메뉴 건너뛰기




Volumn 17, Issue 3, 2016, Pages 393-407

Gene set analysis approaches for RNA-seq data: Performance evaluation and application guideline

Author keywords

Competitive; Gene set analysis; RNA seq; Robustnes; Self contained

Indexed keywords

GENE INACTIVATION; PRACTICE GUIDELINE; REPRODUCIBILITY; SAMPLE SIZE; SELECTION BIAS; STATISTICAL MODEL; GENE EXPRESSION PROFILING; GENETICS; HIGH THROUGHPUT SEQUENCING; SEQUENCE ANALYSIS;

EID: 84971667844     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbv069     Document Type: Article
Times cited : (53)

References (62)
  • 1
    • 54049124109 scopus 로고    scopus 로고
    • The death of microarrays?
    • Ledford H. The death of microarrays? Nature 2008;455:847.
    • (2008) Nature , vol.455 , pp. 847
    • Ledford, H.1
  • 2
    • 65649083411 scopus 로고    scopus 로고
    • Estimating accuracy of RNA-Seq and microarrays with proteomics
    • Fu X, Fu N, Guo S, et al. Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics 2009;10:161.
    • (2009) BMC Genomics , vol.10 , pp. 161
    • Fu, X.1    Fu, N.2    Guo, S.3
  • 3
    • 56549101959 scopus 로고    scopus 로고
    • Alternative isoform regulation in human tissue transcriptomes
    • Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008;456:470-6.
    • (2008) Nature , vol.456 , pp. 470-476
    • Wang, E.T.1    Sandberg, R.2    Luo, S.3
  • 4
    • 57849109058 scopus 로고    scopus 로고
    • Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
    • Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 2008;322:1845-8.
    • (2008) Science , vol.322 , pp. 1845-1848
    • Core, L.J.1    Waterfall, J.J.2    Lis, J.T.3
  • 5
    • 46249096804 scopus 로고    scopus 로고
    • Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution
    • Wilhelm BT, Marguerat S, Watt S, et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 2008;453:1239-43.
    • (2008) Nature , vol.453 , pp. 1239-1243
    • Wilhelm, B.T.1    Marguerat, S.2    Watt, S.3
  • 6
    • 84965186421 scopus 로고    scopus 로고
    • LncRNA2Function: a comprehensive resource for functional investigation of human lncRNAs based on RNA-seq data
    • Jiang Q, Ma R, Wang J, et al. LncRNA2Function: a comprehensive resource for functional investigation of human lncRNAs based on RNA-seq data. BMC Genomics 2015;16(Suppl 3):S2.
    • (2015) BMC Genomics , vol.16 , pp. S2
    • Jiang, Q.1    Ma, R.2    Wang, J.3
  • 7
    • 0032568054 scopus 로고    scopus 로고
    • Gene chips: array of hope for understanding gene regulation
    • Johnston M. Gene chips: array of hope for understanding gene regulation. Curr Biol 1998;8:R171-4.
    • (1998) Curr Biol , vol.8 , pp. R171-R174
    • Johnston, M.1
  • 8
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139-40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 9
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010;11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 10
    • 84886557480 scopus 로고    scopus 로고
    • Finding consistent patterns: a nonparametric approach for identifying differential expression in RNASeq data
    • Li J, Tibshirani R. Finding consistent patterns: a nonparametric approach for identifying differential expression in RNASeq data. Stat Methods Med Res 2013;22:519-36.
    • (2013) Stat Methods Med Res , vol.22 , pp. 519-536
    • Li, J.1    Tibshirani, R.2
  • 11
    • 84896735766 scopus 로고    scopus 로고
    • Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, et al. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014;15:R29.
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3
  • 12
    • 33644872577 scopus 로고    scopus 로고
    • Limma: linear models for microarray data
    • G Smyth, R Gentleman, V Carey, et al. (eds). New York: Springer
    • Smyth G. Limma: linear models for microarray data. In: G Smyth, R Gentleman, V Carey, et al. (eds). Bioinformatics and Computational Biology Solutions using R and Bioconductor. New York: Springer, 2005, 397-420.
    • (2005) Bioinformatics and Computational Biology Solutions using R and Bioconductor , pp. 397-420
    • Smyth, G.1
  • 13
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57.
    • (2009) Nat Protoc , vol.4 , pp. 44-57
    • Huang da, W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 14
    • 0038054341 scopus 로고    scopus 로고
    • PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
    • Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003;34:267-73.
    • (2003) Nat Genet , vol.34 , pp. 267-273
    • Mootha, V.K.1    Lindgren, C.M.2    Eriksson, K.F.3
  • 15
    • 69849105388 scopus 로고    scopus 로고
    • Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets
    • Glazko GV, Emmert-Streib F. Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics 2009;25:2348-54.
    • (2009) Bioinformatics , vol.25 , pp. 2348-2354
    • Glazko, G.V.1    Emmert-Streib, F.2
  • 16
    • 79958152651 scopus 로고    scopus 로고
    • Pathway analysis of expression data: deciphering functional building blocks of complex diseases
    • Emmert-Streib F, Glazko GV. Pathway analysis of expression data: deciphering functional building blocks of complex diseases. PLoS Comput Biol 2011;7:e1002053.
    • (2011) PLoS Comput Biol , vol.7
    • Emmert-Streib, F.1    Glazko, G.V.2
  • 17
    • 77953212372 scopus 로고    scopus 로고
    • Gene ontology analysis for RNA-seq: accounting for selection bias
    • Young MD, Wakefield MJ, Smyth GK, et al. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 2010;11:R14.
    • (2010) Genome Biol , vol.11 , pp. R14
    • Young, M.D.1    Wakefield, M.J.2    Smyth, G.K.3
  • 18
    • 84926507971 scopus 로고    scopus 로고
    • limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015;43:e47.
    • (2015) Nucleic Acids Res , vol.43 , pp. e47
    • Ritchie, M.E.1    Phipson, B.2    Wu, D.3
  • 19
    • 63449107173 scopus 로고    scopus 로고
    • A general modular framework for gene set enrichment analysis
    • Ackermann M, Strimmer K. A general modular framework for gene set enrichment analysis. BMC Bioinformatics 2009;10:47.
    • (2009) BMC Bioinformatics , vol.10 , pp. 47
    • Ackermann, M.1    Strimmer, K.2
  • 20
    • 58549112996 scopus 로고    scopus 로고
    • Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists
    • Huang daW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37: 1-13.
    • (2009) Nucleic Acids Res , vol.37 , pp. 1-13
    • Huang da, W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 22
    • 34249663294 scopus 로고    scopus 로고
    • Analyzing gene expression data in terms of gene sets: methodological issues
    • Goeman JJ, Buhlmann P. Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 2007;23:980-7.
    • (2007) Bioinformatics , vol.23 , pp. 980-987
    • Goeman, J.J.1    Buhlmann, P.2
  • 23
    • 26444608611 scopus 로고    scopus 로고
    • Discovering statistically significant pathways in expression profiling studies
    • Tian L, Greenberg SA, Kong SW, et al. Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci USA 2005;102:13544-9.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 13544-13549
    • Tian, L.1    Greenberg, S.A.2    Kong, S.W.3
  • 24
    • 84870441671 scopus 로고    scopus 로고
    • Gene set analysis for self-contained tests: complex null and specific alternative hypotheses
    • Rahmatallah Y, Emmert-Streib F, Glazko G. Gene set analysis for self-contained tests: complex null and specific alternative hypotheses. Bioinformatics 2012;28:3073-80.
    • (2012) Bioinformatics , vol.28 , pp. 3073-3080
    • Rahmatallah, Y.1    Emmert-Streib, F.2    Glazko, G.3
  • 25
    • 84923922737 scopus 로고    scopus 로고
    • Comparative evaluation of gene set analysis approaches for RNA-Seq data
    • Rahmatallah Y, Emmert-Streib F, Glazko G. Comparative evaluation of gene set analysis approaches for RNA-Seq data. BMC Bioinformatics 2014;15:397.
    • (2014) BMC Bioinformatics , vol.15 , pp. 397
    • Rahmatallah, Y.1    Emmert-Streib, F.2    Glazko, G.3
  • 26
    • 65549126939 scopus 로고    scopus 로고
    • Gene set internal coherence in the context of functional profiling
    • Montaner D, Minguez P, Al-Shahrour F, et al. Gene set internal coherence in the context of functional profiling. BMC Genomics 2009;10:197.
    • (2009) BMC Genomics , vol.10 , pp. 197
    • Montaner, D.1    Minguez, P.2    Al-Shahrour, F.3
  • 27
    • 77957889565 scopus 로고    scopus 로고
    • Heading down the wrong pathway: on the influence of correlation within gene sets
    • Gatti DM, Barry WT, Nobel AB, et al. Heading down the wrong pathway: on the influence of correlation within gene sets. BMC Genomics 2010;11:574.
    • (2010) BMC Genomics , vol.11 , pp. 574
    • Gatti, D.M.1    Barry, W.T.2    Nobel, A.B.3
  • 28
    • 84862105789 scopus 로고    scopus 로고
    • Assessment method for a power analysis to identify differentially expressed pathways
    • Tripathi S, Emmert-Streib F. Assessment method for a power analysis to identify differentially expressed pathways. PLoS One 2012;7:e37510.
    • (2012) PLoS One , vol.7
    • Tripathi, S.1    Emmert-Streib, F.2
  • 29
    • 79952334778 scopus 로고    scopus 로고
    • Linear combination test for hierarchical gene set analysis
    • Wang X, Dinu I, Liu W, et al. Linear combination test for hierarchical gene set analysis. Stat Appl Genet Mol Biol 2011;10:Article 13.
    • (2011) Stat Appl Genet Mol Biol , vol.10
    • Wang, X.1    Dinu, I.2    Liu, W.3
  • 30
    • 84872202078 scopus 로고    scopus 로고
    • GSVA: gene set variation analysis for microarray and RNA-seq data
    • Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 2013;14:7.
    • (2013) BMC Bioinformatics , vol.14 , pp. 7
    • Hanzelmann, S.1    Castelo, R.2    Guinney, J.3
  • 31
    • 60149104156 scopus 로고    scopus 로고
    • A statistical framework for testing functional categories in microarray data
    • Barry WT, Nobel AB, Wright FA. A statistical framework for testing functional categories in microarray data. Ann Appl Stat 2008;2:286-315.
    • (2008) Ann Appl Stat , vol.2 , pp. 286-315
    • Barry, W.T.1    Nobel, A.B.2    Wright, F.A.3
  • 32
    • 43149116763 scopus 로고    scopus 로고
    • Gene-set approach for expression pattern analysis
    • Nam D, Kim SY. Gene-set approach for expression pattern analysis. Brief Bioinform 2008;9:189-97.
    • (2008) Brief Bioinform , vol.9 , pp. 189-197
    • Nam, D.1    Kim, S.Y.2
  • 33
    • 84904723024 scopus 로고    scopus 로고
    • Gene set analysis methods: statistical models andmethodological differences
    • Maciejewski H. Gene set analysis methods: statistical models andmethodological differences. Brief Bioinform 2014;15:504-18.
    • (2014) Brief Bioinform , vol.15 , pp. 504-518
    • Maciejewski, H.1
  • 34
    • 84958684419 scopus 로고    scopus 로고
    • The limitations of simple gene set enrichment analysis assuming gene independence
    • 0962280212460441
    • Tamayo P, Steinhardt G, Liberzon A, et al. The limitations of simple gene set enrichment analysis assuming gene independence. Stat Methods Med Res 2012;0962280212460441.
    • (2012) Stat Methods Med Res
    • Tamayo, P.1    Steinhardt, G.2    Liberzon, A.3
  • 35
    • 84896716464 scopus 로고    scopus 로고
    • A comparison of gene set analysis methods in terms of sensitivity, prioritization and specificity
    • Tarca AL, Bhatti G, Romero R. A comparison of gene set analysis methods in terms of sensitivity, prioritization and specificity. PLoS One 2013;8:e79217.
    • (2013) PLoS One , vol.8
    • Tarca, A.L.1    Bhatti, G.2    Romero, R.3
  • 36
    • 84861123691 scopus 로고    scopus 로고
    • Ten years of pathway analysis: current approaches and outstanding challenges
    • Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 2012;8:e1002375.
    • (2012) PLoS Comput Biol , vol.8
    • Khatri, P.1    Sirota, M.2    Butte, A.J.3
  • 37
    • 84876544061 scopus 로고    scopus 로고
    • Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential
    • Tripathi S, Glazko GV, Emmert-Streib F. Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential. Nucleic Acids Res 2013;41:e82.
    • (2013) Nucleic Acids Res , vol.41 , pp. e82
    • Tripathi, S.1    Glazko, G.V.2    Emmert-Streib, F.3
  • 38
    • 84876153678 scopus 로고    scopus 로고
    • Gene set enrichment analysis of RNA-Seq data: integrating differential expression and splicing
    • Wang X, Cairns MJ. Gene set enrichment analysis of RNA-Seq data: integrating differential expression and splicing. BMC Bioinformatics 2013;14(Suppl 5):S16.
    • (2013) BMC Bioinformatics , vol.14 , pp. S16
    • Wang, X.1    Cairns, M.J.2
  • 39
    • 34547483895 scopus 로고    scopus 로고
    • Improving gene set analysis of microarray data by SAM-GS
    • Dinu I, Potter JD, Mueller T, et al. Improving gene set analysis of microarray data by SAM-GS. BMC Bioinformatics 2007;8:242.
    • (2007) BMC Bioinformatics , vol.8 , pp. 242
    • Dinu, I.1    Potter, J.D.2    Mueller, T.3
  • 40
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005;102:15545-50.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 15545-15550
    • Subramanian, A.1    Tamayo, P.2    Mootha, V.K.3
  • 41
    • 70449091786 scopus 로고    scopus 로고
    • Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
    • Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009;462:108-12.
    • (2009) Nature , vol.462 , pp. 108-112
    • Barbie, D.A.1    Tamayo, P.2    Boehm, J.S.3
  • 42
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008;5:621-8.
    • (2008) Nat Methods , vol.5 , pp. 621-628
    • Mortazavi, A.1    Williams, B.A.2    McCue, K.3
  • 43
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010;11:R25.
    • (2010) Genome Biol , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 44
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard JH, Purdom E, Hansen KD, et al. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010;11:94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3
  • 45
    • 84858068675 scopus 로고    scopus 로고
    • Removing technical variability in RNA-seq data using conditional quantile normalization
    • Hansen KD, Irizarry RA, Wu Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 2012;13:204-16.
    • (2012) Biostatistics , vol.13 , pp. 204-216
    • Hansen, K.D.1    Irizarry, R.A.2    Wu, Z.3
  • 46
    • 84885440313 scopus 로고    scopus 로고
    • Soft truncation thresholding for gene set analysis of RNA-seq data: application to a vaccine study
    • Fridley BL, Jenkins GD, Grill DE, et al. Soft truncation thresholding for gene set analysis of RNA-seq data: application to a vaccine study. Sci Rep 2013;3:2898.
    • (2013) Sci Rep , vol.3 , pp. 2898
    • Fridley, B.L.1    Jenkins, G.D.2    Grill, D.E.3
  • 49
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001;98:5116-21.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 50
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    • Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 2001;17: 509-19.
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 51
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004;3:3.
    • (2004) Stat Appl Genet Mol Biol , vol.3 , pp. 3
    • Smyth, G.K.1
  • 52
    • 38949165049 scopus 로고    scopus 로고
    • Comparative evaluation of gene-set analysis methods
    • Liu Q, Dinu I, Adewale AJ, et al. Comparative evaluation of gene-set analysis methods. BMC Bioinformatics 2007;8:431.
    • (2007) BMC Bioinformatics , vol.8 , pp. 431
    • Liu, Q.1    Dinu, I.2    Adewale, A.J.3
  • 53
    • 0000673504 scopus 로고
    • Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests
    • Friedman JH, Rafsky C. Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests. Ann Stat 1979;7:697-717.
    • (1979) Ann Stat , vol.7 , pp. 697-717
    • Friedman, J.H.1    Rafsky, C.2
  • 54
    • 0346973088 scopus 로고    scopus 로고
    • On a new multivariate two-sample test
    • Baringhaus L, Franz C. On a new multivariate two-sample test. J Multivar Anal 2004;88:190-206.
    • (2004) J Multivar Anal , vol.88 , pp. 190-206
    • Baringhaus, L.1    Franz, C.2
  • 55
    • 35348826675 scopus 로고    scopus 로고
    • A multivariate extension of the gene set enrichment analysis
    • Klebanov L, Glazko G, Salzman P, et al. A multivariate extension of the gene set enrichment analysis. J Bioinform Comput Biol 2007;5:1139-53.
    • (2007) J Bioinform Comput Biol , vol.5 , pp. 1139-1153
    • Klebanov, L.1    Glazko, G.2    Salzman, P.3
  • 56
    • 77955889132 scopus 로고    scopus 로고
    • ROAST: rotation gene set tests for complex microarray experiments
    • Wu D, Lim E, Vaillant F, et al. ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics 2010;26:2176-82.
    • (2010) Bioinformatics , vol.26 , pp. 2176-2182
    • Wu, D.1    Lim, E.2    Vaillant, F.3
  • 57
    • 3042745465 scopus 로고    scopus 로고
    • Statistical concerns about the GSEA procedure
    • Author reply 663
    • Damian D, Gorfine M. Statistical concerns about the GSEA procedure. Nat Genet 2004;36:Author reply 663.
    • (2004) Nat Genet , vol.36
    • Damian, D.1    Gorfine, M.2
  • 58
    • 84902436453 scopus 로고    scopus 로고
    • SeqGSEA: a Bioconductor package for gene set enrichment analysis of RNA-Seq data integrating differential expression and splicing
    • Wang X, Cairns MJ. SeqGSEA: a Bioconductor package for gene set enrichment analysis of RNA-Seq data integrating differential expression and splicing. Bioinformatics 2014;30:1777-9.
    • (2014) Bioinformatics , vol.30 , pp. 1777-1779
    • Wang, X.1    Cairns, M.J.2
  • 59
    • 77950460661 scopus 로고    scopus 로고
    • Understanding mechanisms underlying human gene expression variation with RNA sequencing
    • Pickrell JK, Marioni JC, Pai AA, et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 2010;464:768-772.
    • (2010) Nature , vol.464 , pp. 768-772
    • Pickrell, J.K.1    Marioni, J.C.2    Pai, A.A.3
  • 61
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • Robinson MD, Smyth GK. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 2007;23:2881-7.
    • (2007) Bioinformatics , vol.23 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 62
    • 84965185545 scopus 로고    scopus 로고
    • An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era
    • Su Z, Fang H, Hong H, et al. An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era. Genome Biol 2014;15:523.
    • (2014) Genome Biol , vol.15 , pp. 523
    • Su, Z.1    Fang, H.2    Hong, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.