메뉴 건너뛰기




Volumn 1859, Issue 1, 2016, Pages 16-22

The specificity of long noncoding RNA expression

Author keywords

Expression; Long noncoding RNA; Technology; Transcriptomics

Indexed keywords

LONG UNTRANSLATED RNA; RIBOSOME RNA; TRANSCRIPTOME; MESSENGER RNA;

EID: 84953351897     PISSN: 18749399     EISSN: 18764320     Source Type: Journal    
DOI: 10.1016/j.bbagrm.2015.08.005     Document Type: Review
Times cited : (185)

References (81)
  • 1
    • 0017690216 scopus 로고
    • Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes
    • Alwine J.C., et al. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc. Natl. Acad. Sci. U. S. A. 1977, 74:5350-5354.
    • (1977) Proc. Natl. Acad. Sci. U. S. A. , vol.74 , pp. 5350-5354
    • Alwine, J.C.1
  • 2
    • 0022372670 scopus 로고
    • Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia
    • Saiki R.K., et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science (New York, N.Y.) 1985, 230:1350-1354.
    • (1985) Science (New York, N.Y.) , vol.230 , pp. 1350-1354
    • Saiki, R.K.1
  • 3
    • 0025202162 scopus 로고
    • Target amplification for DNA analysis by the polymerase chain reaction
    • Mullis K.B. Target amplification for DNA analysis by the polymerase chain reaction. Ann. Biol. Clin. 1990, 48:579-582.
    • (1990) Ann. Biol. Clin. , vol.48 , pp. 579-582
    • Mullis, K.B.1
  • 4
    • 0025861818 scopus 로고
    • Detection of specific polymerase chain reaction product by utilizing the 5'-3' exonuclease activity of Thermus aquaticus DNA polymerase
    • Holland P.M., et al. Detection of specific polymerase chain reaction product by utilizing the 5'-3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. U. S. A. 1991, 88:7276-7280.
    • (1991) Proc. Natl. Acad. Sci. U. S. A. , vol.88 , pp. 7276-7280
    • Holland, P.M.1
  • 5
    • 22244442468 scopus 로고    scopus 로고
    • Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays
    • Kapranov P., et al. Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res. 2005, 15:987-997.
    • (2005) Genome Res. , vol.15 , pp. 987-997
    • Kapranov, P.1
  • 6
    • 24644519490 scopus 로고    scopus 로고
    • The transcriptional landscape of the mammalian genome
    • Carninci P., et al. The transcriptional landscape of the mammalian genome. Science (New York, N.Y.) 2005, 309:1559-1563.
    • (2005) Science (New York, N.Y.) , vol.309 , pp. 1559-1563
    • Carninci, P.1
  • 7
    • 34250330777 scopus 로고    scopus 로고
    • What is a gene, post-ENCODE? History and updated definition
    • Gerstein M.B., et al. What is a gene, post-ENCODE? History and updated definition. Genome Res. 2007, 17:669-681.
    • (2007) Genome Res. , vol.17 , pp. 669-681
    • Gerstein, M.B.1
  • 8
    • 34249088350 scopus 로고    scopus 로고
    • Genome-wide transcription and the implications for genomic organization
    • Kapranov P., et al. Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 2007, 8:413-423.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 413-423
    • Kapranov, P.1
  • 9
    • 80053523254 scopus 로고    scopus 로고
    • The evolution of RNAs with multiple functions
    • Dinger M.E., et al. The evolution of RNAs with multiple functions. Biochimie 2011, 93:2013-2018.
    • (2011) Biochimie , vol.93 , pp. 2013-2018
    • Dinger, M.E.1
  • 10
    • 57149107578 scopus 로고    scopus 로고
    • Differentiating protein-coding and noncoding RNA: challenges and ambiguities
    • Dinger M.E., et al. Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput. Biol. 2008, 4.
    • (2008) PLoS Comput. Biol. , vol.4
    • Dinger, M.E.1
  • 12
    • 84926186318 scopus 로고    scopus 로고
    • The RNA World: molecular cooperation at the origins of life
    • Higgs P.G., Lehman N. The RNA World: molecular cooperation at the origins of life. Nat. Rev. Genet. 2015, 16:7-17.
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 7-17
    • Higgs, P.G.1    Lehman, N.2
  • 13
    • 20444460289 scopus 로고    scopus 로고
    • MicroRNA expression profiles classify human cancers
    • Lu J., et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435:834-838.
    • (2005) Nature , vol.435 , pp. 834-838
    • Lu, J.1
  • 15
    • 0037012881 scopus 로고    scopus 로고
    • Large-scale transcriptional activity in chromosomes 21 and 22
    • Kapranov P., et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science (New York, N.Y.) 2002, 296:916-919.
    • (2002) Science (New York, N.Y.) , vol.296 , pp. 916-919
    • Kapranov, P.1
  • 16
    • 0142104045 scopus 로고    scopus 로고
    • Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs
    • Okazaki Y., et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 2002, 420:563-573.
    • (2002) Nature , vol.420 , pp. 563-573
    • Okazaki, Y.1
  • 17
    • 0037442493 scopus 로고    scopus 로고
    • The transcriptional activity of human chromosome 22
    • Rinn J.L., et al. The transcriptional activity of human chromosome 22. Genes Dev. 2003, 17:529-540.
    • (2003) Genes Dev. , vol.17 , pp. 529-540
    • Rinn, J.L.1
  • 18
    • 21044431735 scopus 로고    scopus 로고
    • Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution
    • Cheng J., et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science (New York, N.Y.) 2005, 308:1149-1154.
    • (2005) Science (New York, N.Y.) , vol.308 , pp. 1149-1154
    • Cheng, J.1
  • 19
    • 24644472515 scopus 로고    scopus 로고
    • Antisense transcription in the mammalian transcriptome
    • Katayama S., et al. Antisense transcription in the mammalian transcriptome. Science (New York, N.Y.) 2005, 309:1564-1566.
    • (2005) Science (New York, N.Y.) , vol.309 , pp. 1564-1566
    • Katayama, S.1
  • 20
    • 77952905505 scopus 로고    scopus 로고
    • Most "dark matter" transcripts are associated with known genes
    • van Bakel H., et al. Most "dark matter" transcripts are associated with known genes. PLoS Biol. 2010, 8.
    • (2010) PLoS Biol. , vol.8
    • van Bakel, H.1
  • 22
    • 79960911703 scopus 로고    scopus 로고
    • The reality of pervasive transcription
    • (discussion e1001102)
    • Clark M.B., et al. The reality of pervasive transcription. PLoS Biol. 2011, 9:e1000625. (discussion e1001102).
    • (2011) PLoS Biol. , vol.9 , pp. e1000625
    • Clark, M.B.1
  • 23
    • 50649118350 scopus 로고    scopus 로고
    • Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation
    • Dinger M.E., et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008, 18:1433-1445.
    • (2008) Genome Res. , vol.18 , pp. 1433-1445
    • Dinger, M.E.1
  • 24
    • 38649114329 scopus 로고    scopus 로고
    • Specific expression of long noncoding RNAs in the mouse brain
    • Mercer T.R., et al. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:716-721.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 716-721
    • Mercer, T.R.1
  • 25
    • 34250729138 scopus 로고    scopus 로고
    • Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs
    • Rinn J.L., et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007, 129:1311-1323.
    • (2007) Cell , vol.129 , pp. 1311-1323
    • Rinn, J.L.1
  • 26
    • 62249133709 scopus 로고    scopus 로고
    • Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals
    • Guttman M., et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009, 458:223-227.
    • (2009) Nature , vol.458 , pp. 223-227
    • Guttman, M.1
  • 27
    • 10744226888 scopus 로고    scopus 로고
    • Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs
    • Cawley S., et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 2004, 116:499-509.
    • (2004) Cell , vol.116 , pp. 499-509
    • Cawley, S.1
  • 28
    • 84876177255 scopus 로고    scopus 로고
    • A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells
    • Johnsson P., et al. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat. Struct. Mol. Biol. 2013, 20:440-446.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 440-446
    • Johnsson, P.1
  • 29
    • 84905455429 scopus 로고    scopus 로고
    • 8.2% of the human genome is constrained: variation in rates of turnover across functional element classes in the human lineage
    • Rands C.M., et al. 8.2% of the human genome is constrained: variation in rates of turnover across functional element classes in the human lineage. PLoS Genet. 2014, 10:e1004525.
    • (2014) PLoS Genet. , vol.10 , pp. e1004525
    • Rands, C.M.1
  • 30
    • 84884969654 scopus 로고    scopus 로고
    • Widespread purifying selection on RNA structure in mammals
    • Smith M.A., et al. Widespread purifying selection on RNA structure in mammals. Nucleic Acids Res. 2013, 41:8220-8236.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 8220-8236
    • Smith, M.A.1
  • 31
    • 84890852686 scopus 로고    scopus 로고
    • Evolutionary conservation of long non-coding RNAs; sequence, structure, function
    • Johnsson P., et al. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim. Biophys. Acta 2014, 1840:1063-1071.
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 1063-1071
    • Johnsson, P.1
  • 32
    • 33847698971 scopus 로고    scopus 로고
    • The relationship between non-protein-coding DNA and eukaryotic complexity
    • Taft R.J., et al. The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays 2007, 29:288-299.
    • (2007) BioEssays , vol.29 , pp. 288-299
    • Taft, R.J.1
  • 33
    • 84455206362 scopus 로고    scopus 로고
    • Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution
    • Ulitsky I., et al. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 2011, 147:1537-1550.
    • (2011) Cell , vol.147 , pp. 1537-1550
    • Ulitsky, I.1
  • 34
    • 84928029167 scopus 로고    scopus 로고
    • Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved
    • Nitsche A., et al. Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. RNA 2015, 21(5):801-812.
    • (2015) RNA , vol.21 , Issue.5 , pp. 801-812
    • Nitsche, A.1
  • 35
    • 84891031064 scopus 로고    scopus 로고
    • Boosting transcription by transcription: enhancer-associated transcripts
    • Darrow E.M., Chadwick B.P. Boosting transcription by transcription: enhancer-associated transcripts. Chromosom. Res. 2013, 21:713-724.
    • (2013) Chromosom. Res. , vol.21 , pp. 713-724
    • Darrow, E.M.1    Chadwick, B.P.2
  • 36
    • 34547626629 scopus 로고    scopus 로고
    • Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells
    • Han J., et al. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:12422-12427.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 12422-12427
    • Han, J.1
  • 37
    • 84923301434 scopus 로고    scopus 로고
    • Gene activation-associated long noncoding RNAs function in mouse preimplantation development
    • Hamazaki N., et al. Gene activation-associated long noncoding RNAs function in mouse preimplantation development. Development 2015, 142:910-920.
    • (2015) Development , vol.142 , pp. 910-920
    • Hamazaki, N.1
  • 38
    • 84946013175 scopus 로고    scopus 로고
    • LncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs
    • Quek X.C., et al. lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 2015, 43:D168-D173.
    • (2015) Nucleic Acids Res. , vol.43 , pp. D168-D173
    • Quek, X.C.1
  • 39
    • 70449707787 scopus 로고    scopus 로고
    • Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications
    • Dinger M.E., et al. Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications. Brief. Funct. Genomic. Proteomic. 2009, 8:407-423.
    • (2009) Brief. Funct. Genomic. Proteomic. , vol.8 , pp. 407-423
    • Dinger, M.E.1
  • 40
    • 84865727393 scopus 로고    scopus 로고
    • The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression
    • Derrien T., et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012, 22:1775-1789.
    • (2012) Genome Res. , vol.22 , pp. 1775-1789
    • Derrien, T.1
  • 41
    • 84926524893 scopus 로고    scopus 로고
    • Quantitative gene profiling of long noncoding RNAs with targeted RNA sequencing
    • Clark M.B., et al. Quantitative gene profiling of long noncoding RNAs with targeted RNA sequencing. Nat. Methods 2015, 12(4):339-342.
    • (2015) Nat. Methods , vol.12 , Issue.4 , pp. 339-342
    • Clark, M.B.1
  • 42
    • 30044434769 scopus 로고    scopus 로고
    • Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome
    • Ravasi T., et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 2006, 16:11-19.
    • (2006) Genome Res. , vol.16 , pp. 11-19
    • Ravasi, T.1
  • 43
    • 67649160600 scopus 로고    scopus 로고
    • Genome-wide identification of long noncoding RNAs in CD8+ T cells
    • Pang K.C., et al. Genome-wide identification of long noncoding RNAs in CD8+ T cells. J. Immunol. 2009, 182:7738-7748.
    • (2009) J. Immunol. , vol.182 , pp. 7738-7748
    • Pang, K.C.1
  • 44
    • 80052978224 scopus 로고    scopus 로고
    • Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses
    • Cabili M.N., et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011, 25:1915-1927.
    • (2011) Genes Dev. , vol.25 , pp. 1915-1927
    • Cabili, M.N.1
  • 45
    • 84865757142 scopus 로고    scopus 로고
    • Landscape of transcription in human cells
    • Djebali S., et al. Landscape of transcription in human cells. Nature 2012, 489:101-108.
    • (2012) Nature , vol.489 , pp. 101-108
    • Djebali, S.1
  • 46
    • 84898747543 scopus 로고    scopus 로고
    • Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals
    • Washietl S., et al. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res. 2014, 24:616-628.
    • (2014) Genome Res. , vol.24 , pp. 616-628
    • Washietl, S.1
  • 47
    • 52449130135 scopus 로고    scopus 로고
    • Noncoding RNAs in long-term memory formation
    • Mercer T.R., et al. Noncoding RNAs in long-term memory formation. Neuroscientist 2008, 14:434-445.
    • (2008) Neuroscientist , vol.14 , pp. 434-445
    • Mercer, T.R.1
  • 48
    • 84913534661 scopus 로고    scopus 로고
    • Sample processing obscures cancer-specific alterations in leukemic transcriptomes
    • Dvinge H., et al. Sample processing obscures cancer-specific alterations in leukemic transcriptomes. Proc. Natl. Acad. Sci. U. S. A. 2014, 111:16802-16807.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 16802-16807
    • Dvinge, H.1
  • 49
    • 79953748673 scopus 로고    scopus 로고
    • A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression
    • Wang K.C., et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011, 472:120-124.
    • (2011) Nature , vol.472 , pp. 120-124
    • Wang, K.C.1
  • 50
    • 84860581983 scopus 로고    scopus 로고
    • Genome-wide analysis of long noncoding RNA stability
    • Clark M.B., et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 2012, 22:885-898.
    • (2012) Genome Res. , vol.22 , pp. 885-898
    • Clark, M.B.1
  • 51
    • 84860575639 scopus 로고    scopus 로고
    • Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals
    • Tani H., et al. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 2012, 22:947-956.
    • (2012) Genome Res. , vol.22 , pp. 947-956
    • Tani, H.1
  • 52
    • 84925286713 scopus 로고    scopus 로고
    • Exploring the stability of long intergenic non-coding RNA in K562 cells by comparative studies of RNA-Seq datasets
    • Wang L., et al. Exploring the stability of long intergenic non-coding RNA in K562 cells by comparative studies of RNA-Seq datasets. Biol. Direct 2014, 9:15.
    • (2014) Biol. Direct , vol.9 , pp. 15
    • Wang, L.1
  • 53
    • 84880510553 scopus 로고    scopus 로고
    • Promoter directionality is controlled by U1 snRNP and polyadenylation signals
    • Almada A.E., et al. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 2013, 499:360-363.
    • (2013) Nature , vol.499 , pp. 360-363
    • Almada, A.E.1
  • 54
    • 84892728434 scopus 로고    scopus 로고
    • Sequencing depth and coverage: key considerations in genomic analyses
    • Sims D., et al. Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 2014, 15:121-132.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 121-132
    • Sims, D.1
  • 55
    • 84855539848 scopus 로고    scopus 로고
    • Targeted RNA sequencing reveals the deep complexity of the human transcriptome
    • Mercer T.R., et al. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat. Biotechnol. 2012, 30:99-104.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 99-104
    • Mercer, T.R.1
  • 56
    • 81555208922 scopus 로고    scopus 로고
    • RNA-Seq and find: entering the RNA deep field
    • Roberts A., Pachter L. RNA-Seq and find: entering the RNA deep field. Genome Med. 2011, 3:74.
    • (2011) Genome Med. , vol.3 , pp. 74
    • Roberts, A.1    Pachter, L.2
  • 57
    • 56549105330 scopus 로고    scopus 로고
    • HITS-CLIP yields genome-wide insights into brain alternative RNA processing
    • Licatalosi D.D., et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 2008, 456:464-469.
    • (2008) Nature , vol.456 , pp. 464-469
    • Licatalosi, D.D.1
  • 58
    • 78650253763 scopus 로고    scopus 로고
    • Genome-wide identification of polycomb-associated RNAs by RIP-seq
    • Zhao J., et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 2010, 40:939-953.
    • (2010) Mol. Cell , vol.40 , pp. 939-953
    • Zhao, J.1
  • 59
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell C., et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28:511-515.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 511-515
    • Trapnell, C.1
  • 60
    • 79960264362 scopus 로고    scopus 로고
    • Full-length transcriptome assembly from RNA-Seq data without a reference genome
    • Grabherr M.G., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29:644-652.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 644-652
    • Grabherr, M.G.1
  • 61
    • 84908616879 scopus 로고    scopus 로고
    • Rule-based integration of RNA-Seq analyses tools for identification of novel transcripts
    • Inamdar H., et al. Rule-based integration of RNA-Seq analyses tools for identification of novel transcripts. J. Bioinforma. Comput. Biol. 2014, 12:1450026.
    • (2014) J. Bioinforma. Comput. Biol. , vol.12 , pp. 1450026
    • Inamdar, H.1
  • 62
    • 84861859517 scopus 로고    scopus 로고
    • ENCODE whole-genome data in the UCSC Genome Browser: update 2012
    • Rosenbloom K.R., et al. ENCODE whole-genome data in the UCSC Genome Browser: update 2012. Nucleic Acids Res. 2012, 40:D912-D917.
    • (2012) Nucleic Acids Res. , vol.40 , pp. D912-D917
    • Rosenbloom, K.R.1
  • 63
    • 34250305146 scopus 로고    scopus 로고
    • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
    • Consortium E.P., et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447:799-816.
    • (2007) Nature , vol.447 , pp. 799-816
    • Consortium, E.P.1
  • 64
    • 58149234737 scopus 로고    scopus 로고
    • Real-time DNA sequencing from single polymerase molecules
    • Eid J., et al. Real-time DNA sequencing from single polymerase molecules. Science (New York, N.Y.) 2009, 323:133-138.
    • (2009) Science (New York, N.Y.) , vol.323 , pp. 133-138
    • Eid, J.1
  • 65
    • 77957940722 scopus 로고    scopus 로고
    • The NIH Roadmap Epigenomics Mapping Consortium
    • Bernstein B.E., et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 2010, 28:1045-1048.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 1045-1048
    • Bernstein, B.E.1
  • 66
    • 84891942848 scopus 로고    scopus 로고
    • Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code
    • Marchese F.P., Huarte M. Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code. Epigenetics 2014, 9:21-26.
    • (2014) Epigenetics , vol.9 , pp. 21-26
    • Marchese, F.P.1    Huarte, M.2
  • 67
    • 84939171986 scopus 로고    scopus 로고
    • Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution
    • Cabili M.N., et al. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol. 2015, 16:20.
    • (2015) Genome Biol. , vol.16 , pp. 20
    • Cabili, M.N.1
  • 68
    • 84865760395 scopus 로고    scopus 로고
    • GENCODE: the reference human genome annotation for The ENCODE Project
    • Harrow J., et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012, 22:1760-1774.
    • (2012) Genome Res. , vol.22 , pp. 1760-1774
    • Harrow, J.1
  • 69
    • 72449129174 scopus 로고    scopus 로고
    • A global view of genomic information-moving beyond the gene and the master regulator
    • Mattick J.S., et al. A global view of genomic information-moving beyond the gene and the master regulator. Trends Genet. 2010, 26:21-28.
    • (2010) Trends Genet. , vol.26 , pp. 21-28
    • Mattick, J.S.1
  • 70
    • 84861904178 scopus 로고    scopus 로고
    • Genome regulation by long noncoding RNAs
    • Rinn J.L., Chang H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 2012, 81:145-166.
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 145-166
    • Rinn, J.L.1    Chang, H.Y.2
  • 71
    • 84891749518 scopus 로고    scopus 로고
    • Toddler: an embryonic signal that promotes cell movement via Apelin receptors
    • Pauli A., et al. Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science (New York, N.Y.) 2014, 343:1248636.
    • (2014) Science (New York, N.Y.) , vol.343 , pp. 1248636
    • Pauli, A.1
  • 72
    • 84870417305 scopus 로고    scopus 로고
    • Pinstripe: a suite of programs for integrating transcriptomic and proteomic datasets identifies novel proteins and improves differentiation of protein-coding and non-coding genes
    • Gascoigne D.K., et al. Pinstripe: a suite of programs for integrating transcriptomic and proteomic datasets identifies novel proteins and improves differentiation of protein-coding and non-coding genes. Bioinformatics 2012, 28:3042-3050.
    • (2012) Bioinformatics , vol.28 , pp. 3042-3050
    • Gascoigne, D.K.1
  • 73
    • 77953957633 scopus 로고    scopus 로고
    • A coding-independent function of gene and pseudogene mRNAs regulates tumour biology
    • Poliseno L., et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010, 465:1033-1038.
    • (2010) Nature , vol.465 , pp. 1033-1038
    • Poliseno, L.1
  • 74
    • 84925301356 scopus 로고    scopus 로고
    • The RNA structurome: transcriptome-wide structure probing with next-generation sequencing
    • Kwok C.K., et al. The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem. Sci. 2015, 40:221-232.
    • (2015) Trends Biochem. Sci. , vol.40 , pp. 221-232
    • Kwok, C.K.1
  • 75
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, N.Y.) 2013, 339:819-823.
    • (2013) Science (New York, N.Y.) , vol.339 , pp. 819-823
    • Cong, L.1
  • 76
    • 84936077333 scopus 로고    scopus 로고
    • Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines
    • Ho T.T., et al. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res. 2015, 43.
    • (2015) Nucleic Acids Res. , vol.43
    • Ho, T.T.1
  • 77
    • 84930628716 scopus 로고    scopus 로고
    • High-throughput screens in mammalian cells using the CRISPR-Cas9 system
    • Peng J., et al. High-throughput screens in mammalian cells using the CRISPR-Cas9 system. FEBS J. 2015, 282(11):2089-2096.
    • (2015) FEBS J. , vol.282 , Issue.11 , pp. 2089-2096
    • Peng, J.1
  • 78
    • 84897090228 scopus 로고    scopus 로고
    • Highly multiplexed subcellular RNA sequencing in situ
    • Lee J.H., et al. Highly multiplexed subcellular RNA sequencing in situ. Science (New York, N.Y.) 2014, 343:1360-1363.
    • (2014) Science (New York, N.Y.) , vol.343 , pp. 1360-1363
    • Lee, J.H.1
  • 79
    • 84902668801 scopus 로고    scopus 로고
    • Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    • Patel A.P., et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science (New York, N.Y.) 2014, 344:1396-1401.
    • (2014) Science (New York, N.Y.) , vol.344 , pp. 1396-1401
    • Patel, A.P.1
  • 80
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko P.V., et al. Bayesian approach to single-cell differential expression analysis. Nat. Methods 2014, 11:740-742.
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1
  • 81
    • 84894618996 scopus 로고    scopus 로고
    • The promise of single-cell sequencing
    • Eberwine J., et al. The promise of single-cell sequencing. Nat. Methods 2014, 11:25-27.
    • (2014) Nat. Methods , vol.11 , pp. 25-27
    • Eberwine, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.