메뉴 건너뛰기




Volumn 352, Issue 6291, 2016, Pages

Transcriptional termination in mammals: Stopping the RNA polymerase II juggernaut

Author keywords

[No Author keywords available]

Indexed keywords

RNA POLYMERASE II; CHROMATIN; MESSENGER RNA; POLYADENYLIC ACID;

EID: 84975136133     PISSN: 00368075     EISSN: 10959203     Source Type: Journal    
DOI: 10.1126/science.aad9926     Document Type: Review
Times cited : (297)

References (97)
  • 1
    • 0022555852 scopus 로고
    • Transcription termination and the regulation of gene expression
    • pmid: 3527045
    • T. Platt, Transcription termination and the regulation of gene expression. Annu. Rev. Biochem. 55, 339-372 (1986). doi: 10.1146/annurev.bi.55.070186.002011; pmid: 3527045
    • (1986) Annu. Rev. Biochem. , vol.55 , pp. 339-372
    • Platt, T.1
  • 2
    • 37349115934 scopus 로고    scopus 로고
    • An allosteric path to transcription termination
    • pmid: 18158897
    • V. Epshtein, C. J. Cardinale, A. E. Ruckenstein, S. Borukhov, E. Nudler, An allosteric path to transcription termination. Mol. Cell 28, 991-1001 (2007). doi: 10.1016/j.molcel.2007.10.011; pmid: 18158897
    • (2007) Mol. Cell , vol.28 , pp. 991-1001
    • Epshtein, V.1    Cardinale, C.J.2    Ruckenstein, A.E.3    Borukhov, S.4    Nudler, E.5
  • 3
    • 0026035521 scopus 로고
    • Preventing the synthesis of unused transcripts by Rho factor
    • pmid: 2004415
    • J. P. Richardson, Preventing the synthesis of unused transcripts by Rho factor. Cell 64, 1047-1049 (1991). doi: 10.1016/0092-8674(91)90257-Y; pmid: 2004415
    • (1991) Cell , vol.64 , pp. 1047-1049
    • Richardson, J.P.1
  • 4
    • 74549191169 scopus 로고    scopus 로고
    • An allosteric mechanism of Rho-dependent transcription termination
    • pmid: 20075920
    • V. Epshtein, D. Dutta, J. Wade, E. Nudler, An allosteric mechanism of Rho-dependent transcription termination. Nature 463, 245-249 (2010). doi: 10.1038/nature08669; pmid: 20075920
    • (2010) Nature , vol.463 , pp. 245-249
    • Epshtein, V.1    Dutta, D.2    Wade, J.3    Nudler, E.4
  • 5
    • 0035984639 scopus 로고    scopus 로고
    • Regulation by transcription attenuation in bacteria: How RNA provides instructions for transcription termination/antitermination decisions
    • pmid: 12210530
    • T. M. Henkin, C. Yanofsky, Regulation by transcription attenuation in bacteria: How RNA provides instructions for transcription termination/antitermination decisions. BioEssays 24, 700-707 (2002). doi: 10.1002/bies.10125; pmid: 12210530
    • (2002) BioEssays , vol.24 , pp. 700-707
    • Henkin, T.M.1    Yanofsky, C.2
  • 6
    • 84953351897 scopus 로고    scopus 로고
    • The specificity of long noncoding RNA expression
    • pmid: 26297315
    • B. S. Gloss, M. E. Dinger, The specificity of long noncoding RNA expression. Biochim. Biophys. Acta 1859, 16-22 (2015). doi: 10.1016/j.bbagrm.2015.08.005; pmid: 26297315
    • (2015) Biochim. Biophys. Acta , vol.1859 , pp. 16-22
    • Gloss, B.S.1    Dinger, M.E.2
  • 7
    • 0032541403 scopus 로고    scopus 로고
    • Poly(A) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae
    • pmid: 9707436
    • I. H. Greger, N. J. Proudfoot, Poly(A) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae. EMBO J. 17, 4771-4779 (1998). doi: 10.1093/emboj/17.16.4771; pmid: 9707436
    • (1998) EMBO J. , vol.17 , pp. 4771-4779
    • Greger, I.H.1    Proudfoot, N.J.2
  • 8
    • 19444377759 scopus 로고    scopus 로고
    • Transcriptional interference - A crash course
    • pmid: 15922833
    • K. E. Shearwin, B. P. Callen, J. B. Egan, Transcriptional interference - a crash course. Trends Genet. 21, 339-345 (2005). doi: 10.1016/j.tig.2005.04.009; pmid: 15922833
    • (2005) Trends Genet. , vol.21 , pp. 339-345
    • Shearwin, K.E.1    Callen, B.P.2    Egan, J.B.3
  • 9
    • 40749094018 scopus 로고    scopus 로고
    • Cohesin complex promotes transcriptional termination between convergent genes in S. pombe
    • pmid: 18358811
    • M. Gullerova, N. J. Proudfoot, Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132, 983-995 (2008). doi: 10.1016/j.cell.2008.02.040; pmid: 18358811
    • (2008) Cell , vol.132 , pp. 983-995
    • Gullerova, M.1    Proudfoot, N.J.2
  • 10
    • 0037173089 scopus 로고    scopus 로고
    • Transcriptional collision between convergent genes in budding yeast
    • pmid: 12077310
    • E. M. Prescott, N. J. Proudfoot, Transcriptional collision between convergent genes in budding yeast. Proc. Natl. Acad. Sci. U.S.A. 99, 8796-8801 (2002). doi: 10.1073/pnas.132270899; pmid: 12077310
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 8796-8801
    • Prescott, E.M.1    Proudfoot, N.J.2
  • 11
    • 84869083002 scopus 로고    scopus 로고
    • RNA polymerase II collision interrupts convergent transcription
    • pmid: 23041286
    • D. J. Hobson, W. Wei, L. M. Steinmetz, J. Q. Svejstrup, RNA polymerase II collision interrupts convergent transcription. Mol. Cell 48, 365-374 (2012). doi: 10.1016/j.molcel.2012.08.027; pmid: 23041286
    • (2012) Mol. Cell , vol.48 , pp. 365-374
    • Hobson, D.J.1    Wei, W.2    Steinmetz, L.M.3    Svejstrup, J.Q.4
  • 12
    • 84928551340 scopus 로고    scopus 로고
    • Replication stress and cancer
    • pmid: 25907220
    • H. Gaillard, T. García-Muse, A. Aguilera, Replication stress and cancer. Nat. Rev. Cancer 15, 276-289 (2015). doi: 10.1038/nrc3916; pmid: 25907220
    • (2015) Nat. Rev. Cancer , vol.15 , pp. 276-289
    • Gaillard, H.1    García-Muse, T.2    Aguilera, A.3
  • 13
    • 84926304438 scopus 로고    scopus 로고
    • Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs
    • pmid:25730776
    • A. Dhir, S. Dhir, N. J. Proudfoot, C. L. Jopling, Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat. Struct. Mol. Biol. 22, 319-327 (2015). doi: 10.1038/nsmb.2982; pmid:25730776
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 319-327
    • Dhir, A.1    Dhir, S.2    Proudfoot, N.J.3    Jopling, C.L.4
  • 14
    • 57849109058 scopus 로고    scopus 로고
    • Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
    • pmid: 19056941
    • L. J. Core, J. J. Waterfall, J. T. Lis, Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845-1848 (2008). doi: 10.1126/science.1162228; pmid: 19056941
    • (2008) Science , vol.322 , pp. 1845-1848
    • Core, L.J.1    Waterfall, J.J.2    Lis, J.T.3
  • 15
    • 84928386012 scopus 로고    scopus 로고
    • Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing
    • pmid: 25910207
    • T. Nojima et al., Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing. Cell 161, 526-540 (2015). doi: 10.1016/j.cell.2015.03.027; pmid: 25910207
    • (2015) Cell , vol.161 , pp. 526-540
    • Nojima, T.1
  • 16
    • 84857423235 scopus 로고    scopus 로고
    • Conservation between the RNA polymerase I, II, and III transcription initiation machineries
    • pmid: 22365827
    • A. Vannini, P. Cramer, Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol. Cell 45, 439-446 (2012). doi: 10.1016/j.molcel.2012.01.023; pmid: 22365827
    • (2012) Mol. Cell , vol.45 , pp. 439-446
    • Vannini, A.1    Cramer, P.2
  • 17
    • 0031037856 scopus 로고    scopus 로고
    • The C-terminal domain of RNA polymerase II couples mRNA processing to transcription
    • pmid: 9002523
    • S. McCracken et al., The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357-361 (1997). doi: 10.1038/385357a0; pmid: 9002523
    • (1997) Nature , vol.385 , pp. 357-361
    • McCracken, S.1
  • 18
    • 84872405841 scopus 로고    scopus 로고
    • Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription
    • pmid: 22982363
    • M. Heidemann, C. Hintermair, K. Voß, D. Eick, Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim. Biophys. Acta 1829, 55-62 (2013). doi: 10.1016/j.bbagrm.2012.08.013; pmid: 22982363
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 55-62
    • Heidemann, M.1    Hintermair, C.2    Voß, K.3    Eick, D.4
  • 19
    • 84867160564 scopus 로고    scopus 로고
    • The RNA polymerase II CTD coordinates transcription and RNA processing
    • pmid: 23028141
    • J. P. Hsin, J. L. Manley, The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 26, 2119-2137 (2012). doi: 10.1101/gad.200303.112; pmid: 23028141
    • (2012) Genes Dev. , vol.26 , pp. 2119-2137
    • Hsin, J.P.1    Manley, J.L.2
  • 20
    • 84938741134 scopus 로고    scopus 로고
    • Poly(A) signal-dependent transcription termination occurs through a conformational change mechanism that does not require cleavage at the poly(A) site
    • pmid:26166703
    • H. Zhang, F. Rigo, H. G. Martinson, Poly(A) signal-dependent transcription termination occurs through a conformational change mechanism that does not require cleavage at the poly(A) site. Mol. Cell 59, 437-448 (2015). doi: 10.1016/j.molcel.2015.06.008; pmid:26166703
    • (2015) Mol. Cell , vol.59 , pp. 437-448
    • Zhang, H.1    Rigo, F.2    Martinson, H.G.3
  • 21
    • 84860338675 scopus 로고    scopus 로고
    • R loops: From transcription byproducts to threats to genome stability
    • pmid: 22541554
    • A. Aguilera, T. García-Muse, R loops: From transcription byproducts to threats to genome stability. Mol. Cell 46, 115-124 (2012). doi: 10.1016/j.molcel.2012.04.009; pmid: 22541554
    • (2012) Mol. Cell , vol.46 , pp. 115-124
    • Aguilera, A.1    García-Muse, T.2
  • 22
    • 84903795949 scopus 로고    scopus 로고
    • A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression
    • pmid: 24990962
    • K. Skourti-Stathaki, N. J. Proudfoot, A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 28, 1384-1396 (2014). doi: 10.1101/gad.242990.114; pmid: 24990962
    • (2014) Genes Dev. , vol.28 , pp. 1384-1396
    • Skourti-Stathaki, K.1    Proudfoot, N.J.2
  • 23
    • 0036645687 scopus 로고    scopus 로고
    • The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability
    • pmid: 12093753
    • S. Jimeno, A. G. Rondón, R. Luna, A. Aguilera, The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J. 21, 3526-3535 (2002). doi: 10.1093/emboj/cdf335; pmid: 12093753
    • (2002) EMBO J. , vol.21 , pp. 3526-3535
    • Jimeno, S.1    Rondón, A.G.2    Luna, R.3    Aguilera, A.4
  • 24
    • 23744455164 scopus 로고    scopus 로고
    • Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability
    • pmid: 16096057
    • X. Li, J. L. Manley, Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365-378 (2005). doi: 10.1016/j.cell.2005.06.008; pmid: 16096057
    • (2005) Cell , vol.122 , pp. 365-378
    • Li, X.1    Manley, J.L.2
  • 25
    • 78650727733 scopus 로고    scopus 로고
    • Yeast Sen1 helicase protects the genome from transcription-associated instability
    • pmid: 21211720
    • H. E. Mischo et al., Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol. Cell 41, 21-32 (2011). doi: 10.1016/j.molcel.2010.12.007; pmid: 21211720
    • (2011) Mol. Cell , vol.41 , pp. 21-32
    • Mischo, H.E.1
  • 26
    • 79959345878 scopus 로고    scopus 로고
    • Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination
    • pmid: 21700224
    • K. Skourti-Stathaki, N. J. Proudfoot, N. Gromak, Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794-805 (2011). doi: 10.1016/j.molcel.2011.04.026; pmid: 21700224
    • (2011) Mol. Cell , vol.42 , pp. 794-805
    • Skourti-Stathaki, K.1    Proudfoot, N.J.2    Gromak, N.3
  • 27
    • 84953897634 scopus 로고    scopus 로고
    • SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination
    • pmid: 26700805
    • D. Y. Zhao et al., SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature 529, 48-53 (2016). doi: 10.1038/nature16469; pmid: 26700805
    • (2016) Nature , vol.529 , pp. 48-53
    • Zhao, D.Y.1
  • 28
    • 84923848772 scopus 로고    scopus 로고
    • BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair
    • pmid: 25699710
    • E. Hatchi et al., BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol. Cell 57, 636-647 (2015). doi: 10.1016/j.molcel.2015.01.011; pmid: 25699710
    • (2015) Mol. Cell , vol.57 , pp. 636-647
    • Hatchi, E.1
  • 29
    • 84923172195 scopus 로고    scopus 로고
    • R-loops induce repressive chromatin marks over mammalian gene terminators
    • pmid:25296254
    • K. Skourti-Stathaki, K. Kamieniarz-Gdula, N. J. Proudfoot, R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516, 436-439 (2014). doi: 10.1038/nature13787; pmid:25296254
    • (2014) Nature , vol.516 , pp. 436-439
    • Skourti-Stathaki, K.1    Kamieniarz-Gdula, K.2    Proudfoot, N.J.3
  • 30
    • 77954759085 scopus 로고    scopus 로고
    • The interface between transcription and mechanisms maintaining genome integrity
    • pmid: 20194025
    • J. Q. Svejstrup, The interface between transcription and mechanisms maintaining genome integrity. Trends Biochem. Sci. 35, 333-338 (2010). doi: 10.1016/j.tibs.2010.02.001; pmid: 20194025
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 333-338
    • Svejstrup, J.Q.1
  • 31
    • 84941937809 scopus 로고    scopus 로고
    • R loops: New modulators of genome dynamics and function
    • pmid: 26370899
    • J. M. Santos-Pereira, A. Aguilera, R loops: New modulators of genome dynamics and function. Nat. Rev. Genet. 16, 583-597 (2015). doi: 10.1038/nrg3961; pmid: 26370899
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 583-597
    • Santos-Pereira, J.M.1    Aguilera, A.2
  • 32
    • 84255198334 scopus 로고    scopus 로고
    • Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes
    • pmid: 22195969
    • A. Helmrich, M. Ballarino, L. Tora, Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966-977 (2011). doi: 10.1016/j.molcel.2011.10.013; pmid: 22195969
    • (2011) Mol. Cell , vol.44 , pp. 966-977
    • Helmrich, A.1    Ballarino, M.2    Tora, L.3
  • 33
    • 84865683794 scopus 로고    scopus 로고
    • Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania
    • pmid: 22939620
    • H. G. van Luenen et al., Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania. Cell 150, 909-921 (2012). doi: 10.1016/j.cell.2012.07.030; pmid: 22939620
    • (2012) Cell , vol.150 , pp. 909-921
    • Van Luenen, H.G.1
  • 34
    • 84945174290 scopus 로고    scopus 로고
    • Defining the sequence requirements for the positioning of base J in DNA using SMRT sequencing
    • pmid: 25662217
    • P. A. Genest et al., Defining the sequence requirements for the positioning of base J in DNA using SMRT sequencing. Nucleic Acids Res. 43, 2102-2115 (2015). doi: 10.1093/nar/gkv095; pmid: 25662217
    • (2015) Nucleic Acids Res. , vol.43 , pp. 2102-2115
    • Genest, P.A.1
  • 35
    • 65249164132 scopus 로고    scopus 로고
    • Mechanisms that specify promoter nucleosome location and identity
    • pmid: 19410542
    • P. D. Hartley, H. D. Madhani, Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445-458 (2009). doi: 10.1016/j.cell.2009.02.043; pmid: 19410542
    • (2009) Cell , vol.137 , pp. 445-458
    • Hartley, P.D.1    Madhani, H.D.2
  • 36
    • 84919476067 scopus 로고    scopus 로고
    • Roadblock termination by reb1p restricts cryptic and readthrough transcription
    • pmid: 25479637
    • J. Colin et al., Roadblock termination by reb1p restricts cryptic and readthrough transcription. Mol. Cell 56, 667-680 (2014). doi: 10.1016/j.molcel.2014.10.026; pmid: 25479637
    • (2014) Mol. Cell , vol.56 , pp. 667-680
    • Colin, J.1
  • 37
    • 2342505693 scopus 로고    scopus 로고
    • New perspectives on connecting messenger RNA 3′ end formation to transcription
    • pmid: 15145351
    • N. Proudfoot, New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr. Opin. Cell Biol. 16, 272-278 (2004). doi: 10.1016/j.ceb.2004.03.007; pmid: 15145351
    • (2004) Curr. Opin. Cell Biol. , vol.16 , pp. 272-278
    • Proudfoot, N.1
  • 38
    • 0023990221 scopus 로고
    • A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II
    • pmid: 2836265
    • S. Connelly, J. L. Manley, A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. Genes Dev. 2, 440-452 (1988). doi: 10.1101/gad.2.4.440; pmid: 2836265
    • (1988) Genes Dev. , vol.2 , pp. 440-452
    • Connelly, S.1    Manley, J.L.2
  • 39
    • 0024562757 scopus 로고
    • How RNA polymerase II terminates transcription in higher eukaryotes
    • pmid: 2658217
    • N. J. Proudfoot, How RNA polymerase II terminates transcription in higher eukaryotes. Trends Biochem. Sci. 14, 105-110 (1989). doi: 10.1016/0968-0004(89)90132-1; pmid: 2658217
    • (1989) Trends Biochem. Sci. , vol.14 , pp. 105-110
    • Proudfoot, N.J.1
  • 40
    • 9644310314 scopus 로고    scopus 로고
    • The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II
    • pmid: 15565157
    • M. Kim et al., The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517-522 (2004). doi: 10.1038/nature03041; pmid: 15565157
    • (2004) Nature , vol.432 , pp. 517-522
    • Kim, M.1
  • 41
    • 9644308046 scopus 로고    scopus 로고
    • Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites
    • pmid: 15565158
    • S. West, N. Gromak, N. J. Proudfoot, Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522-525 (2004). doi: 10.1038/nature03035; pmid: 15565158
    • (2004) Nature , vol.432 , pp. 522-525
    • West, S.1    Gromak, N.2    Proudfoot, N.J.3
  • 42
    • 64749111945 scopus 로고    scopus 로고
    • Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1
    • pmid: 19194460
    • S. Xiang et al., Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1. Nature 458, 784-788 (2009). doi: 10.1038/nature07731; pmid: 19194460
    • (2009) Nature , vol.458 , pp. 784-788
    • Xiang, S.1
  • 43
    • 0036285707 scopus 로고    scopus 로고
    • Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II
    • pmid: 12049745
    • D. D. Licatalosi et al., Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9, 1101-1111 (2002). doi: 10.1016/S1097-2765(02)00518-X; pmid: 12049745
    • (2002) Mol. Cell , vol.9 , pp. 1101-1111
    • Licatalosi, D.D.1
  • 44
    • 84880144255 scopus 로고    scopus 로고
    • A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast
    • pmid: 23748379
    • O. Porrua, D. Libri, A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat. Struct. Mol. Biol. 20, 884-891 (2013). doi: 10.1038/nsmb.2592; pmid: 23748379
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 884-891
    • Porrua, O.1    Libri, D.2
  • 45
    • 84944887484 scopus 로고    scopus 로고
    • Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition
    • pmid: 26474067
    • N. Fong et al., Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition. Mol. Cell 60, 256-267 (2015). doi: 10.1016/j.molcel.2015.09.026; pmid: 26474067
    • (2015) Mol. Cell , vol.60 , pp. 256-267
    • Fong, N.1
  • 46
    • 70349779344 scopus 로고    scopus 로고
    • Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae
    • pmid: 19818712
    • A. G. Rondón, H. E. Mischo, J. Kawauchi, N. J. Proudfoot, Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol. Cell 36, 88-98 (2009). doi: 10.1016/j.molcel.2009.07.028; pmid: 19818712
    • (2009) Mol. Cell , vol.36 , pp. 88-98
    • Rondón, A.G.1    Mischo, H.E.2    Kawauchi, J.3    Proudfoot, N.J.4
  • 47
    • 70349765676 scopus 로고    scopus 로고
    • Yeast RNase III triggers polyadenylation-independent transcription termination
    • pmid: 19818713
    • G. Ghazal et al., Yeast RNase III triggers polyadenylation-independent transcription termination. Mol. Cell 36, 99-109 (2009). doi: 10.1016/j.molcel.2009.07.029; pmid: 19818713
    • (2009) Mol. Cell , vol.36 , pp. 99-109
    • Ghazal, G.1
  • 48
    • 70350442963 scopus 로고    scopus 로고
    • Coupled RNA processing and transcription of intergenic primary microRNAs
    • pmid: 19667074
    • M. Ballarino et al., Coupled RNA processing and transcription of intergenic primary microRNAs. Mol. Cell. Biol. 29, 5632-5638 (2009). doi: 10.1128/MCB.00664-09; pmid: 19667074
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5632-5638
    • Ballarino, M.1
  • 49
    • 42149154858 scopus 로고    scopus 로고
    • Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination
    • pmid: 18413718
    • J. Kawauchi, H. Mischo, P. Braglia, A. Rondon, N. J. Proudfoot, Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination. Genes Dev. 22, 1082-1092 (2008). doi: 10.1101/gad.463408; pmid: 18413718
    • (2008) Genes Dev. , vol.22 , pp. 1082-1092
    • Kawauchi, J.1    Mischo, H.2    Braglia, P.3    Rondon, A.4    Proudfoot, N.J.5
  • 50
    • 40649095272 scopus 로고    scopus 로고
    • Molecular dissection of mammalian RNA polymerase II transcriptional termination
    • pmid: 18342606
    • S. West, N. J. Proudfoot, M. J. Dye, Molecular dissection of mammalian RNA polymerase II transcriptional termination. Mol. Cell 29, 600-610 (2008). doi: 10.1016/j.molcel.2007.12.019; pmid: 18342606
    • (2008) Mol. Cell , vol.29 , pp. 600-610
    • West, S.1    Proudfoot, N.J.2    Dye, M.J.3
  • 51
    • 84876963384 scopus 로고    scopus 로고
    • Definition of RNA polymerase II CoTC terminator elements in the human genome
    • pmid: 23562152
    • T. Nojima, M. Dienstbier, S. Murphy, N. J. Proudfoot, M. J. Dye, Definition of RNA polymerase II CoTC terminator elements in the human genome. Cell Reports 3, 1080-1092 (2013). doi: 10.1016/j.celrep.2013.03.012; pmid: 23562152
    • (2013) Cell Reports , vol.3 , pp. 1080-1092
    • Nojima, T.1    Dienstbier, M.2    Murphy, S.3    Proudfoot, N.J.4    Dye, M.J.5
  • 52
    • 84862673628 scopus 로고    scopus 로고
    • RNA polymerase backtracking in gene regulation and genome instability
    • pmid: 22726433
    • E. Nudler, RNA polymerase backtracking in gene regulation and genome instability. Cell 149, 1438-1445 (2012). doi: 10.1016/j.cell.2012.06.003; pmid: 22726433
    • (2012) Cell , vol.149 , pp. 1438-1445
    • Nudler, E.1
  • 53
    • 77950998789 scopus 로고    scopus 로고
    • Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability
    • pmid: 20417599
    • S. Sigurdsson, A. B. Dirac-Svejstrup, J. Q. Svejstrup, Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol. Cell 38, 202-210 (2010). doi: 10.1016/j.molcel.2010.02.026; pmid: 20417599
    • (2010) Mol. Cell , vol.38 , pp. 202-210
    • Sigurdsson, S.1    Dirac-Svejstrup, A.B.2    Svejstrup, J.Q.3
  • 54
    • 0026648570 scopus 로고
    • The RNA polymerase II ternary complex cleaves the nascent transcript in a 3′ - 5′ direction in the presence of elongation factor SII
    • pmid: 1378419
    • M. G. Izban, D. S. Luse, The RNA polymerase II ternary complex cleaves the nascent transcript in a 3′ - 5′ direction in the presence of elongation factor SII. Genes Dev. 6, 1342-1356 (1992). doi: 10.1101/gad.6.7.1342; pmid: 1378419
    • (1992) Genes Dev. , vol.6 , pp. 1342-1356
    • Izban, M.G.1    Luse, D.S.2
  • 55
    • 84879641784 scopus 로고    scopus 로고
    • Mechanism of eukaryotic RNA polymerase III transcription termination
    • pmid: 23812715
    • S. Nielsen, Y. Yuzenkova, N. Zenkin, Mechanism of eukaryotic RNA polymerase III transcription termination. Science 340, 1577-1580 (2013). doi: 10.1126/science.1237934; pmid: 23812715
    • (2013) Science , vol.340 , pp. 1577-1580
    • Nielsen, S.1    Yuzenkova, Y.2    Zenkin, N.3
  • 56
    • 84926180327 scopus 로고    scopus 로고
    • The RNA exosome promotes transcription termination of backtracked RNA polymerase II
    • pmid: 25240800
    • J. F. Lemay et al., The RNA exosome promotes transcription termination of backtracked RNA polymerase II. Nat. Struct. Mol. Biol. 21, 919-926 (2014). doi: 10.1038/nsmb.2893; pmid: 25240800
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 919-926
    • Lemay, J.F.1
  • 57
    • 84937597324 scopus 로고    scopus 로고
    • Unraveling the mechanistic features of RNA polymerase II termination by the 5′-3′ exoribonuclease Rat1
    • pmid: 25722373
    • J. Park, M. Kang, M. Kim, Unraveling the mechanistic features of RNA polymerase II termination by the 5′-3′ exoribonuclease Rat1. Nucleic Acids Res. 43, 2625-2637 (2015). doi: 10.1093/nar/gkv133; pmid: 25722373
    • (2015) Nucleic Acids Res. , vol.43 , pp. 2625-2637
    • Park, J.1    Kang, M.2    Kim, M.3
  • 58
    • 69249157270 scopus 로고    scopus 로고
    • Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro
    • pmid: 19535338
    • S. Dengl, P. Cramer, Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro. J. Biol. Chem. 284, 21270-21279 (2009). doi: 10.1074/jbc.M109.013847; pmid: 19535338
    • (2009) J. Biol. Chem. , vol.284 , pp. 21270-21279
    • Dengl, S.1    Cramer, P.2
  • 59
    • 84872408012 scopus 로고    scopus 로고
    • Disengaging polymerase: Terminating RNA polymerase II transcription in budding yeast
    • pmid: 23085255
    • H. E. Mischo, N. J. Proudfoot, Disengaging polymerase: Terminating RNA polymerase II transcription in budding yeast. Biochim. Biophys. Acta 1829, 174-185 (2013). doi: 10.1016/j.bbagrm.2012.10.003; pmid: 23085255
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 174-185
    • Mischo, H.E.1    Proudfoot, N.J.2
  • 60
    • 84871699564 scopus 로고    scopus 로고
    • Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans
    • pmid: 22986266
    • K. Adelman, J. T. Lis, Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans. Nat. Rev. Genet. 13, 720-731 (2012). doi: 10.1038/nrg3293; pmid: 22986266
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 720-731
    • Adelman, K.1    Lis, J.T.2
  • 61
    • 84860706859 scopus 로고    scopus 로고
    • mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription
    • pmid: 22483619
    • K. Brannan et al., mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol. Cell 46, 311-324 (2012). doi: 10.1016/j.molcel.2012.03.006; pmid: 22483619
    • (2012) Mol. Cell , vol.46 , pp. 311-324
    • Brannan, K.1
  • 62
    • 84861905610 scopus 로고    scopus 로고
    • Co-transcriptional degradation of aberrant pre-mRNA by Xrn2
    • pmid: 22522706
    • L. Davidson, A. Kerr, S. West, Co-transcriptional degradation of aberrant pre-mRNA by Xrn2. EMBO J. 31, 2566-2578 (2012). doi: 10.1038/emboj.2012.101; pmid: 22522706
    • (2012) EMBO J. , vol.31 , pp. 2566-2578
    • Davidson, L.1    Kerr, A.2    West, S.3
  • 63
    • 84894609055 scopus 로고    scopus 로고
    • Mammalian 5′-capped microRNA precursors that generate a single microRNA
    • pmid: 24360278
    • M. Xie et al., Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell 155, 1568-1580 (2013). doi: 10.1016/j.cell.2013.11.027; pmid: 24360278
    • (2013) Cell , vol.155 , pp. 1568-1580
    • Xie, M.1
  • 64
    • 0028863631 scopus 로고
    • Poly(A) site selection in the HIV-1 provirus: Inhibition of promoter-proximal polyadenylation by the downstream major splice donor site
    • pmid: 7498796
    • M. P. Ashe, P. Griffin, W. James, N. J. Proudfoot, Poly(A) site selection in the HIV-1 provirus: Inhibition of promoter-proximal polyadenylation by the downstream major splice donor site. Genes Dev. 9, 3008-3025 (1995). doi: 10.1101/gad.9.23.3008; pmid: 7498796
    • (1995) Genes Dev. , vol.9 , pp. 3008-3025
    • Ashe, M.P.1    Griffin, P.2    James, W.3    Proudfoot, N.J.4
  • 65
    • 78649847070 scopus 로고    scopus 로고
    • U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation
    • pmid: 20881964
    • D. Kaida et al., U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468, 664-668 (2010). doi: 10.1038/nature09479; pmid: 20881964
    • (2010) Nature , vol.468 , pp. 664-668
    • Kaida, D.1
  • 66
    • 84887161037 scopus 로고    scopus 로고
    • Control of transcriptional elongation
    • pmid: 24050178
    • H. Kwak, J. T. Lis, Control of transcriptional elongation. Annu. Rev. Genet. 47, 483-508 (2013). doi: 10.1146/annurev-genet-110711-155440; pmid: 24050178
    • (2013) Annu. Rev. Genet. , vol.47 , pp. 483-508
    • Kwak, H.1    Lis, J.T.2
  • 67
    • 84929161687 scopus 로고    scopus 로고
    • CDK9 inhibitors define elongation checkpoints at both ends of RNA polymerase II-transcribed genes
    • pmid: 25849141
    • C. Laitem et al., CDK9 inhibitors define elongation checkpoints at both ends of RNA polymerase II-transcribed genes. Nat. Struct. Mol. Biol. 22, 396-403 (2015). pmid: 25849141
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 396-403
    • Laitem, C.1
  • 68
    • 84953381916 scopus 로고    scopus 로고
    • P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates
    • pmid: 26728557
    • M. Sansó et al., P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates. Genes Dev. 30, 117-131 (2016). doi: 10.1101/gad.269589.115; pmid: 26728557
    • (2016) Genes Dev. , vol.30 , pp. 117-131
    • Sansó, M.1
  • 69
    • 84878151459 scopus 로고    scopus 로고
    • Alternative cleavage and polyadenylation: The long and short of it
    • pmid: 23632313
    • B. Tian, J. L. Manley, Alternative cleavage and polyadenylation: The long and short of it. Trends Biochem. Sci. 38, 312-320 (2013). doi: 10.1016/j.tibs.2013.03.005; pmid: 23632313
    • (2013) Trends Biochem. Sci. , vol.38 , pp. 312-320
    • Tian, B.1    Manley, J.L.2
  • 70
    • 84956675895 scopus 로고    scopus 로고
    • Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation
    • pmid: 26546131
    • J. Neve et al., Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation. Genome Res. 26, 24-35 (2016). doi: 10.1101/gr.193995.115; pmid: 26546131
    • (2016) Genome Res. , vol.26 , pp. 24-35
    • Neve, J.1
  • 71
    • 0030606286 scopus 로고    scopus 로고
    • The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation
    • pmid: 8945520
    • Y. Takagaki, R. L. Seipelt, M. L. Peterson, J. L. Manley, The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87, 941-952 (1996). doi: 10.1016/S0092-8674(00)82000-0; pmid: 8945520
    • (1996) Cell , vol.87 , pp. 941-952
    • Takagaki, Y.1    Seipelt, R.L.2    Peterson, M.L.3    Manley, J.L.4
  • 72
    • 80052447253 scopus 로고    scopus 로고
    • Ending the message: Poly(A) signals then and now
    • pmid: 21896654
    • N. J. Proudfoot, Ending the message: Poly(A) signals then and now. Genes Dev. 25, 1770-1782 (2011). doi: 10.1101/gad.17268411; pmid: 21896654
    • (2011) Genes Dev. , vol.25 , pp. 1770-1782
    • Proudfoot, N.J.1
  • 73
    • 79951484797 scopus 로고    scopus 로고
    • Transcriptional activators enhance polyadenylation of mRNA precursors
    • pmid: 21329879
    • T. Nagaike et al., Transcriptional activators enhance polyadenylation of mRNA precursors. Mol. Cell 41, 409-418 (2011). doi: 10.1016/j.molcel.2011.01.022; pmid: 21329879
    • (2011) Mol. Cell , vol.41 , pp. 409-418
    • Nagaike, T.1
  • 74
    • 79958859723 scopus 로고    scopus 로고
    • RNA polymerase II kinetics in polo polyadenylation signal selection
    • pmid: 21602789
    • P. A. Pinto et al., RNA polymerase II kinetics in polo polyadenylation signal selection. EMBO J. 30, 2431-2444 (2011). doi: 10.1038/emboj.2011.156; pmid: 21602789
    • (2011) EMBO J. , vol.30 , pp. 2431-2444
    • Pinto, P.A.1
  • 75
    • 84930331173 scopus 로고    scopus 로고
    • Systematic profiling of poly(A)+ transcripts modulated by core 3′ end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation
    • pmid: 25906188
    • W. Li et al., Systematic profiling of poly(A)+ transcripts modulated by core 3′ end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation. PLOS Genet. 11, e1005166 (2015). doi: 10.1371/journal.pgen.1005166; pmid: 25906188
    • (2015) PLOS Genet. , vol.11
    • Li, W.1
  • 76
    • 84863093884 scopus 로고    scopus 로고
    • Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length
    • pmid: 22813749
    • G. Martin, A. R. Gruber, W. Keller, M. Zavolan, Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length. Cell Reports 1, 753-763 (2012). doi: 10.1016/j.celrep.2012.05.003; pmid: 22813749
    • (2012) Cell Reports , vol.1 , pp. 753-763
    • Martin, G.1    Gruber, A.R.2    Keller, W.3    Zavolan, M.4
  • 77
    • 84903129276 scopus 로고    scopus 로고
    • CFIm25 links alternative polyadenylation to glioblastoma tumour suppression
    • pmid: 24814343
    • C. P. Masamha et al., CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature 510, 412-416 (2014). pmid: 24814343
    • (2014) Nature , vol.510 , pp. 412-416
    • Masamha, C.P.1
  • 78
    • 84860317107 scopus 로고    scopus 로고
    • The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites
    • pmid: 22502866
    • M. Jenal et al., The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 149, 538-553 (2012). doi: 10.1016/j.cell.2012.03.022; pmid: 22502866
    • (2012) Cell , vol.149 , pp. 538-553
    • Jenal, M.1
  • 79
    • 84867558164 scopus 로고    scopus 로고
    • Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation
    • pmid: 22772983
    • E. de Klerk et al., Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic Acids Res. 40, 9089-9101 (2012). doi: 10.1093/nar/gks655; pmid: 22772983
    • (2012) Nucleic Acids Res. , vol.40 , pp. 9089-9101
    • De Klerk, E.1
  • 80
    • 84863610792 scopus 로고    scopus 로고
    • U1 snRNP determines mRNA length and regulates isoform expression
    • pmid: 22770214
    • M. G. Berg et al., U1 snRNP determines mRNA length and regulates isoform expression. Cell 150, 53-64 (2012). doi: 10.1016/j.cell.2012.05.029; pmid: 22770214
    • (2012) Cell , vol.150 , pp. 53-64
    • Berg, M.G.1
  • 81
    • 84874732911 scopus 로고    scopus 로고
    • CPEB1 coordinates alternative 3′-UTR formation with translational regulation
    • pmid: 23434754
    • F. A. Bava et al., CPEB1 coordinates alternative 3′-UTR formation with translational regulation. Nature 495, 121-125 (2013). doi: 10.1038/nature11901; pmid: 23434754
    • (2013) Nature , vol.495 , pp. 121-125
    • Bava, F.A.1
  • 82
    • 84929584026 scopus 로고    scopus 로고
    • Position-specific binding of FUS to nascent RNA regulates mRNA length
    • pmid: 25995189
    • A. Masuda et al., Position-specific binding of FUS to nascent RNA regulates mRNA length. Genes Dev. 29, 1045-1057 (2015). doi: 10.1101/gad.255737.114; pmid: 25995189
    • (2015) Genes Dev. , vol.29 , pp. 1045-1057
    • Masuda, A.1
  • 83
    • 84867696915 scopus 로고    scopus 로고
    • ELAV mediates 3′ UTR extension in the Drosophila nervous system
    • pmid: 23019123
    • V. Hilgers, S. B. Lemke, M. Levine, ELAV mediates 3′ UTR extension in the Drosophila nervous system. Genes Dev. 26, 2259-2264 (2012). doi: 10.1101/gad.199653.112; pmid: 23019123
    • (2012) Genes Dev. , vol.26 , pp. 2259-2264
    • Hilgers, V.1    Lemke, S.B.2    Levine, M.3
  • 84
    • 84922319971 scopus 로고    scopus 로고
    • Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease
    • pmid: 25263597
    • R. Batra et al., Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol. Cell 56, 311-322 (2014). doi: 10.1016/j.molcel.2014.08.027; pmid: 25263597
    • (2014) Mol. Cell , vol.56 , pp. 311-322
    • Batra, R.1
  • 85
    • 84930052197 scopus 로고    scopus 로고
    • Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization
    • pmid: 25896326
    • B. D. Berkovits, C. Mayr, Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization. Nature 522, 363-367 (2015). doi: 10.1038/nature14321; pmid: 25896326
    • (2015) Nature , vol.522 , pp. 363-367
    • Berkovits, B.D.1    Mayr, C.2
  • 86
    • 84906877044 scopus 로고    scopus 로고
    • piRNAs: From biogenesis to function
    • pmid:25183868
    • E. M. Weick, E. A. Miska, piRNAs: From biogenesis to function. Development 141, 3458-3471 (2014). doi: 10.1242/dev.094037; pmid:25183868
    • (2014) Development , vol.141 , pp. 3458-3471
    • Weick, E.M.1    Miska, E.A.2
  • 87
    • 84902108866 scopus 로고    scopus 로고
    • The rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila
    • pmid: 24906153
    • F. Mohn, G. Sienski, D. Handler, J. Brennecke, The rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell 157, 1364-1379 (2014). doi: 10.1016/j.cell.2014.04.031; pmid: 24906153
    • (2014) Cell , vol.157 , pp. 1364-1379
    • Mohn, F.1    Sienski, G.2    Handler, D.3    Brennecke, J.4
  • 88
    • 84902117162 scopus 로고    scopus 로고
    • The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing
    • pmid: 24906152
    • Z. Zhang et al., The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell 157, 1353-1363 (2014). doi: 10.1016/j.cell.2014.04.030; pmid: 24906152
    • (2014) Cell , vol.157 , pp. 1353-1363
    • Zhang, Z.1
  • 89
    • 84905270270 scopus 로고    scopus 로고
    • Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing
    • pmid: 25085419
    • A. Le Thomas et al., Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing. Genes Dev. 28, 1667-1680 (2014). doi: 10.1101/gad.245514.114; pmid: 25085419
    • (2014) Genes Dev. , vol.28 , pp. 1667-1680
    • Le Thomas, A.1
  • 90
    • 84938747425 scopus 로고    scopus 로고
    • Widespread Inducible Transcription Downstream of Human Genes
    • pmid: 26190259
    • A. Vilborg, M. C. Passarelli, T. A. Yario, K. T. Tycowski, J. A. Steitz, Widespread Inducible Transcription Downstream of Human Genes. Mol. Cell 59, 449-461 (2015). doi: 10.1016/j.molcel.2015.06.016; pmid: 26190259
    • (2015) Mol. Cell , vol.59 , pp. 449-461
    • Vilborg, A.1    Passarelli, M.C.2    Yario, T.A.3    Tycowski, K.T.4    Steitz, J.A.5
  • 91
    • 62049085786 scopus 로고    scopus 로고
    • Transcriptome sequencing to detect gene fusions in cancer
    • pmid: 19136943
    • C. A. Maher et al., Transcriptome sequencing to detect gene fusions in cancer. Nature 458, 97-101 (2009). doi: 10.1038/nature07638; pmid: 19136943
    • (2009) Nature , vol.458 , pp. 97-101
    • Maher, C.A.1
  • 92
    • 79959331609 scopus 로고    scopus 로고
    • Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing
    • pmid: 21571633
    • K. Kannan et al., Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing. Proc. Natl. Acad. Sci. U.S.A. 108, 9172-9177 (2011). doi: 10.1073/pnas.1100489108; pmid: 21571633
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 9172-9177
    • Kannan, K.1
  • 93
    • 84904102336 scopus 로고    scopus 로고
    • Recurrent read-through fusion transcripts in breast cancer
    • pmid: 24929677
    • K. E. Varley et al., Recurrent read-through fusion transcripts in breast cancer. Breast Cancer Res. Treat. 146, 287-297 (2014). doi: 10.1007/s10549-014-3019-2; pmid: 24929677
    • (2014) Breast Cancer Res. Treat. , vol.146 , pp. 287-297
    • Varley, K.E.1
  • 94
    • 84958191482 scopus 로고    scopus 로고
    • Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma
    • pmid: 26575290
    • A. R. Grosso et al., Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. eLife 4, e09214 (2015). doi: 10.7554/eLife.09214; pmid: 26575290
    • (2015) eLife , vol.4
    • Grosso, A.R.1
  • 95
    • 84904462273 scopus 로고    scopus 로고
    • Reciprocal regulatory links between cotranscriptional splicing and chromatin
    • pmid: 24657193
    • S. F. de Almeida, M. Carmo-Fonseca, Reciprocal regulatory links between cotranscriptional splicing and chromatin. Semin. Cell Dev. Biol. 32, 2-10 (2014). doi: 10.1016/j.semcdb.2014.03.010; pmid: 24657193
    • (2014) Semin. Cell Dev. Biol. , vol.32 , pp. 2-10
    • De Almeida, S.F.1    Carmo-Fonseca, M.2
  • 96
    • 0032086357 scopus 로고    scopus 로고
    • Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′end formation of cellular premRNAs
    • pmid: 9651582
    • M. E. Nemeroff, S. M. Barabino, Y. Li, W. Keller, R. M. Krug, Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′end formation of cellular premRNAs. Mol. Cell 1, 991-1000 (1998). doi: 10.1016/S1097-2765(00)80099-4; pmid: 9651582
    • (1998) Mol. Cell , vol.1 , pp. 991-1000
    • Nemeroff, M.E.1    Barabino, S.M.2    Li, Y.3    Keller, W.4    Krug, R.M.5
  • 97
    • 84930225632 scopus 로고    scopus 로고
    • Widespread disruption of host transcription termination in HSV-1 infection
    • pmid: 25989971
    • A. J. Rutkowski et al., Widespread disruption of host transcription termination in HSV-1 infection. Nat. Commun. 6, 7126 (2015). doi: 10.1038/ncomms8126; pmid: 25989971
    • (2015) Nat. Commun. , vol.6 , pp. 7126
    • Rutkowski, A.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.