메뉴 건너뛰기




Volumn 31, Issue 10, 2015, Pages 576-586

Single-Cell Analysis in Cancer Genomics

Author keywords

[No Author keywords available]

Indexed keywords

CANCER DIAGNOSIS; CANCER GENETICS; CANCER RESEARCH; GENETIC HETEROGENEITY; GENOMICS; HUMAN; MUTATION RATE; NONHUMAN; PRIORITY JOURNAL; PROTEOMICS; REVIEW; SINGLE CELL ANALYSIS; TRANSCRIPTOMICS; BIOLOGY; GENE EXPRESSION REGULATION; GENETICS; HUMAN GENOME; MUTATION; NEOPLASM; PATHOLOGY;

EID: 84943395444     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2015.07.003     Document Type: Review
Times cited : (157)

References (100)
  • 1
    • 84884407337 scopus 로고    scopus 로고
    • Tumour heterogeneity in the clinic
    • Bedard P.L., et al. Tumour heterogeneity in the clinic. Nature 2013, 501:355-364.
    • (2013) Nature , vol.501 , pp. 355-364
    • Bedard, P.L.1
  • 2
    • 79952370202 scopus 로고    scopus 로고
    • The cancer stem cell: premises, promises and challenges
    • Clevers H. The cancer stem cell: premises, promises and challenges. Nat. Med. 2011, 17:313-319.
    • (2011) Nat. Med. , vol.17 , pp. 313-319
    • Clevers, H.1
  • 3
    • 84949115417 scopus 로고    scopus 로고
    • Computational and experimental single cell biology techniques for the definition of cell type heterogeneity, interplay and intracellular dynamics
    • de Vargas Roditi L., Claassen M. Computational and experimental single cell biology techniques for the definition of cell type heterogeneity, interplay and intracellular dynamics. Curr. Opin. Biotechnol. 2014, 34C:9-15.
    • (2014) Curr. Opin. Biotechnol. , vol.34C , pp. 9-15
    • de Vargas Roditi, L.1    Claassen, M.2
  • 4
    • 84921301669 scopus 로고    scopus 로고
    • Unraveling cell populations in tumors by single-cell mass cytometry
    • Di Palma S., Bodenmiller B. Unraveling cell populations in tumors by single-cell mass cytometry. Curr. Opin. Biotechnol. 2015, 31:122-129.
    • (2015) Curr. Opin. Biotechnol. , vol.31 , pp. 122-129
    • Di Palma, S.1    Bodenmiller, B.2
  • 5
    • 84897139457 scopus 로고    scopus 로고
    • Every cell is special: genome-wide studies add a new dimension to single-cell biology
    • Junker J.P., van Oudenaarden A. Every cell is special: genome-wide studies add a new dimension to single-cell biology. Cell 2014, 157:8-11.
    • (2014) Cell , vol.157 , pp. 8-11
    • Junker, J.P.1    van Oudenaarden, A.2
  • 6
    • 85027920141 scopus 로고    scopus 로고
    • Cancer genomics: one cell at a time
    • Navin N.E. Cancer genomics: one cell at a time. Genome Biol. 2014, 15:452.
    • (2014) Genome Biol. , vol.15 , pp. 452
    • Navin, N.E.1
  • 7
    • 84945259685 scopus 로고    scopus 로고
    • A new toolbox for assessing single cells
    • Tsioris K., et al. A new toolbox for assessing single cells. Annu. Rev. Chem. Biomol. Eng. 2014, 5:455-477.
    • (2014) Annu. Rev. Chem. Biomol. Eng. , vol.5 , pp. 455-477
    • Tsioris, K.1
  • 8
    • 33847689843 scopus 로고    scopus 로고
    • A method for single-cell sorting and expansion of genetically modified human embryonic stem cells
    • Nicholas C.R., et al. A method for single-cell sorting and expansion of genetically modified human embryonic stem cells. Stem Cells Dev. 2007, 16:109-117.
    • (2007) Stem Cells Dev. , vol.16 , pp. 109-117
    • Nicholas, C.R.1
  • 9
    • 0037131390 scopus 로고    scopus 로고
    • Microfluidic large-scale integration
    • Thorsen T., et al. Microfluidic large-scale integration. Science 2002, 298:580-584.
    • (2002) Science , vol.298 , pp. 580-584
    • Thorsen, T.1
  • 10
    • 84885172419 scopus 로고    scopus 로고
    • Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire
    • Guo G., et al. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell 2013, 13:492-505.
    • (2013) Cell Stem Cell , vol.13 , pp. 492-505
    • Guo, G.1
  • 11
    • 77951912210 scopus 로고    scopus 로고
    • Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst
    • Guo G., et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 2010, 18:675-685.
    • (2010) Dev. Cell , vol.18 , pp. 675-685
    • Guo, G.1
  • 12
    • 84866369892 scopus 로고    scopus 로고
    • Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase
    • Buganim Y., et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 2012, 150:1209-1222.
    • (2012) Cell , vol.150 , pp. 1209-1222
    • Buganim, Y.1
  • 13
    • 83255177150 scopus 로고    scopus 로고
    • Single-cell dissection of transcriptional heterogeneity in human colon tumors
    • Dalerba P., et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol. 2011, 29:1120-1127.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 1120-1127
    • Dalerba, P.1
  • 14
    • 84876471008 scopus 로고    scopus 로고
    • Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis
    • Moignard V., et al. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat. Cell Biol. 2013, 15:363-372.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 363-372
    • Moignard, V.1
  • 15
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
    • Jaitin D.A., et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 2014, 343:776-779.
    • (2014) Science , vol.343 , pp. 776-779
    • Jaitin, D.A.1
  • 16
    • 84864880991 scopus 로고    scopus 로고
    • Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells
    • Ramskold D., et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 2012, 30:777-782.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 777-782
    • Ramskold, D.1
  • 17
    • 67349146589 scopus 로고    scopus 로고
    • MRNA-Seq whole-transcriptome analysis of a single cell
    • Tang F., et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 2009, 6:377-382.
    • (2009) Nat. Methods , vol.6 , pp. 377-382
    • Tang, F.1
  • 18
    • 79953288433 scopus 로고    scopus 로고
    • Development and applications of single-cell transcriptome analysis
    • Tang F., et al. Development and applications of single-cell transcriptome analysis. Nat. Methods 2011, 8:S6-S11.
    • (2011) Nat. Methods , vol.8 , pp. S6-S11
    • Tang, F.1
  • 19
    • 84883134780 scopus 로고    scopus 로고
    • Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing
    • Xue Z., et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 2013, 500:593-597.
    • (2013) Nature , vol.500 , pp. 593-597
    • Xue, Z.1
  • 20
    • 84892179132 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
    • Deng Q., et al. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 2014, 343:193-196.
    • (2014) Science , vol.343 , pp. 193-196
    • Deng, Q.1
  • 21
    • 84878997106 scopus 로고    scopus 로고
    • Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
    • Shalek A.K., et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 2013, 498:236-240.
    • (2013) Nature , vol.498 , pp. 236-240
    • Shalek, A.K.1
  • 22
    • 84903185013 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    • Shalek A.K., et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 2014, 510:363-369.
    • (2014) Nature , vol.510 , pp. 363-369
    • Shalek, A.K.1
  • 23
    • 84902668801 scopus 로고    scopus 로고
    • Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    • Patel A.P., et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014, 344:1396-1401.
    • (2014) Science , vol.344 , pp. 1396-1401
    • Patel, A.P.1
  • 24
    • 79955750055 scopus 로고    scopus 로고
    • Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
    • Bendall S.C., et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011, 332:687-696.
    • (2011) Science , vol.332 , pp. 687-696
    • Bendall, S.C.1
  • 25
    • 84862756888 scopus 로고    scopus 로고
    • Single-cell mass cytometry adapted to measurements of the cell cycle
    • Behbehani G.K., et al. Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 2012, 81:552-566.
    • (2012) Cytometry A , vol.81 , pp. 552-566
    • Behbehani, G.K.1
  • 26
    • 84866096861 scopus 로고    scopus 로고
    • Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators
    • Bodenmiller B., et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 2012, 30:858-867.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 858-867
    • Bodenmiller, B.1
  • 27
    • 84880280631 scopus 로고    scopus 로고
    • ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
    • Amir E.D., et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 2013, 31:545-552.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 545-552
    • Amir, E.D.1
  • 28
    • 84924365758 scopus 로고    scopus 로고
    • Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
    • Marco E., et al. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E5643-E5650.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E5643-E5650
    • Marco, E.1
  • 29
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell C., et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 2014, 32:381-386.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 30
    • 84924353105 scopus 로고    scopus 로고
    • Decoding the regulatory network of early blood development from single-cell gene expression measurements
    • Moignard V., et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 2015, 33:269-276.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 269-276
    • Moignard, V.1
  • 31
    • 84901835055 scopus 로고    scopus 로고
    • Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing
    • Yu C., et al. Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res. 2014, 24:701-712.
    • (2014) Cell Res. , vol.24 , pp. 701-712
    • Yu, C.1
  • 32
    • 79953766940 scopus 로고    scopus 로고
    • Tumour evolution inferred by single-cell sequencing
    • Navin N., et al. Tumour evolution inferred by single-cell sequencing. Nature 2011, 472:90-94.
    • (2011) Nature , vol.472 , pp. 90-94
    • Navin, N.1
  • 33
    • 84965186343 scopus 로고    scopus 로고
    • Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis
    • Saadatpour A., et al. Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. Genome Biol. 2014, 15:525.
    • (2014) Genome Biol. , vol.15 , pp. 525
    • Saadatpour, A.1
  • 34
    • 0001406390 scopus 로고
    • Electronic separation of biological cells by volume
    • Fulwyler M.J. Electronic separation of biological cells by volume. Science 1965, 150:910-911.
    • (1965) Science , vol.150 , pp. 910-911
    • Fulwyler, M.J.1
  • 35
    • 34547604468 scopus 로고    scopus 로고
    • Noise in gene expression determines cell fate in Bacillus subtilis
    • Maamar H., et al. Noise in gene expression determines cell fate in Bacillus subtilis. Science 2007, 317:526-529.
    • (2007) Science , vol.317 , pp. 526-529
    • Maamar, H.1
  • 36
    • 77249114260 scopus 로고    scopus 로고
    • Variability in gene expression underlies incomplete penetrance
    • Raj A., et al. Variability in gene expression underlies incomplete penetrance. Nature 2010, 463:913-918.
    • (2010) Nature , vol.463 , pp. 913-918
    • Raj, A.1
  • 37
    • 77955102352 scopus 로고    scopus 로고
    • Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells
    • Taniguchi Y., et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 2010, 329:533-538.
    • (2010) Science , vol.329 , pp. 533-538
    • Taniguchi, Y.1
  • 38
    • 84863229772 scopus 로고    scopus 로고
    • Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm
    • Hou Y., et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 2012, 148:873-885.
    • (2012) Cell , vol.148 , pp. 873-885
    • Hou, Y.1
  • 39
    • 84863230091 scopus 로고    scopus 로고
    • Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor
    • Xu X., et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 2012, 148:886-895.
    • (2012) Cell , vol.148 , pp. 886-895
    • Xu, X.1
  • 40
    • 84864258558 scopus 로고    scopus 로고
    • Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm
    • Wang J., et al. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 2012, 150:402-412.
    • (2012) Cell , vol.150 , pp. 402-412
    • Wang, J.1
  • 41
    • 84871461434 scopus 로고    scopus 로고
    • Genome-wide detection of single-nucleotide and copy-number variations of a single human cell
    • Zong C., et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 2012, 338:1622-1626.
    • (2012) Science , vol.338 , pp. 1622-1626
    • Zong, C.1
  • 42
    • 84893594630 scopus 로고    scopus 로고
    • Genome analyses of single human oocytes
    • Hou Y., et al. Genome analyses of single human oocytes. Cell 2013, 155:1492-1506.
    • (2013) Cell , vol.155 , pp. 1492-1506
    • Hou, Y.1
  • 43
    • 33645544764 scopus 로고    scopus 로고
    • An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis
    • Kurimoto K., et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 2006, 34:e42.
    • (2006) Nucleic Acids Res. , vol.34 , pp. e42
    • Kurimoto, K.1
  • 44
    • 84900529199 scopus 로고    scopus 로고
    • Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
    • Treutlein B., et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 2014, 509:371-375.
    • (2014) Nature , vol.509 , pp. 371-375
    • Treutlein, B.1
  • 45
    • 84866953427 scopus 로고    scopus 로고
    • CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification
    • Hashimshony T., et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012, 2:666-673.
    • (2012) Cell Rep. , vol.2 , pp. 666-673
    • Hashimshony, T.1
  • 46
    • 84924423596 scopus 로고    scopus 로고
    • Integrated genome and transcriptome sequencing of the same cell
    • Dey S.S., et al. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 2015, 33:285-289.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 285-289
    • Dey, S.S.1
  • 47
    • 84922311090 scopus 로고    scopus 로고
    • Combinatorial labeling of single cells for gene expression cytometry
    • Fan H.C., et al. Combinatorial labeling of single cells for gene expression cytometry. Science 2015, 347:1258367.
    • (2015) Science , vol.347 , pp. 1258367
    • Fan, H.C.1
  • 48
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein A.M., et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015, 161:1187-1201.
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1
  • 49
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko E.Z., et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015, 161:1202-1214.
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1
  • 50
    • 84880357794 scopus 로고    scopus 로고
    • Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue
    • Gerdes M.J., et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:11982-11987.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 11982-11987
    • Gerdes, M.J.1
  • 51
    • 84921492181 scopus 로고    scopus 로고
    • Spatially resolved transcriptomics and beyond
    • Crosetto N., et al. Spatially resolved transcriptomics and beyond. Nat Rev Genet 2015, 16:57-66.
    • (2015) Nat Rev Genet , vol.16 , pp. 57-66
    • Crosetto, N.1
  • 52
    • 84929166604 scopus 로고    scopus 로고
    • High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin
    • Achim K., et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat Biotechnol 2015, 33:503-509.
    • (2015) Nat Biotechnol , vol.33 , pp. 503-509
    • Achim, K.1
  • 53
    • 84928395184 scopus 로고    scopus 로고
    • Spatially resolved, highly multiplexed RNA profiling in single cells
    • aaa6090
    • Chen K.H., et al. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 2015, 348:aaa6090.
    • (2015) Science , vol.348
    • Chen, K.H.1
  • 54
    • 84897090228 scopus 로고    scopus 로고
    • Highly multiplexed subcellular RNA sequencing in situ
    • Lee J.H., et al. Highly multiplexed subcellular RNA sequencing in situ. Science 2014, 343:1360-1363.
    • (2014) Science , vol.343 , pp. 1360-1363
    • Lee, J.H.1
  • 55
    • 84897452794 scopus 로고    scopus 로고
    • Single-cell in situ RNA profiling by sequential hybridization
    • Lubeck E., et al. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 2014, 11:360-361.
    • (2014) Nat. Methods , vol.11 , pp. 360-361
    • Lubeck, E.1
  • 56
    • 84929151009 scopus 로고    scopus 로고
    • Spatial reconstruction of single-cell gene expression data
    • Satija R., et al. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol 2015, 33:495-502.
    • (2015) Nat. Biotechnol , vol.33 , pp. 495-502
    • Satija, R.1
  • 57
    • 84897954497 scopus 로고    scopus 로고
    • Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry
    • Giesen C., et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 2014, 11:417-422.
    • (2014) Nat. Methods , vol.11 , pp. 417-422
    • Giesen, C.1
  • 58
    • 84898402897 scopus 로고    scopus 로고
    • Multiplexed ion beam imaging of human breast tumors
    • Angelo M., et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 2014, 20:436-442.
    • (2014) Nat. Med. , vol.20 , pp. 436-442
    • Angelo, M.1
  • 59
    • 84895562012 scopus 로고    scopus 로고
    • From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing
    • Marinov G.K., et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014, 24:496-510.
    • (2014) Genome Res. , vol.24 , pp. 496-510
    • Marinov, G.K.1
  • 60
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell RNA-seq experiments
    • Brennecke P., et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 2013, 10:1093-1095.
    • (2013) Nat. Methods , vol.10 , pp. 1093-1095
    • Brennecke, P.1
  • 61
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grun D., et al. Validation of noise models for single-cell transcriptomics. Nat. Methods 2014, 11:637-640.
    • (2014) Nat. Methods , vol.11 , pp. 637-640
    • Grun, D.1
  • 62
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko P.V., et al. Bayesian approach to single-cell differential expression analysis. Nat. Methods 2014, 11:740-742.
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1
  • 63
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner F., et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 2015, 33:155-160.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 155-160
    • Buettner, F.1
  • 64
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle O., et al. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 2015, 16:133-145.
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 133-145
    • Stegle, O.1
  • 65
    • 84872195205 scopus 로고    scopus 로고
    • Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells
    • Livak K.J., et al. Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells. Methods 2013, 59:71-79.
    • (2013) Methods , vol.59 , pp. 71-79
    • Livak, K.J.1
  • 66
    • 84876799270 scopus 로고    scopus 로고
    • Normalization of mass cytometry data with bead standards
    • Finck R., et al. Normalization of mass cytometry data with bead standards. Cytometry A 2013, 83:483-494.
    • (2013) Cytometry A , vol.83 , pp. 483-494
    • Finck, R.1
  • 67
    • 80051786597 scopus 로고    scopus 로고
    • Single-cell copy number variation detection
    • Cheng J., et al. Single-cell copy number variation detection. Genome Biol. 2011, 12:R80.
    • (2011) Genome Biol. , vol.12 , pp. R80
    • Cheng, J.1
  • 68
    • 84861033754 scopus 로고    scopus 로고
    • Genome-wide copy number analysis of single cells
    • Baslan T., et al. Genome-wide copy number analysis of single cells. Nat. Protoc. 2012, 7:1024-1041.
    • (2012) Nat. Protoc. , vol.7 , pp. 1024-1041
    • Baslan, T.1
  • 69
    • 79952323055 scopus 로고    scopus 로고
    • Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations
    • Stahlberg A., et al. Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations. Nucleic Acids Res. 2011, 39:e24.
    • (2011) Nucleic Acids Res. , vol.39 , pp. e24
    • Stahlberg, A.1
  • 70
    • 84903721731 scopus 로고    scopus 로고
    • Probabilistic PCA of censored data: accounting for uncertainties in the visualization of high-throughput single-cell qPCR data
    • Buettner F., et al. Probabilistic PCA of censored data: accounting for uncertainties in the visualization of high-throughput single-cell qPCR data. Bioinformatics 2014, 30:1867-1875.
    • (2014) Bioinformatics , vol.30 , pp. 1867-1875
    • Buettner, F.1
  • 71
    • 84866463531 scopus 로고    scopus 로고
    • A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst
    • Buettner F., Theis F.J. A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst. Bioinformatics 2012, 28:i626-i632.
    • (2012) Bioinformatics , vol.28 , pp. i626-i632
    • Buettner, F.1    Theis, F.J.2
  • 72
    • 84919775831 scopus 로고    scopus 로고
    • Accelerating t-SNE using tree-based algorithms
    • van der Maaten L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 2014, 15:3221-3245.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 3221-3245
    • van der Maaten, L.1
  • 74
    • 84891956083 scopus 로고    scopus 로고
    • Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE)
    • Shekhar K., et al. Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc. Natl. Acad. Sci. U.S.A. 2014, 111:202-207.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 202-207
    • Shekhar, K.1
  • 75
    • 84931072284 scopus 로고    scopus 로고
    • Identification of cell types from single-cell transcriptomes using a novel clustering method
    • Xu C., Su Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 2015, 31:1974-1980.
    • (2015) Bioinformatics , vol.31 , pp. 1974-1980
    • Xu, C.1    Su, Z.2
  • 76
    • 84904063840 scopus 로고    scopus 로고
    • MCA: multiresolution correlation analysis, a graphical tool for subpopulation identification in single-cell gene expression data
    • Feigelman J., et al. MCA: multiresolution correlation analysis, a graphical tool for subpopulation identification in single-cell gene expression data. BMC Bioinformatics 2014, 15:240.
    • (2014) BMC Bioinformatics , vol.15 , pp. 240
    • Feigelman, J.1
  • 77
    • 84903703398 scopus 로고    scopus 로고
    • Automated identification of stratifying signatures in cellular subpopulations
    • Bruggner R.V., et al. Automated identification of stratifying signatures in cellular subpopulations. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E2770-E2777.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E2770-E2777
    • Bruggner, R.V.1
  • 78
    • 84890485060 scopus 로고    scopus 로고
    • Mixture models for single-cell assays with applications to vaccine studies
    • Finak G., et al. Mixture models for single-cell assays with applications to vaccine studies. Biostatistics 2014, 15:87-101.
    • (2014) Biostatistics , vol.15 , pp. 87-101
    • Finak, G.1
  • 80
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
    • Bendall S.C., et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 2014, 157:714-725.
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.C.1
  • 81
    • 80054768631 scopus 로고    scopus 로고
    • Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE
    • Qiu P., et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 2011, 29:886-891.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 886-891
    • Qiu, P.1
  • 82
    • 84919372228 scopus 로고    scopus 로고
    • Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics
    • Gawad C., et al. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:17947-17952.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 17947-17952
    • Gawad, C.1
  • 83
    • 23944458138 scopus 로고    scopus 로고
    • A general framework for weighted gene co-expression network analysis
    • Zhang B., Horvath S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005, 4:17.
    • (2005) Stat. Appl. Genet. Mol. Biol. , vol.4 , pp. 17
    • Zhang, B.1    Horvath, S.2
  • 84
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: an R package for weighted correlation network analysis
    • Langfelder P., Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008, 9:559.
    • (2008) BMC Bioinformatics , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2
  • 85
    • 84930227326 scopus 로고    scopus 로고
    • Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells
    • Luo Y., et al. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell 2015, 161:1175-1186.
    • (2015) Cell , vol.161 , pp. 1175-1186
    • Luo, Y.1
  • 86
    • 84886017663 scopus 로고    scopus 로고
    • Temporal dynamics and transcriptional control using single-cell gene expression analysis
    • Kouno T., et al. Temporal dynamics and transcriptional control using single-cell gene expression analysis. Genome Biol. 2013, 14:R118.
    • (2013) Genome Biol. , vol.14 , pp. R118
    • Kouno, T.1
  • 87
    • 84905457964 scopus 로고    scopus 로고
    • Modeling bi-modality improves characterization of cell cycle on gene expression in single cells
    • McDavid A., et al. Modeling bi-modality improves characterization of cell cycle on gene expression in single cells. PLoS Comput. Biol. 2014, 10:e1003696.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003696
    • McDavid, A.1
  • 88
    • 84923692243 scopus 로고    scopus 로고
    • Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells
    • Xu H., et al. Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells. PLoS Comput. Biol. 2014, 10:e1003777.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003777
    • Xu, H.1
  • 89
    • 84891354380 scopus 로고    scopus 로고
    • Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients
    • Ni X., et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:21083-21088.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 21083-21088
    • Ni, X.1
  • 90
    • 84900333051 scopus 로고    scopus 로고
    • Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer
    • Lohr J.G., et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat. Biotechnol. 2014, 32:479-484.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 479-484
    • Lohr, J.G.1
  • 91
    • 84906238686 scopus 로고    scopus 로고
    • Clonal evolution in breast cancer revealed by single nucleus genome sequencing
    • Wang Y., et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 2014, 512:155-160.
    • (2014) Nature , vol.512 , pp. 155-160
    • Wang, Y.1
  • 92
    • 84905690692 scopus 로고    scopus 로고
    • Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma
    • Melchor L., et al. Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia 2014, 28:1705-1715.
    • (2014) Leukemia , vol.28 , pp. 1705-1715
    • Melchor, L.1
  • 93
    • 84863697677 scopus 로고    scopus 로고
    • From single cells to deep phenotypes in cancer
    • Bendall S.C., Nolan G.P. From single cells to deep phenotypes in cancer. Nat Biotechnol 2012, 30:639-647.
    • (2012) Nat Biotechnol , vol.30 , pp. 639-647
    • Bendall, S.C.1    Nolan, G.P.2
  • 94
    • 84939802724 scopus 로고    scopus 로고
    • Detection of minimal residual disease in B lymphoblastic leukemia using viSNE
    • Published online May 14, 2015
    • DiGiuseppe J.A., et al. Detection of minimal residual disease in B lymphoblastic leukemia using viSNE. Cytometry B Clin. Cytom. 2015, Published online May 14, 2015. 10.1002/cyto.b.21252.
    • (2015) Cytometry B Clin. Cytom.
    • DiGiuseppe, J.A.1
  • 95
    • 84922629832 scopus 로고    scopus 로고
    • Quantitative single-cell approaches to stem cell research
    • Etzrodt M., et al. Quantitative single-cell approaches to stem cell research. Cell Stem Cell 2014, 15:546-558.
    • (2014) Cell Stem Cell , vol.15 , pp. 546-558
    • Etzrodt, M.1
  • 96
    • 84905405443 scopus 로고    scopus 로고
    • Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity
    • Smallwood S.A., et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 2014, 11:817-820.
    • (2014) Nat. Methods , vol.11 , pp. 817-820
    • Smallwood, S.A.1
  • 97
    • 84885617426 scopus 로고    scopus 로고
    • Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    • Nagano T., et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 2013, 502:59-64.
    • (2013) Nature , vol.502 , pp. 59-64
    • Nagano, T.1
  • 98
    • 84905030212 scopus 로고    scopus 로고
    • The DNA methylation landscape of human early embryos
    • Guo H., et al. The DNA methylation landscape of human early embryos. Nature 2014, 511:606-610.
    • (2014) Nature , vol.511 , pp. 606-610
    • Guo, H.1
  • 99
    • 84875703872 scopus 로고    scopus 로고
    • Single-cell dynamics of genome-nuclear lamina interactions
    • Kind J., et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell 2013, 153:178-192.
    • (2013) Cell , vol.153 , pp. 178-192
    • Kind, J.1
  • 100
    • 84937857359 scopus 로고    scopus 로고
    • Single-cell chromatin accessibility reveals principles of regulatory variation
    • Buenrostro J.D., et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 2015, 523:486-490.
    • (2015) Nature , vol.523 , pp. 486-490
    • Buenrostro, J.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.