668 scopus 로고    scopus 로고
    • Glycosylation as a strategy to improve antibody-based therapeutics
    • Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev. 2009;8:226–234. doi:10.1038/nrd2804.
    • (2009) Nat Rev. , vol.8 , pp. 226-234
    • Jefferis, R.1
  • 4
    • 33845590523 scopus 로고    scopus 로고
    • Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types
    • Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, Kakita S, Shitara K, Satoh M. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology. 2007;17:104–118. doi:10.1093/glycob/cwl057.
    • (2007) Glycobiology. , vol.17 , pp. 104-118
    • Kanda, Y.1    Yamada, T.2    Mori, K.3    Okazaki, A.4    Inoue, M.5    Kitajima-Miyama, K.6    Kuni-Kamochi, R.7    Nakano, R.8    Yano, K.9    Kakita, S.10    Shitara, K.11    Satoh, M.12
  • 5
    • 33751253486 scopus 로고    scopus 로고
    • Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality
    • Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol. 2007;44:1524–1534. doi:10.1016/j.molimm.2006.09.005.
    • (2007) Mol Immunol. , vol.44 , pp. 1524-1534
    • Scallon, B.J.1    Tam, S.H.2    McCarthy, S.G.3    Cai, A.N.4    Raju, T.S.5
  • 6
    • 28844463354 scopus 로고    scopus 로고
    • Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro
    • Hodoniczky J, Zheng YZ, James DC. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog. 2005;21:1644–1652. doi:10.1021/bp050228w.
    • (2005) Biotechnol Prog. , vol.21 , pp. 1644-1652
    • Hodoniczky, J.1    Zheng, Y.Z.2    James, D.C.3
  • 7
    • 84890517373 scopus 로고    scopus 로고
    • Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry
    • Gong B, Burnina I, Stadheim TA, Li H. Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry. J Mass Spectrom. 2013;48:1308–1317. doi:10.1002/jms.3291.
    • (2013) J Mass Spectrom. , vol.48 , pp. 1308-1317
    • Gong, B.1    Burnina, I.2    Stadheim, T.A.3    Li, H.4
  • 8
    • 36049007201 scopus 로고    scopus 로고
    • Recombinant EPO production—points the nephrologist should know
    • Jelkmann W. Recombinant EPO production—points the nephrologist should know. Nephrol Dial Transplant. 2007;22:2749–2753. doi:10.1093/ndt/gfm392.
    • (2007) Nephrol Dial Transplant. , vol.22 , pp. 2749-2753
    • Jelkmann, W.1
  • 9
    • 0035937505 scopus 로고    scopus 로고
    • Intracellular functions of N-linked glycans
    • Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science. 2001;291:2364–2369. doi:10.1126/science.291.5512.2364.
    • (2001) Science. , vol.291 , pp. 2364-2369
    • Helenius, A.1    Aebi, M.2
  • 10
    • 33744939453 scopus 로고    scopus 로고
    • Elevated Golgi pH in breast and colorectal cancer cells correlates with the expression of oncofetal carbohydrate T-antigen
    • Rivinoja A, Kokkonen N, Kellokumpu I, Kellokumpu S. Elevated Golgi pH in breast and colorectal cancer cells correlates with the expression of oncofetal carbohydrate T-antigen. J Cell Physiol. 2006;208:167–174. doi:10.1002/jcp.20653.
    • (2006) J Cell Physiol. , vol.208 , pp. 167-174
    • Rivinoja, A.1    Kokkonen, N.2    Kellokumpu, I.3    Kellokumpu, S.4
  • 11
    • 65549131351 scopus 로고    scopus 로고
    • Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases
    • Rivinoja A, Hassinen A, Kokkonen N, Kauppila A, Kellokumpu S. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol. 2009;220:144–154. http://www.ncbi.nlm.nih.gov/pubmed/19277980.
    • (2009) J Cell Physiol. , vol.220 , pp. 144-154
    • Rivinoja, A.1    Hassinen, A.2    Kokkonen, N.3    Kauppila, A.4    Kellokumpu, S.5
  • 12
    • 60549114878 scopus 로고    scopus 로고
    • Glycosylation of antibody therapeutics: optimisation for purpose
    • Jefferis R. Glycosylation of antibody therapeutics: optimisation for purpose. Methods Mol Biol. 2009;483:223–238. doi:10.1007/978-1-59745-407-0_13.
    • (2009) Methods Mol Biol. , vol.483 , pp. 223-238
    • Jefferis, R.1
  • 15
    • 0035922885 scopus 로고    scopus 로고
    • Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells
    • Hills AE, Patel AK, Boyd PN, James DC. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnol Bioeng. 2000;75:239–251. http://kar.kent.ac.uk/16213/.
    • (2000) Biotechnol Bioeng. , vol.75 , pp. 239-251
    • Hills, A.E.1    Patel, A.K.2    Boyd, P.N.3    James, D.C.4
  • 16
    • 68149141804 scopus 로고    scopus 로고
    • Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells
    • Gawlitzek M, Estacio M, Fürch T, Kiss R. Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells. Biotechnol Bioeng. 2009;103:1164–1175. http://www.ncbi.nlm.nih.gov/pubmed/19418565.
    • (2009) Biotechnol Bioeng. , vol.103 , pp. 1164-1175
    • Gawlitzek, M.1    Estacio, M.2    Fürch, T.3    Kiss, R.4
  • 17
    • 46249121065 scopus 로고    scopus 로고
    • Influence of intracellular nucleotide and nucleotide sugar contents on recombinant interferon-gamma glycosylation during batch and fed-batch cultures of CHO cells
    • Kochanowski N, Blanchard F, Cacan R, Chirat F, Guedon E, Marc A, Goergen J-L. Influence of intracellular nucleotide and nucleotide sugar contents on recombinant interferon-gamma glycosylation during batch and fed-batch cultures of CHO cells. Biotechnol Bioeng. 2008;100:721–733. doi:10.1002/bit.21816.
    • (2008) Biotechnol Bioeng. , vol.100 , pp. 721-733
    • Kochanowski, N.1    Blanchard, F.2    Cacan, R.3    Chirat, F.4    Guedon, E.5    Marc, A.6    Goergen, J.-L.7
  • 19
    • 77955289215 scopus 로고    scopus 로고
    • Inhibition of Golgi apparatus glycosylation causes endoplasmic reticulum stress and decreased protein synthesis
    • Xu YX, Liu L, Caffaro CE, Hirschberg CB. Inhibition of Golgi apparatus glycosylation causes endoplasmic reticulum stress and decreased protein synthesis. J Biol Chem. 2010;285:24600–24608. doi:10.1074/jbc.M110.134544.
    • (2010) J Biol Chem. , vol.285 , pp. 24600-24608
    • Xu, Y.X.1    Liu, L.2    Caffaro, C.E.3    Hirschberg, C.B.4
  • 21
    • 84881157972 scopus 로고    scopus 로고
    • Assessment of AMBR as a model for high-throughput cell culture process development strategy
    • Moses S. Assessment of AMBR as a model for high-throughput cell culture process development strategy. Adv Biosci Biotechnol. 2012;3:918–927. doi:10.4236/abb.2012.37113.
    • (2012) Adv Biosci Biotechnol. , vol.3 , pp. 918-927
    • Moses, S.1
  • 22
    • 84868461356 scopus 로고    scopus 로고
    • Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors
    • Hsu W-T, Aulakh RPS, Traul DL, Yuk IH. Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology. 2012;64:667–678. doi:10.1007/s10616-012-9446-1.
    • (2012) Cytotechnology. , vol.64 , pp. 667-678
    • Hsu, W.-T.1    Aulakh, R.P.S.2    Traul, D.L.3    Yuk, I.H.4
  • 23
    • 84923007754 scopus 로고    scopus 로고
    • High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control
    • Rameez S, Mostafa SS, Miller C, Shukla AA. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Biotechnol Prog. 2014;30:718–727. doi:10.1002/btpr.1874.
    • (2014) Biotechnol Prog. , vol.30 , pp. 718-727
    • Rameez, S.1    Mostafa, S.S.2    Miller, C.3    Shukla, A.A.4
  • 25
    • 84885636807 scopus 로고    scopus 로고
    • An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture
    • Doherty M, Bones J, McLoughlin N, Telford JE, Harmon B, DeFelippis MR, Rudd PM. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture. Anal Biochem. 2013;442:10–18. doi:10.1016/j.ab.2013.07.005.
    • (2013) Anal Biochem. , vol.442 , pp. 10-18
    • Doherty, M.1    Bones, J.2    McLoughlin, N.3    Telford, J.E.4    Harmon, B.5    DeFelippis, M.R.6    Rudd, P.M.7
  • 26
  • 27
    • 84884264843 scopus 로고    scopus 로고
    • Automated, high-throughput IgG-antibody glycoprofiling platform
    • Stöckmann H, Adamczyk B, Hayes J, Rudd PM. Automated, high-throughput IgG-antibody glycoprofiling platform. Anal Chem. 2013;85:8841–8849. doi:10.1021/ac402068r.
    • (2013) Anal Chem. , vol.85 , pp. 8841-8849
    • Stöckmann, H.1    Adamczyk, B.2    Hayes, J.3    Rudd, P.M.4
  • 29
    • 0030570080 scopus 로고    scopus 로고
    • A modeling framework for the study of protein glycosylation
    • Shelikoff M, Sinskey AJ, Stephanopoulos G. A modeling framework for the study of protein glycosylation. Biotechnol Bioeng. 1996;50:73–90. http://www.ncbi.nlm.nih.gov/pubmed/18626901.
    • (1996) Biotechnol Bioeng. , vol.50 , pp. 73-90
    • Shelikoff, M.1    Sinskey, A.J.2    Stephanopoulos, G.3
  • 30
    • 0343581263 scopus 로고    scopus 로고
    • A mathematical model of N-linked glycoform biosynthesis
    • Umaña P, Bailey JE. A mathematical model of N-linked glycoform biosynthesis. Biotechnol Bioeng. 1997;55:890–908. http://www.ncbi.nlm.nih.gov/pubmed/18636599.
    • (1997) Biotechnol Bioeng. , vol.55 , pp. 890-908
    • Umaña, P.1    Bailey, J.E.2
  • 31
    • 40249093192 scopus 로고    scopus 로고
    • Systems analysis of N-glycan processing in mammalian cells., PLoS On
    • Hossler P, Mulukutla BC, Hu W-S. Systems analysis of N-glycan processing in mammalian cells. PLoS One. 2007;2:e713. doi:10.1371/journal.pone.0000713.
    • (2007) , vol.2
    • Hossler, P.1    Mulukutla, B.C.2    Hu, W.-S.3
  • 32
    • 28844473175 scopus 로고    scopus 로고
    • A mathematical model of N-linked glycosylation
    • Krambeck FJ, Betenbaugh MJ. A mathematical model of N-linked glycosylation. Biotechnol Bioeng. 2005;92:711–728. doi:10.1002/bit.20645.
    • (2005) Biotechnol Bioeng. , vol.92 , pp. 711-728
    • Krambeck, F.J.1    Betenbaugh, M.J.2
  • 33
    • 82955237386 scopus 로고    scopus 로고
    • A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus
    • Jimenez Del Val I, Nagy JM, Kontoravdi C. A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus. Biotechnol Prog. 2011;44:1–14. doi:10.1002/btpr.688.
    • (2011) Biotechnol Prog. , vol.44 , pp. 1-14
    • Jimenez Del Val, I.1    Nagy, J.M.2    Kontoravdi, C.3
  • 37
  • 38
    • 80054688998 scopus 로고    scopus 로고
    • Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping
    • Bongers J, Devincentis J, Fu J, Huang P, Kirkley DH, Leister K, Liu P, Ludwig R, Rumney K, Tao L, Wu W, Russell RJ. Characterization of glycosylation sites for a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein by liquid chromatography-mass spectrometry peptide mapping. J Chromatogr A. 2011;1218:8140–8149. doi:10.1016/j.chroma.2011.08.089.
    • (2011) J Chromatogr A. , vol.1218 , pp. 8140-8149
    • Bongers, J.1    Devincentis, J.2    Fu, J.3    Huang, P.4    Kirkley, D.H.5    Leister, K.6    Liu, P.7    Ludwig, R.8    Rumney, K.9    Tao, L.10    Wu, W.11    Russell, R.J.12
  • 39
    • 33847155568 scopus 로고    scopus 로고
    • Development of a dynamic model of monoclonal antibody production and glycosylation for product quality monitoring
    • Kontoravdi C, Asprey SP, Pistikopoulos EN, Mantalaris A. Development of a dynamic model of monoclonal antibody production and glycosylation for product quality monitoring. Comput Chem Eng. 2007;31:392–400. doi:10.1016/j.compchemeng.2006.04.009.
    • (2007) Comput Chem Eng. , vol.31 , pp. 392-400
    • Kontoravdi, C.1    Asprey, S.P.2    Pistikopoulos, E.N.3    Mantalaris, A.4
  • 41
    • 0031799347 scopus 로고    scopus 로고
    • Jones AJ. A high-throughput microscale method to release N-linked oligosaccharides from glycoproteins for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis
    • Accessed September 2, 2014
    • Papac DI, Briggs JB, Chin ET, Jones AJ. A high-throughput microscale method to release N-linked oligosaccharides from glycoproteins for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Glycobiology. 1998;8:445–454. http://www.ncbi.nlm.nih.gov/pubmed/9597542. Accessed September 2, 2014.
    • (1998) Glycobiology. , vol.8 , pp. 445-454
    • Papac, D.I.1    Briggs, J.B.2    Chin, E.T.3
  • 42
    • 0035369256 scopus 로고    scopus 로고
    • Determination of nucleotides and sugar nucleotides involved in protein glycosylation by high-performance anion-exchange chromatography: sugar nucleotide contents in cultured insect cells and mammalian cells
    • Tomiya N, Ailor E, Lawrence SM, Betenbaugh MJ, Lee YC. Determination of nucleotides and sugar nucleotides involved in protein glycosylation by high-performance anion-exchange chromatography: sugar nucleotide contents in cultured insect cells and mammalian cells. Anal Biochem. 2001;293:129–137. http://www.ncbi.nlm.nih.gov/pubmed/11373089.
    • (2001) Anal Biochem. , vol.293 , pp. 129-137
    • Tomiya, N.1    Ailor, E.2    Lawrence, S.M.3    Betenbaugh, M.J.4    Lee, Y.C.5
  • 43
    • 84921496117 scopus 로고    scopus 로고
    • High-throughput nucleoside phosphate monitoring in mammalian cell fed-batch cultivation using quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
    • Steinhoff RF, Ivarsson M, Habicher T, Villiger TK, Boertz J, Krismer J, Fagerer SR, Soos M, Morbidelli M, Pabst M, Zenobi R. High-throughput nucleoside phosphate monitoring in mammalian cell fed-batch cultivation using quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Biotechnol J. 2015;10:190–198. doi:10.1002/biot.201400292.
    • (2015) Biotechnol J. , vol.10 , pp. 190-198
    • Steinhoff, R.F.1    Ivarsson, M.2    Habicher, T.3    Villiger, T.K.4    Boertz, J.5    Krismer, J.6    Fagerer, S.R.7    Soos, M.8    Morbidelli, M.9    Pabst, M.10    Zenobi, R.11
  • 44
    • 84955198136 scopus 로고    scopus 로고
    • Optimal model-based design of the twin-column CaptureSMB process improves capacity utilization and productivity in protein A affinity capture
    • Baur D, Angarita M, Müller-Späth T, Morbidelli M. Optimal model-based design of the twin-column CaptureSMB process improves capacity utilization and productivity in protein A affinity capture. Biotechnol J. 2016;11:135–145. doi:10.1002/biot.201500223.
    • (2016) Biotechnol J. , vol.11 , pp. 135-145
    • Baur, D.1    Angarita, M.2    Müller-Späth, T.3    Morbidelli, M.4
  • 45
    • 0001811061 scopus 로고
    • ODEPACK: A systematized collection of ODE solvers
    • citeulike-article-id2644528
    • Hindmarsh AC. ODEPACK: A systematized collection of ODE solvers. IMACS Trans Sci Comput. 1983;1:55–64. citeulike-article-id:2644528.
    • (1983) IMACS Trans Sci Comput. , vol.1 , pp. 55-64
    • Hindmarsh, A.C.1
  • 46
    • 0344641983 scopus 로고    scopus 로고
    • An unstructured kinetic model of macromolecular metabolism in batch and fed-batch cultures of hybridoma cells producing monoclonal antibody
    • Deog J, Barford JP. An unstructured kinetic model of macromolecular metabolism in batch and fed-batch cultures of hybridoma cells producing monoclonal antibody. Biochem Eng J. 2006;4:153–168.
    • (2006) Biochem Eng J. , vol.4 , pp. 153-168
    • Deog, J.1    Barford, J.P.2
  • 47
    • 0026254349 scopus 로고
    • Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 2. Effects of serum concentration, dissolved oxygen concentration, and medium pH in a batch reactor
    • Ozturk SS, Palsson BO. Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 2. Effects of serum concentration, dissolved oxygen concentration, and medium pH in a batch reactor. Biotechnol Prog. 1991;7:481–494. doi:10.1021/bp00012a002.
    • (1991) Biotechnol Prog. , vol.7 , pp. 481-494
    • Ozturk, S.S.1    Palsson, B.O.2
  • 48
    • 0020626852 scopus 로고
    • Synthesis of N-acetylneuraminic acid and of CMP-N-acetylneuraminic acid in the rat liver cell
    • Ferwerda W, Blok CM, Van Rinsum J. Synthesis of N-acetylneuraminic acid and of CMP-N-acetylneuraminic acid in the rat liver cell. Biochem J. 1983;216:87–92.
    • (1983) Biochem J. , vol.216 , pp. 87-92
    • Ferwerda, W.1    Blok, C.M.2    Van Rinsum, J.3
  • 49
    • 0018801562 scopus 로고
    • Purification and characterization of a rat liver Golgi alpha-mannosidase capable of processing asparagine-linked oligosaccharides
    • Accessed June 27, 2014
    • Tabas I, Kornfeld S. Purification and characterization of a rat liver Golgi alpha-mannosidase capable of processing asparagine-linked oligosaccharides. J Biol Chem. 1979;254:11655–11663. http://www.ncbi.nlm.nih.gov/pubmed/500665. Accessed June 27, 2014.
    • (1979) J Biol Chem. , vol.254 , pp. 11655-11663
    • Tabas, I.1    Kornfeld, S.2
  • 50
    • 0025948387 scopus 로고
    • Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact enzyme
    • Moremen KW, Touster O, Robbins PW. Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact enzyme. J Biol Chem. 1991;266:16876–16885.
    • (1991) J Biol Chem. , vol.266 , pp. 16876-16885
    • Moremen, K.W.1    Touster, O.2    Robbins, P.W.3
  • 51
    • 0027174523 scopus 로고
    • Cell type-dependent variations in the subcellular distribution of alpha-mannosidase I and II
    • Accessed February 17, 2014
    • Velasco A, Hendricks L, Moremen KW, Tulsiani DR, Touster O, Farquhar MG. Cell type-dependent variations in the subcellular distribution of alpha-mannosidase I and II. J Cell Biol. 1993;122:39–51. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2119607&tool=pmcentrez&rendertype=abstract. Accessed February 17, 2014.
    • (1993) J Cell Biol. , vol.122 , pp. 39-51
    • Velasco, A.1    Hendricks, L.2    Moremen, K.W.3    Tulsiani, D.R.4    Touster, O.5    Farquhar, M.G.6
  • 52
    • 0034675845 scopus 로고    scopus 로고
    • X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily
    • Unligil UM, Zhou S, Yuwaraj S, Sarkar M, Schachter H, Rini JM. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. Embo J. 2000;19:5269–5280. doi:10.1093/emboj/19.20.5269.
    • (2000) Embo J. , vol.19 , pp. 5269-5280
    • Unligil, U.M.1    Zhou, S.2    Yuwaraj, S.3    Sarkar, M.4    Schachter, H.5    Rini, J.M.6
  • 53
    • 0023664322 scopus 로고
    • Control of glycoprotein synthesis. Purification of UDP-N-acetylglucosamine:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver
    • Bendiak B, Schachter H. Control of glycoprotein synthesis. Purification of UDP-N-acetylglucosamine:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver. J Biol Chem. 1987;262:5775–5783.
    • (1987) J Biol Chem. , vol.262 , pp. 5775-5783
    • Bendiak, B.1    Schachter, H.2
  • 54
  • 55
    • 49449087287 scopus 로고    scopus 로고
    • Glycosyltransferases: structures, functions, and mechanisms
    • Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem. 2008;77:521–555. doi:10.1146/annurev.biochem.76.061005.092322.
    • (2008) Annu Rev Biochem. , vol.77 , pp. 521-555
    • Lairson, L.L.1    Henrissat, B.2    Davies, G.J.3    Withers, S.G.4
  • 57
    • 0020484313 scopus 로고
    • Kinetic parameters of a beta-D-galactoside alpha 2 leads to 6 sialyltransferase from embryonic chicken liver
    • Bendiak B, Cook GM. Kinetic parameters of a beta-D-galactoside alpha 2 leads to 6 sialyltransferase from embryonic chicken liver. Eur J Biochem. 1982;128:355–362.
    • (1982) Eur J Biochem. , vol.128 , pp. 355-362
    • Bendiak, B.1    Cook, G.M.2
  • 58
    • 0032499784 scopus 로고    scopus 로고
    • Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins
    • Accessed August 26, 2013
    • Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A. 1998;95:6803–6808. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=22642&tool=pmcentrez&rendertype=abstract. Accessed August 26, 2013.
    • (1998) Proc Natl Acad Sci U S A. , vol.95 , pp. 6803-6808
    • Llopis, J.1    McCaffery, J.M.2    Miyawaki, A.3    Farquhar, M.G.4    Tsien, R.Y.5
  • 59
    • 0034843704 scopus 로고    scopus 로고
    • Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins
    • Axelsson MA, Karlsson NG, Steel DM, Ouwendijk J, Nilsson T, Hansson GC. Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins. Glycobiology. 2001;11:633–644. http://www.ncbi.nlm.nih.gov/pubmed/11479274.
    • (2001) Glycobiology. , vol.11 , pp. 633-644
    • Axelsson, M.A.1    Karlsson, N.G.2    Steel, D.M.3    Ouwendijk, J.4    Nilsson, T.5    Hansson, G.C.6
  • 60
    • 0034647915 scopus 로고    scopus 로고
    • Determinants of the pH of the golgi complex
    • Schapiro FB, Grinstein S. Determinants of the pH of the golgi complex. J Biol Chem. 2000;275:21025–21032. http://www.ncbi.nlm.nih.gov/pubmed/10748071.
    • (2000) J Biol Chem. , vol.275 , pp. 21025-21032
    • Schapiro, F.B.1    Grinstein, S.2
  • 61
    • 84860448067 scopus 로고    scopus 로고
    • Glycosylation and post-translational modification gene expression analysis by DNA microarrays for cultured mammalian cells
    • Brodsky AN, Caldwell M, Harcum SW. Glycosylation and post-translational modification gene expression analysis by DNA microarrays for cultured mammalian cells. Methods 2012;56:408–417. doi:10.1016/j.ymeth.2011.10.004.
    • (2012) Methods , vol.56 , pp. 408-417
    • Brodsky, A.N.1    Caldwell, M.2    Harcum, S.W.3
  • 62
    • 33644825884 scopus 로고    scopus 로고
    • Effects of elevated ammonium on glycosylation gene expression in CHO cells
    • Chen P, Harcum SW. Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab Eng. 2006;8:123–132. doi:10.1016/j.ymben.2005.10.002.
    • (2006) Metab Eng. , vol.8 , pp. 123-132
    • Chen, P.1    Harcum, S.W.2
  • 63
    • 84932199513 scopus 로고    scopus 로고
    • Understanding of altered N-glycosylation-related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting
    • Ha TK, Kim Y-G, Lee GM. Understanding of altered N-glycosylation-related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting. Biotechnol Bioeng. 2015;112:1583–1593.
    • (2015) Biotechnol Bioeng. , vol.112 , pp. 1583-1593
    • Ha, T.K.1    Kim, Y.-G.2    Lee, G.M.3
  • 65
    • 25444510601 scopus 로고    scopus 로고
    • Iterative approach to model identification of biological networks
    • Gadkar KG, Gunawan R, Doyle FJ. Iterative approach to model identification of biological networks. BMC Bioinf. 2005;6:155. doi:10.1186/1471-2105-6-155.
    • (2005) BMC Bioinf. , vol.6 , pp. 155
    • Gadkar, K.G.1    Gunawan, R.2    Doyle, F.J.3
  • 66
    • 79952564075 scopus 로고    scopus 로고
    • Understanding dynamics using sensitivity analysis: caveat and solution
    • Perumal TM, Gunawan R. Understanding dynamics using sensitivity analysis: caveat and solution. BMC Syst Biol. 2011;5:41. doi:10.1186/1752-0509-5-41.
    • (2011) BMC Syst Biol. , vol.5 , pp. 41
    • Perumal, T.M.1    Gunawan, R.2
  • 67
    • 70349978981 scopus 로고    scopus 로고
    • A mathematical model to derive N-glycan structures and cellular enzyme activities from mass spectrometric data
    • Krambeck FJ, Bennun SV, Narang S, Choi S, Yarema KJ, Betenbaugh MJ. A mathematical model to derive N-glycan structures and cellular enzyme activities from mass spectrometric data. Glycobiology. 2009;19:1163–1175. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2757573&tool=pmcentrez&rendertype=abstract.
    • (2009) Glycobiology. , vol.19 , pp. 1163-1175
    • Krambeck, F.J.1    Bennun, S.V.2    Narang, S.3    Choi, S.4    Yarema, K.J.5    Betenbaugh, M.J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.