메뉴 건너뛰기




Volumn 20, Issue 7, 2013, Pages 884-891

A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATASE; ADENOSINE TRIPHOSPHATE; COMPLEMENTARY DNA; HELICASE; PRIMER RNA; RNA HELICASE; RNA POLYMERASE II; SEN1P HELICASE; SINGLE STRANDED DNA; SINGLE STRANDED RNA; TRANSCRIPTION TERMINATION FACTOR RHO; UNCLASSIFIED DRUG; UNTRANSLATED RNA;

EID: 84880144255     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.2592     Document Type: Article
Times cited : (105)

References (54)
  • 1
    • 77957770031 scopus 로고    scopus 로고
    • Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain
    • Lunde, B.M. et al. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 17, 1195-1201 (2010).
    • (2010) Nat. Struct. Mol. Biol , vol.17 , pp. 1195-1201
    • Lunde, B.M.1
  • 2
    • 84862977456 scopus 로고    scopus 로고
    • CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II
    • Mayer, A. et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336, 1723-1725 (2012).
    • (2012) Science , vol.336 , pp. 1723-1725
    • Mayer, A.1
  • 3
    • 33845902048 scopus 로고    scopus 로고
    • Polyadenylation factor CPSF-73 is the pre-mRNA 3-end-processing endonuclease
    • Mandel, C.R. et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3-end-processing endonuclease. Nature 444, 953-956 (2006).
    • (2006) Nature , vol.444 , pp. 953-956
    • Mandel, C.R.1
  • 4
    • 0035921929 scopus 로고    scopus 로고
    • RNA-binding protein Nrd1 directs poly(A)-independent 3-end formation of RNA polymerase II transcripts
    • Steinmetz, E.J., Conrad, N.K., Brow, D.A. & Corden, J.L. RNA-binding protein Nrd1 directs poly(A)-independent 3-end formation of RNA polymerase II transcripts. Nature 413, 327-331 (2001).
    • (2001) Nature , vol.413 , pp. 327-331
    • Steinmetz, E.J.1    Conrad, N.K.2    Brow, D.A.3    Corden, J.L.4
  • 5
    • 33748435751 scopus 로고    scopus 로고
    • Transcription termination and nuclear degradation of cryptic unstable transcripts: A role for the nrd1-nab3 pathway in genome surveillance
    • Thiebaut, M., Kisseleva-Romanova, E., Rougemaille, M., Boulay, J. & Libri, D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol. Cell 23, 853-864 (2006).
    • (2006) Mol. Cell , vol.23 , pp. 853-864
    • Thiebaut, M.1    Kisseleva-Romanova, E.2    Rougemaille, M.3    Boulay, J.4    Libri, D.5
  • 6
    • 33748424364 scopus 로고    scopus 로고
    • Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3
    • Arigo, J.T., Eyler, D.E., Carroll, K.L. & Corden, J.L. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell 23, 841-851 (2006).
    • (2006) Mol. Cell , vol.23 , pp. 841-851
    • Arigo, J.T.1    Eyler, D.E.2    Carroll, K.L.3    Corden, J.L.4
  • 7
    • 70449953975 scopus 로고    scopus 로고
    • The complex eukaryotic transcriptome: Unexpected pervasive transcription and novel small RNAs
    • Jacquier, A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet. 10, 833-844 (2009).
    • (2009) Nat. Rev. Genet , vol.10 , pp. 833-844
    • Jacquier, A.1
  • 8
    • 84867167784 scopus 로고    scopus 로고
    • Cryptic transcription and early termination in the control of gene expression
    • Colin, J., Libri, D. & Porrua, O. Cryptic transcription and early termination in the control of gene expression. Genet. Res. Int. 2011, 653494 (2011).
    • (2011) Genet. Res. Int , vol.2011 , pp. 653494
    • Colin, J.1    Libri, D.2    Porrua, O.3
  • 9
    • 20444368036 scopus 로고    scopus 로고
    • Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase
    • Wyers, F. et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121, 725-737 (2005).
    • (2005) Cell , vol.121 , pp. 725-737
    • Wyers, F.1
  • 10
    • 80054759888 scopus 로고    scopus 로고
    • Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1
    • Creamer, T.J. et al. Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet. 7, e1002329 (2011).
    • (2011) PLoS Genet , vol.7
    • Creamer, T.J.1
  • 11
    • 84867036854 scopus 로고    scopus 로고
    • In vivo SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination
    • Porrua, O. et al. In vivo SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination. EMBO J. 31, 3935-3948 (2012).
    • (2012) EMBO J , vol.31 , pp. 3935-3948
    • Porrua, O.1
  • 12
    • 79955587252 scopus 로고    scopus 로고
    • The nuclear RNA polymerase II surveillance system targets polymerase III transcripts
    • Wlotzka, W., Kudla, G., Granneman, S. & Tollervey, D. The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J. 30, 1790-1803 (2011).
    • (2011) EMBO J , vol.30 , pp. 1790-1803
    • Wlotzka, W.1    Kudla, G.2    Granneman, S.3    Tollervey, D.4
  • 13
    • 49449110180 scopus 로고    scopus 로고
    • The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain
    • Vasiljeva, L., Kim, M., Mutschler, H., Buratowski, S. & Meinhart, A. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 15, 795-804 (2008).
    • (2008) Nat. Struct. Mol. Biol , vol.15 , pp. 795-804
    • Vasiljeva, L.1    Kim, M.2    Mutschler, H.3    Buratowski, S.4    Meinhart, A.5
  • 14
    • 84865845346 scopus 로고    scopus 로고
    • Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1
    • Kubicek, K. et al. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev. 26, 1891-1896 (2012).
    • (2012) Genes Dev , vol.26 , pp. 1891-1896
    • Kubicek, K.1
  • 15
    • 84859139467 scopus 로고    scopus 로고
    • Interactions of Sen1, Nrd1, and Nab3 with multiple phosphorylated forms of the Rpb1 C-terminal domain in Saccharomyces cerevisiae
    • Chinchilla, K. et al. Interactions of Sen1, Nrd1, and Nab3 with multiple phosphorylated forms of the Rpb1 C-terminal domain in Saccharomyces cerevisiae. Eukaryot. Cell 11, 417-429 (2012).
    • (2012) Eukaryot. Cell , vol.11 , pp. 417-429
    • Chinchilla, K.1
  • 16
    • 0026704586 scopus 로고
    • SEN1, a positive effector of tRNA-splicing endonuclease in Saccharomyces cerevisiae
    • DeMarini, D.J., Winey, M., Ursic, D., Webb, F. & Culbertson, M.R. SEN1, a positive effector of tRNA-splicing endonuclease in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 2154-2164 (1992).
    • (1992) Mol. Cell. Biol , vol.12 , pp. 2154-2164
    • Demarini, D.J.1    Winey, M.2    Ursic, D.3    Webb, F.4    Culbertson, M.R.5
  • 17
    • 74249094928 scopus 로고    scopus 로고
    • Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae
    • Finkel, J.S., Chinchilla, K., Ursic, D. & Culbertson, M.R. Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae. Genetics 184, 107-118 (2010).
    • (2010) Genetics , vol.184 , pp. 107-118
    • Finkel, J.S.1    Chinchilla, K.2    Ursic, D.3    Culbertson, M.R.4
  • 18
    • 33751504083 scopus 로고    scopus 로고
    • Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase
    • Steinmetz, E.J. et al. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol. Cell 24, 735-746 (2006).
    • (2006) Mol. Cell , vol.24 , pp. 735-746
    • Steinmetz, E.J.1
  • 19
    • 79959345878 scopus 로고    scopus 로고
    • Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination
    • Skourti-Stathaki, K., Proudfoot, N.J. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794-805 (2011).
    • (2011) Mol. Cell , vol.42 , pp. 794-805
    • Skourti-Stathaki, K.1    Proudfoot, N.J.2    Gromak, N.3
  • 20
    • 84866366785 scopus 로고    scopus 로고
    • Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII
    • Wagschal, A. et al. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell 150, 1147-1157 (2012).
    • (2012) Cell , vol.150 , pp. 1147-1157
    • Wagschal, A.1
  • 21
    • 33750992481 scopus 로고    scopus 로고
    • The molecular genetics of non-ALS motor neuron diseases
    • James, P.A. & Talbot, K. The molecular genetics of non-ALS motor neuron diseases. Biochim. Biophys. Acta 1762, 986-1000 (2006).
    • (2006) Biochim. Biophys. Acta , vol.1762 , pp. 986-1000
    • James, P.A.1    Talbot, K.2
  • 22
    • 34248181247 scopus 로고    scopus 로고
    • Autosomal recessive cerebellar ataxias
    • Palau, F. & Espinos, C. Autosomal recessive cerebellar ataxias. Orphanet J. Rare Dis. 1, 47 (2006).
    • (2006) Orphanet J. Rare Dis , vol.1 , pp. 47
    • Palau, F.1    Espinos, C.2
  • 23
    • 78650727733 scopus 로고    scopus 로고
    • Yeast Sen1 helicase protects the genome from transcription-associated instability
    • Mischo, H.E. et al. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol. Cell 41, 21-32 (2011).
    • (2011) Mol. Cell , vol.41 , pp. 21-32
    • Mischo, H.E.1
  • 24
    • 34250775522 scopus 로고    scopus 로고
    • Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage
    • Suraweera, A. et al. Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. J. Cell Biol. 177, 969-979 (2007).
    • (2007) J. Cell Biol , vol.177 , pp. 969-979
    • Suraweera, A.1
  • 25
    • 49449105283 scopus 로고    scopus 로고
    • Phosphorylation of RNA polymerase II C-terminal domain dictates transcription termination choice
    • Gudipati, R.K., Villa, T., Boulay, J. & Libri, D. Phosphorylation of RNA polymerase II C-terminal domain dictates transcription termination choice. Nat. Struct. Mol. Biol. 15, 786-794 (2008).
    • (2008) Nat. Struct. Mol. Biol , vol.15 , pp. 786-794
    • Gudipati, R.K.1    Villa, T.2    Boulay, J.3    Libri, D.4
  • 26
    • 34147208065 scopus 로고    scopus 로고
    • Metabolic regulation of IMD2 transcription and an unusual DNA element that generates short transcripts
    • Kopcewicz, K.A., O'Rourke, T.W. & Reines, D. Metabolic regulation of IMD2 transcription and an unusual DNA element that generates short transcripts. Mol. Cell. Biol. 27, 2821-2829 (2007).
    • (2007) Mol. Cell. Biol , vol.27 , pp. 2821-2829
    • Kopcewicz, K.A.1    O'rourke, T.W.2    Reines, D.3
  • 27
    • 33645226793 scopus 로고    scopus 로고
    • Cis-and trans-acting determinants of transcription termination by yeast RNA polymerase II
    • Steinmetz, E.J., Ng, S.B., Cloute, J.P. & Brow, D.A. cis-and trans-acting determinants of transcription termination by yeast RNA polymerase II. Mol. Cell. Biol. 26, 2688-2696 (2006).
    • (2006) Mol. Cell. Biol , vol.26 , pp. 2688-2696
    • Steinmetz, E.J.1    Ng, S.B.2    Cloute, J.P.3    Brow, D.A.4
  • 28
    • 9644310314 scopus 로고    scopus 로고
    • The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II
    • Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517-522 (2004).
    • (2004) Nature , vol.432 , pp. 517-522
    • Kim, M.1
  • 29
    • 0035947082 scopus 로고    scopus 로고
    • Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination
    • Calvo, O. & Manley, J.L. Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination. Mol. Cell 7, 1013-1023 (2001).
    • (2001) Mol. Cell , vol.7 , pp. 1013-1023
    • Calvo, O.1    Manley, J.L.2
  • 30
    • 0027296170 scopus 로고
    • Transcriptional antitermination
    • Greenblatt, J., Nodwell, J.R. & Mason, S.W. Transcriptional antitermination. Nature 364, 401-406 (1993).
    • (1993) Nature , vol.364 , pp. 401-406
    • Greenblatt, J.1    Nodwell, J.R.2    Mason, S.W.3
  • 31
    • 0023478621 scopus 로고
    • A poly(A) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse maj-globin gene
    • Logan, J., Falck-Pedersen, E., Darnell, J.E. Jr. & Shenk, T. A poly(A) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse maj-globin gene. Proc. Natl. Acad. Sci. USA 84, 8306-8310 (1987).
    • (1987) Proc. Natl. Acad. Sci. USA , vol.84 , pp. 8306-8310
    • Logan, J.1    Falck-Pedersen, E.2    Darnell Jr., J.E.3    Shenk, T.4
  • 32
    • 22344443368 scopus 로고    scopus 로고
    • CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3-end processing factor, Pcf11
    • Zhang, Z., Fu, J. & Gilmour, D.S. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3-end processing factor, Pcf11. Genes Dev. 19, 1572-1580 (2005).
    • (2005) Genes Dev , vol.19 , pp. 1572-1580
    • Zhang, Z.1    Fu, J.2    Gilmour, D.S.3
  • 33
    • 33751506478 scopus 로고    scopus 로고
    • Distinct pathways for snoRNA and mRNA termination
    • Kim, M. et al. Distinct pathways for snoRNA and mRNA termination. Mol. Cell 24, 723-734 (2006).
    • (2006) Mol. Cell , vol.24 , pp. 723-734
    • Kim, M.1
  • 34
    • 42149154858 scopus 로고    scopus 로고
    • Budding yeast RNA polymerases i and II employ parallel mechanisms of transcriptional termination
    • Kawauchi, J., Mischo, H., Braglia, P., Rondon, A. & Proudfoot, N.J. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination. Genes Dev. 22, 1082-1092 (2008).
    • (2008) Genes Dev , vol.22 , pp. 1082-1092
    • Kawauchi, J.1    Mischo, H.2    Braglia, P.3    Rondon, A.4    Proudfoot, N.J.5
  • 35
    • 0034051171 scopus 로고    scopus 로고
    • The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex
    • Kireeva, M.L., Komissarova, N., Waugh, D.S. & Kashlev, M. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J. Biol. Chem. 275, 6530-6536 (2000).
    • (2000) J. Biol. Chem , vol.275 , pp. 6530-6536
    • Kireeva, M.L.1    Komissarova, N.2    Waugh, D.S.3    Kashlev, M.4
  • 36
    • 34247096165 scopus 로고    scopus 로고
    • Contending with transcriptional arrest during RNAPII transcript elongation
    • Svejstrup, J.Q. Contending with transcriptional arrest during RNAPII transcript elongation. Trends Biochem. Sci. 32, 165-171 (2007).
    • (2007) Trends Biochem. Sci , vol.32 , pp. 165-171
    • Svejstrup, J.Q.1
  • 37
    • 0032574715 scopus 로고    scopus 로고
    • Escherichia coli rho factor induces release of yeast RNA polymerase II but not polymerase i or III
    • Lang, W.H., Platt, T. & Reeder, R.H. Escherichia coli rho factor induces release of yeast RNA polymerase II but not polymerase I or III. Proc. Natl. Acad. Sci. USA 95, 4900-4905 (1998).
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 4900-4905
    • Lang, W.H.1    Platt, T.2    Reeder, R.H.3
  • 38
    • 79960395328 scopus 로고    scopus 로고
    • Bacterial transcription terminators: The RNA 3-end chronicles
    • Peters, J.M., Vangeloff, A.D. & Landick, R. Bacterial transcription terminators: the RNA 3-end chronicles. J. Mol. Biol. 412, 793-813 (2011).
    • (2011) J. Mol. Biol , vol.412 , pp. 793-813
    • Peters, J.M.1    Vangeloff, A.D.2    Landick, R.3
  • 39
    • 0019942476 scopus 로고
    • Mechanism of RNA polymerase II-specific initiation of transcription in vitro: ATP requirement and uncapped runoff transcripts
    • Bunick, D., Zandomeni, R., Ackerman, S. & Weinmann, R. Mechanism of RNA polymerase II-specific initiation of transcription in vitro: ATP requirement and uncapped runoff transcripts. Cell 29, 877-886 (1982).
    • (1982) Cell , vol.29 , pp. 877-886
    • Bunick, D.1    Zandomeni, R.2    Ackerman, S.3    Weinmann, R.4
  • 41
    • 79952686670 scopus 로고    scopus 로고
    • Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2
    • Chakrabarti, S. et al. Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol. Cell 41, 693-703 (2011).
    • (2011) Mol. Cell , vol.41 , pp. 693-703
    • Chakrabarti, S.1
  • 42
    • 1242273889 scopus 로고    scopus 로고
    • Structure and function of RNA polymerase II
    • Cramer, P. Structure and function of RNA polymerase II. Adv. Protein Chem. 67, 1-42 (2004).
    • (2004) Adv. Protein Chem , vol.67 , pp. 1-42
    • Cramer, P.1
  • 43
    • 70350031808 scopus 로고    scopus 로고
    • The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway
    • Singh, N. et al. The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway. Mol. Cell 36, 255-266 (2009).
    • (2009) Mol. Cell , vol.36 , pp. 255-266
    • Singh, N.1
  • 44
    • 73649086853 scopus 로고    scopus 로고
    • A bacterial transcription terminator with inefficient molecular motor action but with a robust transcription termination function
    • Kalarickal, N.C., Ranjan, A., Kalyani, B.S., Wal, M. & Sen, R. A bacterial transcription terminator with inefficient molecular motor action but with a robust transcription termination function. J. Mol. Biol. 395, 966-982 (2010).
    • (2010) J. Mol. Biol , vol.395 , pp. 966-982
    • Kalarickal, N.C.1    Ranjan, A.2    Kalyani, B.S.3    Wal, M.4    Sen, R.5
  • 45
    • 78650854687 scopus 로고    scopus 로고
    • RNA helicases at work: Binding and rearranging
    • Jankowsky, E. RNA helicases at work: binding and rearranging. Trends Biochem. Sci. 36, 19-29 (2011).
    • (2011) Trends Biochem. Sci , vol.36 , pp. 19-29
    • Jankowsky, E.1
  • 46
    • 34548507690 scopus 로고    scopus 로고
    • In vivo dynamics of RNA polymerase II transcription
    • Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14, 796-806 (2007).
    • (2007) Nat. Struct. Mol. Biol , vol.14 , pp. 796-806
    • Darzacq, X.1
  • 47
    • 57149101122 scopus 로고    scopus 로고
    • Single-RNA counting reveals alternative modes of gene expression in yeast
    • Zenklusen, D., Larson, D.R. & Singer, R.H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15 1263-1271 (2008).
    • (2008) Nat. Struct. Mol. Biol , vol.15 , pp. 1263-1271
    • Zenklusen, D.1    Larson, D.R.2    Singer, R.H.3
  • 48
    • 84872269907 scopus 로고    scopus 로고
    • Kinetic competition between RNA Polymerase II and Sen1-dependent transcription termination
    • Hazelbaker, D.Z., Marquardt, S., Wlotzka, W. & Buratowski, S. Kinetic competition between RNA Polymerase II and Sen1-dependent transcription termination. Mol. Cell 49, 55-66 (2013).
    • (2013) Mol. Cell , vol.49 , pp. 55-66
    • Hazelbaker, D.Z.1    Marquardt, S.2    Wlotzka, W.3    Buratowski, S.4
  • 49
    • 74549191169 scopus 로고    scopus 로고
    • An allosteric mechanism of Rho-dependent transcription termination
    • Epshtein, V., Dutta, D., Wade, J. & Nudler, E. An allosteric mechanism of Rho-dependent transcription termination. Nature 463, 245-249 (2010).
    • (2010) Nature , vol.463 , pp. 245-249
    • Epshtein, V.1    Dutta, D.2    Wade, J.3    Nudler, E.4
  • 50
    • 9644308046 scopus 로고    scopus 로고
    • Human 5 3 exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites
    • West, S., Gromak, N. & Proudfoot, N.J. Human 5 3 exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522-525 (2004).
    • (2004) Nature , vol.432 , pp. 522-525
    • West, S.1    Gromak, N.2    Proudfoot, N.J.3
  • 51
    • 0033517855 scopus 로고    scopus 로고
    • The sen1+ gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase
    • Kim, H.D., Choe, J. & Seo, Y.S. The sen1+ gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry 38, 14697-14710 (1999).
    • (1999) Biochemistry , vol.38 , pp. 14697-14710
    • Kim, H.D.1    Choe, J.2    Seo, Y.S.3
  • 52
    • 0142215475 scopus 로고    scopus 로고
    • Global analysis of protein expression in yeast
    • Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737-741 (2003).
    • (2003) Nature , vol.425 , pp. 737-741
    • Ghaemmaghami, S.1
  • 53
    • 0035861582 scopus 로고    scopus 로고
    • Quantitation of the RNA polymerase II transcription machinery in yeast
    • Borggrefe, T., Davis, R., Bareket-Samish, A. & Kornberg, R.D. Quantitation of the RNA polymerase II transcription machinery in yeast. J. Biol. Chem. 276, 47150-47153 (2001).
    • (2001) J. Biol. Chem , vol.276 , pp. 47150-47153
    • Borggrefe, T.1    Davis, R.2    Bareket-Samish, A.3    Kornberg, R.D.4
  • 54
    • 0030947346 scopus 로고    scopus 로고
    • Evidence for a mediator cycle at the initiation of transcription
    • Svejstrup, J.Q. et al. Evidence for a mediator cycle at the initiation of transcription. Proc. Natl. Acad. Sci. USA 94, 6075-6078 (1997).
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 6075-6078
    • Svejstrup, J.Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.