메뉴 건너뛰기




Volumn 35, Issue 6, 2010, Pages 333-338

The interface between transcription and mechanisms maintaining genome integrity

Author keywords

[No Author keywords available]

Indexed keywords

DNA; DOUBLE STRANDED DNA; MESSENGER RNA; RECQ HELICASE; RNA POLYMERASE II; SINGLE STRANDED DNA; UBIQUITIN PROTEIN LIGASE NEDD4;

EID: 77954759085     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2010.02.001     Document Type: Review
Times cited : (60)

References (71)
  • 1
    • 68649123353 scopus 로고    scopus 로고
    • Duplication hotspots, rare genomic disorders, and common disease
    • Mefford H.C., Eichler E.E. Duplication hotspots, rare genomic disorders, and common disease. Curr. Opin. Genet. Dev. 2009, 19:196-204.
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , pp. 196-204
    • Mefford, H.C.1    Eichler, E.E.2
  • 2
    • 70349623314 scopus 로고    scopus 로고
    • Cis-regulatory mutations in human disease
    • Epstein D.J. Cis-regulatory mutations in human disease. Brief Funct. Genomics Proteomics 2009, 8:310-316.
    • (2009) Brief Funct. Genomics Proteomics , vol.8 , pp. 310-316
    • Epstein, D.J.1
  • 3
    • 1542268297 scopus 로고    scopus 로고
    • Molecular genetic testing for inherited disorders
    • Pagon R.A. Molecular genetic testing for inherited disorders. Expert Rev. Mol. Diagn. 2004, 4:135-140.
    • (2004) Expert Rev. Mol. Diagn. , vol.4 , pp. 135-140
    • Pagon, R.A.1
  • 4
    • 44949126999 scopus 로고    scopus 로고
    • Nucleotide excision repair and neurological diseases
    • Nouspikel T. Nucleotide excision repair and neurological diseases. DNA Repair (Amst.) 2008, 7:1155-1167.
    • (2008) DNA Repair (Amst.) , vol.7 , pp. 1155-1167
    • Nouspikel, T.1
  • 5
    • 0034054019 scopus 로고    scopus 로고
    • Nucleotide excision repair and human syndromes
    • de Boer J., Hoeijmakers J.H. Nucleotide excision repair and human syndromes. Carcinogenesis 2000, 21:453-460.
    • (2000) Carcinogenesis , vol.21 , pp. 453-460
    • de Boer, J.1    Hoeijmakers, J.H.2
  • 6
    • 0036363646 scopus 로고    scopus 로고
    • Mechanisms of transcription-coupled DNA repair
    • Svejstrup J.Q. Mechanisms of transcription-coupled DNA repair. Nat. Rev. Mol. Cell Biol. 2002, 3:21-29.
    • (2002) Nat. Rev. Mol. Cell Biol. , vol.3 , pp. 21-29
    • Svejstrup, J.Q.1
  • 7
    • 56749157389 scopus 로고    scopus 로고
    • Transcription-coupled DNA repair: two decades of progress and surprises
    • Hanawalt P.C., Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 2008, 9:958-970.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 958-970
    • Hanawalt, P.C.1    Spivak, G.2
  • 8
    • 0033634972 scopus 로고    scopus 로고
    • Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes
    • Yu A., et al. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol. Cell 2000, 5:801-810.
    • (2000) Mol. Cell , vol.5 , pp. 801-810
    • Yu, A.1
  • 9
    • 0036469913 scopus 로고    scopus 로고
    • The connection between transcription and genomic instability
    • Aguilera A. The connection between transcription and genomic instability. EMBO J. 2002, 21:195-201.
    • (2002) EMBO J. , vol.21 , pp. 195-201
    • Aguilera, A.1
  • 10
    • 33644661156 scopus 로고    scopus 로고
    • RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis?
    • Saxowsky T.T., Doetsch P.W. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis?. Chem. Rev. 2006, 106:474-488.
    • (2006) Chem. Rev. , vol.106 , pp. 474-488
    • Saxowsky, T.T.1    Doetsch, P.W.2
  • 11
    • 33746641324 scopus 로고    scopus 로고
    • Nucleosome displacement in transcription
    • Workman J.L. Nucleosome displacement in transcription. Genes Dev. 2006, 20:2009-2017.
    • (2006) Genes Dev. , vol.20 , pp. 2009-2017
    • Workman, J.L.1
  • 12
    • 34247603479 scopus 로고    scopus 로고
    • RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS
    • Kuraoka I., et al. RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS. DNA Repair (Amst.) 2007, 6:841-851.
    • (2007) DNA Repair (Amst.) , vol.6 , pp. 841-851
    • Kuraoka, I.1
  • 13
    • 33751559420 scopus 로고    scopus 로고
    • RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors
    • Charlet-Berguerand N., et al. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J. 2006, 25:5481-5491.
    • (2006) EMBO J. , vol.25 , pp. 5481-5491
    • Charlet-Berguerand, N.1
  • 14
    • 2442504817 scopus 로고    scopus 로고
    • Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts
    • Kathe S.D., et al. Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts. J. Biol. Chem. 2004, 279:18511-18520.
    • (2004) J. Biol. Chem. , vol.279 , pp. 18511-18520
    • Kathe, S.D.1
  • 15
    • 0035977062 scopus 로고    scopus 로고
    • Effect of thymine glycol on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II
    • Tornaletti S., et al. Effect of thymine glycol on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. J. Biol. Chem. 2001, 276:45367-45371.
    • (2001) J. Biol. Chem. , vol.276 , pp. 45367-45371
    • Tornaletti, S.1
  • 16
    • 24044476230 scopus 로고    scopus 로고
    • Transcription arrest at DNA damage sites
    • Tornaletti S. Transcription arrest at DNA damage sites. Mutat. Res. 2005, 577:131-145.
    • (2005) Mutat. Res. , vol.577 , pp. 131-145
    • Tornaletti, S.1
  • 17
    • 34247096165 scopus 로고    scopus 로고
    • Contending with transcriptional arrest during RNAPII transcript elongation
    • Svejstrup J.Q. Contending with transcriptional arrest during RNAPII transcript elongation. Trends Biochem. Sci. 2007, 32:165-171.
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 165-171
    • Svejstrup, J.Q.1
  • 18
    • 62349131315 scopus 로고    scopus 로고
    • DNA repair in mammalian cells: nucleotide excision repair: variations on versatility
    • Nouspikel T. DNA repair in mammalian cells: nucleotide excision repair: variations on versatility. Cell. Mol. Life Sci. 2009, 66:994-1009.
    • (2009) Cell. Mol. Life Sci. , vol.66 , pp. 994-1009
    • Nouspikel, T.1
  • 19
    • 33746666589 scopus 로고    scopus 로고
    • When transcription and repair meet: a complex system
    • Laine J.P., Egly J.M. When transcription and repair meet: a complex system. Trends Genet. 2006, 22:430-436.
    • (2006) Trends Genet. , vol.22 , pp. 430-436
    • Laine, J.P.1    Egly, J.M.2
  • 20
    • 31444444611 scopus 로고    scopus 로고
    • Initiation of DNA repair mediated by a stalled RNA polymerase IIO
    • Laine J.P., Egly J.M. Initiation of DNA repair mediated by a stalled RNA polymerase IIO. EMBO J. 2006, 25:387-397.
    • (2006) EMBO J. , vol.25 , pp. 387-397
    • Laine, J.P.1    Egly, J.M.2
  • 21
    • 33747194740 scopus 로고    scopus 로고
    • Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo
    • Fousteri M., et al. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell 2006, 23:471-482.
    • (2006) Mol. Cell , vol.23 , pp. 471-482
    • Fousteri, M.1
  • 22
    • 67650725820 scopus 로고    scopus 로고
    • The biology of chromatin remodeling complexes
    • Clapier C.R., Cairns B.R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 2009, 78:273-304.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 273-304
    • Clapier, C.R.1    Cairns, B.R.2
  • 23
    • 0037509859 scopus 로고    scopus 로고
    • The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage
    • Groisman R., et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 2003, 113:357-367.
    • (2003) Cell , vol.113 , pp. 357-367
    • Groisman, R.1
  • 24
    • 33744795969 scopus 로고    scopus 로고
    • CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome
    • Groisman R., et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 2006, 20:1429-1434.
    • (2006) Genes Dev. , vol.20 , pp. 1429-1434
    • Groisman, R.1
  • 25
    • 0029859295 scopus 로고    scopus 로고
    • UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells
    • Bregman D.B., et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl. Acad. Sci. U. S. A. 1996, 93:11586-11590.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 11586-11590
    • Bregman, D.B.1
  • 26
    • 0032570562 scopus 로고    scopus 로고
    • Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair
    • Ratner J.N., et al. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 1998, 273:5184-5189.
    • (1998) J. Biol. Chem. , vol.273 , pp. 5184-5189
    • Ratner, J.N.1
  • 27
    • 73949101221 scopus 로고    scopus 로고
    • Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation
    • Harreman M., et al. Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:20710-20805.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 20710-20805
    • Harreman, M.1
  • 28
    • 43449113530 scopus 로고    scopus 로고
    • Reversal of RNA polymerase II ubiquitylation by the ubiquitin protease Ubp3
    • Kvint K., et al. Reversal of RNA polymerase II ubiquitylation by the ubiquitin protease Ubp3. Mol. Cell 2008, 30:498-506.
    • (2008) Mol. Cell , vol.30 , pp. 498-506
    • Kvint, K.1
  • 29
    • 35748950163 scopus 로고    scopus 로고
    • Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1
    • Anindya R., et al. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol. Cell 2007, 28:386-397.
    • (2007) Mol. Cell , vol.28 , pp. 386-397
    • Anindya, R.1
  • 30
    • 20444428382 scopus 로고    scopus 로고
    • Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest
    • Somesh B.P., et al. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell 2005, 121:913-923.
    • (2005) Cell , vol.121 , pp. 913-923
    • Somesh, B.P.1
  • 31
    • 33947720525 scopus 로고    scopus 로고
    • Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD
    • Somesh B.P., et al. Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell 2007, 129:57-68.
    • (2007) Cell , vol.129 , pp. 57-68
    • Somesh, B.P.1
  • 32
    • 0037148786 scopus 로고    scopus 로고
    • A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage
    • Woudstra E.C., et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 2002, 415:929-933.
    • (2002) Nature , vol.415 , pp. 929-933
    • Woudstra, E.C.1
  • 33
    • 0030822591 scopus 로고    scopus 로고
    • Cockayne syndrome group B protein enhances elongation by RNA polymerase II
    • Selby C.P., Sancar A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:11205-11209.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 11205-11209
    • Selby, C.P.1    Sancar, A.2
  • 34
    • 0033806183 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor
    • Citterio E., et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell. Biol. 2000, 20:7643-7653.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 7643-7653
    • Citterio, E.1
  • 35
    • 68249102864 scopus 로고    scopus 로고
    • DNA replication as a target of the DNA damage checkpoint
    • Zegerman P., Diffley J.F. DNA replication as a target of the DNA damage checkpoint. DNA Repair (Amst.) 2009, 8:1077-1088.
    • (2009) DNA Repair (Amst.) , vol.8 , pp. 1077-1088
    • Zegerman, P.1    Diffley, J.F.2
  • 36
    • 73549118561 scopus 로고    scopus 로고
    • A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae
    • Taschner M., et al. A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae. Mol. Cell Biol. 2010, 30:436-446.
    • (2010) Mol. Cell Biol. , vol.30 , pp. 436-446
    • Taschner, M.1
  • 37
    • 34547627642 scopus 로고    scopus 로고
    • Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates
    • Wong H.K., et al. Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. Nucleic Acids Res. 2007, 35:4103-4113.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 4103-4113
    • Wong, H.K.1
  • 38
    • 0141869885 scopus 로고    scopus 로고
    • Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress
    • Tuo J., et al. Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress. FASEB J. 2003, 17:668-674.
    • (2003) FASEB J. , vol.17 , pp. 668-674
    • Tuo, J.1
  • 39
    • 66149114804 scopus 로고    scopus 로고
    • Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase
    • Muftuoglu M., et al. Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase. J. Biol. Chem. 2009, 284:9270-9279.
    • (2009) J. Biol. Chem. , vol.284 , pp. 9270-9279
    • Muftuoglu, M.1
  • 40
    • 0041828953 scopus 로고    scopus 로고
    • Transcription elongation factors repress transcription initiation from cryptic sites
    • Kaplan C.D., et al. Transcription elongation factors repress transcription initiation from cryptic sites. Science 2003, 301:1096-1099.
    • (2003) Science , vol.301 , pp. 1096-1099
    • Kaplan, C.D.1
  • 41
    • 0242579933 scopus 로고    scopus 로고
    • The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo
    • Mason P.B., Struhl K. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol. Cell. Biol. 2003, 23:8323-8333.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 8323-8333
    • Mason, P.B.1    Struhl, K.2
  • 42
    • 3543023310 scopus 로고    scopus 로고
    • Evidence for nucleosome depletion at active regulatory regions genome-wide
    • Lee C.K., et al. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 2004, 36:900-905.
    • (2004) Nat. Genet. , vol.36 , pp. 900-905
    • Lee, C.K.1
  • 43
    • 8444245244 scopus 로고    scopus 로고
    • Global nucleosome occupancy in yeast. Genome Biol. 5, R62, published online
    • Bernstein, B.E. et al. (2004) Global nucleosome occupancy in yeast. Genome Biol. 5, R62, published online.
    • (2004)
    • Bernstein, B.E.1
  • 44
    • 9144274420 scopus 로고    scopus 로고
    • Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo
    • Kristjuhan A., Svejstrup J.Q. Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J. 2004, 23:4243-4252.
    • (2004) EMBO J. , vol.23 , pp. 4243-4252
    • Kristjuhan, A.1    Svejstrup, J.Q.2
  • 45
    • 8644287437 scopus 로고    scopus 로고
    • Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II
    • Schwabish M.A., Struhl K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 2004, 24:10111-10117.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 10111-10117
    • Schwabish, M.A.1    Struhl, K.2
  • 46
    • 69449108384 scopus 로고    scopus 로고
    • Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription
    • Bermejo R., et al. Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription. Cell 2009, 138:870-884.
    • (2009) Cell , vol.138 , pp. 870-884
    • Bermejo, R.1
  • 47
    • 67449113551 scopus 로고    scopus 로고
    • Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae
    • Azvolinsky A., et al. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 2009, 34:722-734.
    • (2009) Mol. Cell , vol.34 , pp. 722-734
    • Azvolinsky, A.1
  • 48
    • 34547789312 scopus 로고    scopus 로고
    • Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication
    • Kim N., et al. Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication. DNA Repair (Amst.) 2007, 6:1285-1296.
    • (2007) DNA Repair (Amst.) , vol.6 , pp. 1285-1296
    • Kim, N.1
  • 49
    • 42949119884 scopus 로고    scopus 로고
    • Division of labor at the eukaryotic replication fork
    • Nick McElhinny S.A., et al. Division of labor at the eukaryotic replication fork. Mol. Cell 2008, 30:137-144.
    • (2008) Mol. Cell , vol.30 , pp. 137-144
    • Nick McElhinny, S.A.1
  • 50
    • 67649559461 scopus 로고    scopus 로고
    • DUTP incorporation into genomic DNA is linked to transcription in yeast
    • Kim N., Jinks-Robertson S. dUTP incorporation into genomic DNA is linked to transcription in yeast. Nature 2009, 459:1150-1153.
    • (2009) Nature , vol.459 , pp. 1150-1153
    • Kim, N.1    Jinks-Robertson, S.2
  • 51
    • 0034503096 scopus 로고    scopus 로고
    • DNA polymerase zeta introduces multiple mutations when bypassing spontaneous DNA damage in Saccharomyces cerevisiae
    • Harfe B.D., Jinks-Robertson S. DNA polymerase zeta introduces multiple mutations when bypassing spontaneous DNA damage in Saccharomyces cerevisiae. Mol. Cell 2000, 6:1491-1499.
    • (2000) Mol. Cell , vol.6 , pp. 1491-1499
    • Harfe, B.D.1    Jinks-Robertson, S.2
  • 52
    • 67650429924 scopus 로고    scopus 로고
    • Y-family DNA polymerases in mammalian cells
    • Guo C., et al. Y-family DNA polymerases in mammalian cells. Cell. Mol. Life Sci. 2009, 66:2363-2381.
    • (2009) Cell. Mol. Life Sci. , vol.66 , pp. 2363-2381
    • Guo, C.1
  • 53
    • 66749175352 scopus 로고    scopus 로고
    • Transcription-associated recombination in eukaryotes: link between transcription, replication and recombination
    • Gottipati P., Helleday T. Transcription-associated recombination in eukaryotes: link between transcription, replication and recombination. Mutagenesis 2009, 24:203-210.
    • (2009) Mutagenesis , vol.24 , pp. 203-210
    • Gottipati, P.1    Helleday, T.2
  • 54
    • 17144426028 scopus 로고    scopus 로고
    • Impairment of replication fork progression mediates RNA polII transcription-associated recombination
    • Prado F., Aguilera A. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J. 2005, 24:1267-1276.
    • (2005) EMBO J. , vol.24 , pp. 1267-1276
    • Prado, F.1    Aguilera, A.2
  • 55
    • 33645823661 scopus 로고    scopus 로고
    • Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex
    • Wellinger R.E., et al. Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol. Cell. Biol. 2006, 26:3327-3334.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 3327-3334
    • Wellinger, R.E.1
  • 56
    • 37549026516 scopus 로고    scopus 로고
    • Transcription-associated recombination is dependent on replication in mammalian cells
    • Gottipati P., et al. Transcription-associated recombination is dependent on replication in mammalian cells. Mol. Cell. Biol. 2008, 28:154-164.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 154-164
    • Gottipati, P.1
  • 57
    • 34347218988 scopus 로고    scopus 로고
    • Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex
    • Gomez-Gonzalez B., Aguilera A. Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:8409-8414.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 8409-8414
    • Gomez-Gonzalez, B.1    Aguilera, A.2
  • 58
    • 0141819093 scopus 로고    scopus 로고
    • Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination
    • Huertas P., Aguilera A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 2003, 12:711-721.
    • (2003) Mol. Cell , vol.12 , pp. 711-721
    • Huertas, P.1    Aguilera, A.2
  • 59
    • 0037650190 scopus 로고    scopus 로고
    • R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells
    • Yu K., et al. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 2003, 4:442-451.
    • (2003) Nat. Immunol. , vol.4 , pp. 442-451
    • Yu, K.1
  • 60
    • 70349335582 scopus 로고    scopus 로고
    • The S-phase checkpoint is required to respond to R-loops accumulated in THO mutants
    • Gomez-Gonzalez B., et al. The S-phase checkpoint is required to respond to R-loops accumulated in THO mutants. Mol. Cell. Biol. 2009, 29:5203-5213.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5203-5213
    • Gomez-Gonzalez, B.1
  • 61
    • 47249100637 scopus 로고    scopus 로고
    • A RECQ5-RNA polymerase II association identified by targeted proteomic analysis of human chromatin
    • Aygun O., et al. A RECQ5-RNA polymerase II association identified by targeted proteomic analysis of human chromatin. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:8580-8584.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 8580-8584
    • Aygun, O.1
  • 62
    • 17644410077 scopus 로고    scopus 로고
    • Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers
    • Hu Y., et al. Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol. Cell. Biol. 2005, 25:3431-3442.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 3431-3442
    • Hu, Y.1
  • 63
    • 36849013079 scopus 로고    scopus 로고
    • RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments
    • Hu Y., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev. 2007, 21:3073-3084.
    • (2007) Genes Dev. , vol.21 , pp. 3073-3084
    • Hu, Y.1
  • 64
    • 56449090762 scopus 로고    scopus 로고
    • Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance
    • Bohr V.A. Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem. Sci. 2008, 33:609-620.
    • (2008) Trends Biochem. Sci. , vol.33 , pp. 609-620
    • Bohr, V.A.1
  • 65
    • 63049125856 scopus 로고    scopus 로고
    • Recql5 plays an important role in DNA replication and cell survival after camptothecin treatment
    • Hu Y., et al. Recql5 plays an important role in DNA replication and cell survival after camptothecin treatment. Mol. Biol. Cell 2009, 20:114-123.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 114-123
    • Hu, Y.1
  • 66
    • 69949145039 scopus 로고    scopus 로고
    • Direct inhibition of RNA polymerase II transcription by RECQL5
    • Aygun O., et al. Direct inhibition of RNA polymerase II transcription by RECQL5. J. Biol. Chem. 2009, 284:23197-23203.
    • (2009) J. Biol. Chem. , vol.284 , pp. 23197-23203
    • Aygun, O.1
  • 67
    • 70350751416 scopus 로고    scopus 로고
    • Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing
    • Remus D., et al. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 2009, 139:719-730.
    • (2009) Cell , vol.139 , pp. 719-730
    • Remus, D.1
  • 68
    • 0037456369 scopus 로고    scopus 로고
    • Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA
    • Aas P.A., et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 2003, 421:859-863.
    • (2003) Nature , vol.421 , pp. 859-863
    • Aas, P.A.1
  • 69
    • 68249087104 scopus 로고    scopus 로고
    • Transcriptional mutagenesis induced by 8-oxoguanine in mammalian cells
    • e1000577
    • Bregeon D., et al. Transcriptional mutagenesis induced by 8-oxoguanine in mammalian cells. PLoS Genet. 2009, 5. e1000577.
    • (2009) PLoS Genet. , vol.5
    • Bregeon, D.1
  • 70
    • 57749121608 scopus 로고    scopus 로고
    • 8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells
    • Saxowsky T.T., et al. 8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:18877-18882.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 18877-18882
    • Saxowsky, T.T.1
  • 71
    • 33646589650 scopus 로고    scopus 로고
    • Cockayne syndrome B protein regulates the transcriptional program after UV irradiation
    • Proietti-De-Santis L., et al. Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO J. 2006, 25:1915-1923.
    • (2006) EMBO J. , vol.25 , pp. 1915-1923
    • Proietti-De-Santis, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.