-
1
-
-
68649123353
-
Duplication hotspots, rare genomic disorders, and common disease
-
Mefford H.C., Eichler E.E. Duplication hotspots, rare genomic disorders, and common disease. Curr. Opin. Genet. Dev. 2009, 19:196-204.
-
(2009)
Curr. Opin. Genet. Dev.
, vol.19
, pp. 196-204
-
-
Mefford, H.C.1
Eichler, E.E.2
-
2
-
-
70349623314
-
Cis-regulatory mutations in human disease
-
Epstein D.J. Cis-regulatory mutations in human disease. Brief Funct. Genomics Proteomics 2009, 8:310-316.
-
(2009)
Brief Funct. Genomics Proteomics
, vol.8
, pp. 310-316
-
-
Epstein, D.J.1
-
3
-
-
1542268297
-
Molecular genetic testing for inherited disorders
-
Pagon R.A. Molecular genetic testing for inherited disorders. Expert Rev. Mol. Diagn. 2004, 4:135-140.
-
(2004)
Expert Rev. Mol. Diagn.
, vol.4
, pp. 135-140
-
-
Pagon, R.A.1
-
4
-
-
44949126999
-
Nucleotide excision repair and neurological diseases
-
Nouspikel T. Nucleotide excision repair and neurological diseases. DNA Repair (Amst.) 2008, 7:1155-1167.
-
(2008)
DNA Repair (Amst.)
, vol.7
, pp. 1155-1167
-
-
Nouspikel, T.1
-
5
-
-
0034054019
-
Nucleotide excision repair and human syndromes
-
de Boer J., Hoeijmakers J.H. Nucleotide excision repair and human syndromes. Carcinogenesis 2000, 21:453-460.
-
(2000)
Carcinogenesis
, vol.21
, pp. 453-460
-
-
de Boer, J.1
Hoeijmakers, J.H.2
-
6
-
-
0036363646
-
Mechanisms of transcription-coupled DNA repair
-
Svejstrup J.Q. Mechanisms of transcription-coupled DNA repair. Nat. Rev. Mol. Cell Biol. 2002, 3:21-29.
-
(2002)
Nat. Rev. Mol. Cell Biol.
, vol.3
, pp. 21-29
-
-
Svejstrup, J.Q.1
-
7
-
-
56749157389
-
Transcription-coupled DNA repair: two decades of progress and surprises
-
Hanawalt P.C., Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 2008, 9:958-970.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 958-970
-
-
Hanawalt, P.C.1
Spivak, G.2
-
8
-
-
0033634972
-
Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes
-
Yu A., et al. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol. Cell 2000, 5:801-810.
-
(2000)
Mol. Cell
, vol.5
, pp. 801-810
-
-
Yu, A.1
-
9
-
-
0036469913
-
The connection between transcription and genomic instability
-
Aguilera A. The connection between transcription and genomic instability. EMBO J. 2002, 21:195-201.
-
(2002)
EMBO J.
, vol.21
, pp. 195-201
-
-
Aguilera, A.1
-
10
-
-
33644661156
-
RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis?
-
Saxowsky T.T., Doetsch P.W. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis?. Chem. Rev. 2006, 106:474-488.
-
(2006)
Chem. Rev.
, vol.106
, pp. 474-488
-
-
Saxowsky, T.T.1
Doetsch, P.W.2
-
11
-
-
33746641324
-
Nucleosome displacement in transcription
-
Workman J.L. Nucleosome displacement in transcription. Genes Dev. 2006, 20:2009-2017.
-
(2006)
Genes Dev.
, vol.20
, pp. 2009-2017
-
-
Workman, J.L.1
-
12
-
-
34247603479
-
RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS
-
Kuraoka I., et al. RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS. DNA Repair (Amst.) 2007, 6:841-851.
-
(2007)
DNA Repair (Amst.)
, vol.6
, pp. 841-851
-
-
Kuraoka, I.1
-
13
-
-
33751559420
-
RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors
-
Charlet-Berguerand N., et al. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J. 2006, 25:5481-5491.
-
(2006)
EMBO J.
, vol.25
, pp. 5481-5491
-
-
Charlet-Berguerand, N.1
-
14
-
-
2442504817
-
Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts
-
Kathe S.D., et al. Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts. J. Biol. Chem. 2004, 279:18511-18520.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 18511-18520
-
-
Kathe, S.D.1
-
15
-
-
0035977062
-
Effect of thymine glycol on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II
-
Tornaletti S., et al. Effect of thymine glycol on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. J. Biol. Chem. 2001, 276:45367-45371.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 45367-45371
-
-
Tornaletti, S.1
-
16
-
-
24044476230
-
Transcription arrest at DNA damage sites
-
Tornaletti S. Transcription arrest at DNA damage sites. Mutat. Res. 2005, 577:131-145.
-
(2005)
Mutat. Res.
, vol.577
, pp. 131-145
-
-
Tornaletti, S.1
-
17
-
-
34247096165
-
Contending with transcriptional arrest during RNAPII transcript elongation
-
Svejstrup J.Q. Contending with transcriptional arrest during RNAPII transcript elongation. Trends Biochem. Sci. 2007, 32:165-171.
-
(2007)
Trends Biochem. Sci.
, vol.32
, pp. 165-171
-
-
Svejstrup, J.Q.1
-
18
-
-
62349131315
-
DNA repair in mammalian cells: nucleotide excision repair: variations on versatility
-
Nouspikel T. DNA repair in mammalian cells: nucleotide excision repair: variations on versatility. Cell. Mol. Life Sci. 2009, 66:994-1009.
-
(2009)
Cell. Mol. Life Sci.
, vol.66
, pp. 994-1009
-
-
Nouspikel, T.1
-
19
-
-
33746666589
-
When transcription and repair meet: a complex system
-
Laine J.P., Egly J.M. When transcription and repair meet: a complex system. Trends Genet. 2006, 22:430-436.
-
(2006)
Trends Genet.
, vol.22
, pp. 430-436
-
-
Laine, J.P.1
Egly, J.M.2
-
20
-
-
31444444611
-
Initiation of DNA repair mediated by a stalled RNA polymerase IIO
-
Laine J.P., Egly J.M. Initiation of DNA repair mediated by a stalled RNA polymerase IIO. EMBO J. 2006, 25:387-397.
-
(2006)
EMBO J.
, vol.25
, pp. 387-397
-
-
Laine, J.P.1
Egly, J.M.2
-
21
-
-
33747194740
-
Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo
-
Fousteri M., et al. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell 2006, 23:471-482.
-
(2006)
Mol. Cell
, vol.23
, pp. 471-482
-
-
Fousteri, M.1
-
22
-
-
67650725820
-
The biology of chromatin remodeling complexes
-
Clapier C.R., Cairns B.R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 2009, 78:273-304.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 273-304
-
-
Clapier, C.R.1
Cairns, B.R.2
-
23
-
-
0037509859
-
The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage
-
Groisman R., et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 2003, 113:357-367.
-
(2003)
Cell
, vol.113
, pp. 357-367
-
-
Groisman, R.1
-
24
-
-
33744795969
-
CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome
-
Groisman R., et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 2006, 20:1429-1434.
-
(2006)
Genes Dev.
, vol.20
, pp. 1429-1434
-
-
Groisman, R.1
-
25
-
-
0029859295
-
UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells
-
Bregman D.B., et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl. Acad. Sci. U. S. A. 1996, 93:11586-11590.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 11586-11590
-
-
Bregman, D.B.1
-
26
-
-
0032570562
-
Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair
-
Ratner J.N., et al. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 1998, 273:5184-5189.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 5184-5189
-
-
Ratner, J.N.1
-
27
-
-
73949101221
-
Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation
-
Harreman M., et al. Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:20710-20805.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 20710-20805
-
-
Harreman, M.1
-
28
-
-
43449113530
-
Reversal of RNA polymerase II ubiquitylation by the ubiquitin protease Ubp3
-
Kvint K., et al. Reversal of RNA polymerase II ubiquitylation by the ubiquitin protease Ubp3. Mol. Cell 2008, 30:498-506.
-
(2008)
Mol. Cell
, vol.30
, pp. 498-506
-
-
Kvint, K.1
-
29
-
-
35748950163
-
Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1
-
Anindya R., et al. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol. Cell 2007, 28:386-397.
-
(2007)
Mol. Cell
, vol.28
, pp. 386-397
-
-
Anindya, R.1
-
30
-
-
20444428382
-
Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest
-
Somesh B.P., et al. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell 2005, 121:913-923.
-
(2005)
Cell
, vol.121
, pp. 913-923
-
-
Somesh, B.P.1
-
31
-
-
33947720525
-
Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD
-
Somesh B.P., et al. Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell 2007, 129:57-68.
-
(2007)
Cell
, vol.129
, pp. 57-68
-
-
Somesh, B.P.1
-
32
-
-
0037148786
-
A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage
-
Woudstra E.C., et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 2002, 415:929-933.
-
(2002)
Nature
, vol.415
, pp. 929-933
-
-
Woudstra, E.C.1
-
33
-
-
0030822591
-
Cockayne syndrome group B protein enhances elongation by RNA polymerase II
-
Selby C.P., Sancar A. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:11205-11209.
-
(1997)
Proc. Natl. Acad. Sci. U. S. A.
, vol.94
, pp. 11205-11209
-
-
Selby, C.P.1
Sancar, A.2
-
34
-
-
0033806183
-
ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor
-
Citterio E., et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell. Biol. 2000, 20:7643-7653.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 7643-7653
-
-
Citterio, E.1
-
35
-
-
68249102864
-
DNA replication as a target of the DNA damage checkpoint
-
Zegerman P., Diffley J.F. DNA replication as a target of the DNA damage checkpoint. DNA Repair (Amst.) 2009, 8:1077-1088.
-
(2009)
DNA Repair (Amst.)
, vol.8
, pp. 1077-1088
-
-
Zegerman, P.1
Diffley, J.F.2
-
36
-
-
73549118561
-
A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae
-
Taschner M., et al. A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae. Mol. Cell Biol. 2010, 30:436-446.
-
(2010)
Mol. Cell Biol.
, vol.30
, pp. 436-446
-
-
Taschner, M.1
-
37
-
-
34547627642
-
Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates
-
Wong H.K., et al. Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. Nucleic Acids Res. 2007, 35:4103-4113.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 4103-4113
-
-
Wong, H.K.1
-
38
-
-
0141869885
-
Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress
-
Tuo J., et al. Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress. FASEB J. 2003, 17:668-674.
-
(2003)
FASEB J.
, vol.17
, pp. 668-674
-
-
Tuo, J.1
-
39
-
-
66149114804
-
Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase
-
Muftuoglu M., et al. Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase. J. Biol. Chem. 2009, 284:9270-9279.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 9270-9279
-
-
Muftuoglu, M.1
-
40
-
-
0041828953
-
Transcription elongation factors repress transcription initiation from cryptic sites
-
Kaplan C.D., et al. Transcription elongation factors repress transcription initiation from cryptic sites. Science 2003, 301:1096-1099.
-
(2003)
Science
, vol.301
, pp. 1096-1099
-
-
Kaplan, C.D.1
-
41
-
-
0242579933
-
The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo
-
Mason P.B., Struhl K. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol. Cell. Biol. 2003, 23:8323-8333.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 8323-8333
-
-
Mason, P.B.1
Struhl, K.2
-
42
-
-
3543023310
-
Evidence for nucleosome depletion at active regulatory regions genome-wide
-
Lee C.K., et al. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 2004, 36:900-905.
-
(2004)
Nat. Genet.
, vol.36
, pp. 900-905
-
-
Lee, C.K.1
-
43
-
-
8444245244
-
-
Global nucleosome occupancy in yeast. Genome Biol. 5, R62, published online
-
Bernstein, B.E. et al. (2004) Global nucleosome occupancy in yeast. Genome Biol. 5, R62, published online.
-
(2004)
-
-
Bernstein, B.E.1
-
44
-
-
9144274420
-
Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo
-
Kristjuhan A., Svejstrup J.Q. Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J. 2004, 23:4243-4252.
-
(2004)
EMBO J.
, vol.23
, pp. 4243-4252
-
-
Kristjuhan, A.1
Svejstrup, J.Q.2
-
45
-
-
8644287437
-
Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II
-
Schwabish M.A., Struhl K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 2004, 24:10111-10117.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 10111-10117
-
-
Schwabish, M.A.1
Struhl, K.2
-
46
-
-
69449108384
-
Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription
-
Bermejo R., et al. Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription. Cell 2009, 138:870-884.
-
(2009)
Cell
, vol.138
, pp. 870-884
-
-
Bermejo, R.1
-
47
-
-
67449113551
-
Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae
-
Azvolinsky A., et al. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 2009, 34:722-734.
-
(2009)
Mol. Cell
, vol.34
, pp. 722-734
-
-
Azvolinsky, A.1
-
48
-
-
34547789312
-
Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication
-
Kim N., et al. Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication. DNA Repair (Amst.) 2007, 6:1285-1296.
-
(2007)
DNA Repair (Amst.)
, vol.6
, pp. 1285-1296
-
-
Kim, N.1
-
49
-
-
42949119884
-
Division of labor at the eukaryotic replication fork
-
Nick McElhinny S.A., et al. Division of labor at the eukaryotic replication fork. Mol. Cell 2008, 30:137-144.
-
(2008)
Mol. Cell
, vol.30
, pp. 137-144
-
-
Nick McElhinny, S.A.1
-
50
-
-
67649559461
-
DUTP incorporation into genomic DNA is linked to transcription in yeast
-
Kim N., Jinks-Robertson S. dUTP incorporation into genomic DNA is linked to transcription in yeast. Nature 2009, 459:1150-1153.
-
(2009)
Nature
, vol.459
, pp. 1150-1153
-
-
Kim, N.1
Jinks-Robertson, S.2
-
51
-
-
0034503096
-
DNA polymerase zeta introduces multiple mutations when bypassing spontaneous DNA damage in Saccharomyces cerevisiae
-
Harfe B.D., Jinks-Robertson S. DNA polymerase zeta introduces multiple mutations when bypassing spontaneous DNA damage in Saccharomyces cerevisiae. Mol. Cell 2000, 6:1491-1499.
-
(2000)
Mol. Cell
, vol.6
, pp. 1491-1499
-
-
Harfe, B.D.1
Jinks-Robertson, S.2
-
52
-
-
67650429924
-
Y-family DNA polymerases in mammalian cells
-
Guo C., et al. Y-family DNA polymerases in mammalian cells. Cell. Mol. Life Sci. 2009, 66:2363-2381.
-
(2009)
Cell. Mol. Life Sci.
, vol.66
, pp. 2363-2381
-
-
Guo, C.1
-
53
-
-
66749175352
-
Transcription-associated recombination in eukaryotes: link between transcription, replication and recombination
-
Gottipati P., Helleday T. Transcription-associated recombination in eukaryotes: link between transcription, replication and recombination. Mutagenesis 2009, 24:203-210.
-
(2009)
Mutagenesis
, vol.24
, pp. 203-210
-
-
Gottipati, P.1
Helleday, T.2
-
54
-
-
17144426028
-
Impairment of replication fork progression mediates RNA polII transcription-associated recombination
-
Prado F., Aguilera A. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J. 2005, 24:1267-1276.
-
(2005)
EMBO J.
, vol.24
, pp. 1267-1276
-
-
Prado, F.1
Aguilera, A.2
-
55
-
-
33645823661
-
Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex
-
Wellinger R.E., et al. Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol. Cell. Biol. 2006, 26:3327-3334.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 3327-3334
-
-
Wellinger, R.E.1
-
56
-
-
37549026516
-
Transcription-associated recombination is dependent on replication in mammalian cells
-
Gottipati P., et al. Transcription-associated recombination is dependent on replication in mammalian cells. Mol. Cell. Biol. 2008, 28:154-164.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 154-164
-
-
Gottipati, P.1
-
57
-
-
34347218988
-
Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex
-
Gomez-Gonzalez B., Aguilera A. Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:8409-8414.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 8409-8414
-
-
Gomez-Gonzalez, B.1
Aguilera, A.2
-
58
-
-
0141819093
-
Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination
-
Huertas P., Aguilera A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 2003, 12:711-721.
-
(2003)
Mol. Cell
, vol.12
, pp. 711-721
-
-
Huertas, P.1
Aguilera, A.2
-
59
-
-
0037650190
-
R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells
-
Yu K., et al. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 2003, 4:442-451.
-
(2003)
Nat. Immunol.
, vol.4
, pp. 442-451
-
-
Yu, K.1
-
60
-
-
70349335582
-
The S-phase checkpoint is required to respond to R-loops accumulated in THO mutants
-
Gomez-Gonzalez B., et al. The S-phase checkpoint is required to respond to R-loops accumulated in THO mutants. Mol. Cell. Biol. 2009, 29:5203-5213.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 5203-5213
-
-
Gomez-Gonzalez, B.1
-
61
-
-
47249100637
-
A RECQ5-RNA polymerase II association identified by targeted proteomic analysis of human chromatin
-
Aygun O., et al. A RECQ5-RNA polymerase II association identified by targeted proteomic analysis of human chromatin. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:8580-8584.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 8580-8584
-
-
Aygun, O.1
-
62
-
-
17644410077
-
Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers
-
Hu Y., et al. Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol. Cell. Biol. 2005, 25:3431-3442.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 3431-3442
-
-
Hu, Y.1
-
63
-
-
36849013079
-
RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments
-
Hu Y., et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev. 2007, 21:3073-3084.
-
(2007)
Genes Dev.
, vol.21
, pp. 3073-3084
-
-
Hu, Y.1
-
64
-
-
56449090762
-
Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance
-
Bohr V.A. Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem. Sci. 2008, 33:609-620.
-
(2008)
Trends Biochem. Sci.
, vol.33
, pp. 609-620
-
-
Bohr, V.A.1
-
65
-
-
63049125856
-
Recql5 plays an important role in DNA replication and cell survival after camptothecin treatment
-
Hu Y., et al. Recql5 plays an important role in DNA replication and cell survival after camptothecin treatment. Mol. Biol. Cell 2009, 20:114-123.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 114-123
-
-
Hu, Y.1
-
66
-
-
69949145039
-
Direct inhibition of RNA polymerase II transcription by RECQL5
-
Aygun O., et al. Direct inhibition of RNA polymerase II transcription by RECQL5. J. Biol. Chem. 2009, 284:23197-23203.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 23197-23203
-
-
Aygun, O.1
-
67
-
-
70350751416
-
Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing
-
Remus D., et al. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 2009, 139:719-730.
-
(2009)
Cell
, vol.139
, pp. 719-730
-
-
Remus, D.1
-
68
-
-
0037456369
-
Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA
-
Aas P.A., et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 2003, 421:859-863.
-
(2003)
Nature
, vol.421
, pp. 859-863
-
-
Aas, P.A.1
-
69
-
-
68249087104
-
Transcriptional mutagenesis induced by 8-oxoguanine in mammalian cells
-
e1000577
-
Bregeon D., et al. Transcriptional mutagenesis induced by 8-oxoguanine in mammalian cells. PLoS Genet. 2009, 5. e1000577.
-
(2009)
PLoS Genet.
, vol.5
-
-
Bregeon, D.1
-
70
-
-
57749121608
-
8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells
-
Saxowsky T.T., et al. 8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:18877-18882.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 18877-18882
-
-
Saxowsky, T.T.1
-
71
-
-
33646589650
-
Cockayne syndrome B protein regulates the transcriptional program after UV irradiation
-
Proietti-De-Santis L., et al. Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO J. 2006, 25:1915-1923.
-
(2006)
EMBO J.
, vol.25
, pp. 1915-1923
-
-
Proietti-De-Santis, L.1
|