-
1
-
-
84917695056
-
The roots of future rice harvests
-
Ahmadi, N., Audebert, A., Bennett, M. J., Bishopp, A., de Oliveira, A. C., Courtois, B., et al. (2014). The roots of future rice harvests. Rice (NY) 7, 29. doi: 10. 1186/s12284-014-0029-y
-
(2014)
Rice (NY)
, vol.7
, pp. 29
-
-
Ahmadi, N.1
Audebert, A.2
Bennett, M.J.3
Bishopp, A.4
de Oliveira, A.C.5
Courtois, B.6
-
2
-
-
84946745735
-
CRISPR/Cas9-mediated viral interference in plants
-
Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M., and Mahfouz, M. M. (2015a). CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16, 238. doi: 10. 1186/s13059-015-0799-6
-
(2015)
Genome Biol
, vol.16
, pp. 238
-
-
Ali, Z.1
Abulfaraj, A.2
Idris, A.3
Ali, S.4
Tashkandi, M.5
Mahfouz, M.M.6
-
3
-
-
84949935802
-
Activity and specificity of TRV-mediated gene editing in plants
-
Ali, Z., Abul-Faraj, A., Piatek, M., and Mahfouz, M. M. (2015b). Activity and specificity of TRV-mediated gene editing in plants. Plant Signal. Behav. 10: e1044191. doi: 10. 1080/15592324. 2015. 1044191
-
(2015)
Plant Signal. Behav
, vol.10
-
-
Ali, Z.1
Abul-Faraj, A.2
Piatek, M.3
Mahfouz, M.M.4
-
4
-
-
84908508061
-
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
-
Anders, C., Niewoehner, O., Duerst, A., and Jinek, M. (2014). Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573. doi: 10. 1038/nature13579
-
(2014)
Nature
, vol.513
, pp. 569-573
-
-
Anders, C.1
Niewoehner, O.2
Duerst, A.3
Jinek, M.4
-
5
-
-
84897532001
-
Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system
-
Anton, T., Bultmann, S., Leonhardt, H., and Markaki, Y. (2014). Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5, 163-172. doi: 10. 4161/nucl. 28488
-
(2014)
Nucleus
, vol.5
, pp. 163-172
-
-
Anton, T.1
Bultmann, S.2
Leonhardt, H.3
Markaki, Y.4
-
6
-
-
84924057826
-
Towards social acceptance of plant breeding by genome editing
-
Araki, M., and Ishii, T. (2015). Towards social acceptance of plant breeding by genome editing. Trends Plant Sci. 20, 145-149. doi: 10. 1016/j. tplants. 2015. 01. 010
-
(2015)
Trends Plant Sci
, vol.20
, pp. 145-149
-
-
Araki, M.1
Ishii, T.2
-
7
-
-
84896882685
-
DNA replicons for plant genome engineering
-
Baltes, N. J., Gil-Humanes, J., Cermak, T., Atkins, P. A., and Voytas, D. F. (2014). DNA replicons for plant genome engineering. Plant Cell 26, 151-163. doi: 10. 1105/tpc. 113. 119792
-
(2014)
Plant Cell
, vol.26
, pp. 151-163
-
-
Baltes, N.J.1
Gil-Humanes, J.2
Cermak, T.3
Atkins, P.A.4
Voytas, D.F.5
-
8
-
-
85009919974
-
Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system
-
Baltes, N. J., Hummel, A. W., Konecna, E., Cegan, R., Bruns, A. N., Bisaro, D. M., et al. (2015). Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat. Plants 1, 15145. doi: 10. 1038/nplants. 2015. 145
-
(2015)
Nat. Plants
, vol.1
-
-
Baltes, N.J.1
Hummel, A.W.2
Konecna, E.3
Cegan, R.4
Bruns, A.N.5
Bisaro, D.M.6
-
9
-
-
84876440888
-
CRISPR-Cas systems and RNA-guided interference
-
Barrangou, R. (2013). CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip. Rev. RNA 4, 267-278. doi: 10. 1002/wrna. 1159
-
(2013)
Wiley Interdiscip. Rev. RNA
, vol.4
, pp. 267-278
-
-
Barrangou, R.1
-
10
-
-
84885353478
-
Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system
-
Belhaj, K., Chaparro-Garcia, A., Kamoun, S., and Nekrasov, V. (2013). Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9, 39. doi: 10. 1186/1746-4811-9-39
-
(2013)
Plant Methods
, vol.9
, pp. 39
-
-
Belhaj, K.1
Chaparro-Garcia, A.2
Kamoun, S.3
Nekrasov, V.4
-
11
-
-
84931846154
-
Editing plant genomes with CRISPR/Cas9
-
Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N. J., and Nekrasov, V. (2015). Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 32, 76-84. doi: 10. 1016/j. copbio. 2014. 11. 007
-
(2015)
Curr. Opin. Biotechnol
, vol.32
, pp. 76-84
-
-
Belhaj, K.1
Chaparro-Garcia, A.2
Kamoun, S.3
Patron, N.J.4
Nekrasov, V.5
-
12
-
-
84920262090
-
The CRISPR/Cas9 system for plant genome editing and beyond
-
Bortesi, L., and Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33, 41-52. doi: 10. 1016/j. biotechadv. 2014. 12. 006
-
(2015)
Biotechnol. Adv
, vol.33
, pp. 41-52
-
-
Bortesi, L.1
Fischer, R.2
-
13
-
-
84893417192
-
Lignocellulosic feedstocks: Research progress and challenges in optimizing biomass quality and yield
-
Bosch, M., and Hazen, S. P. (2013). Lignocellulosic feedstocks: research progress and challenges in optimizing biomass quality and yield. Front. Plant Sci. 4: 474. doi: 10. 3389/fpls. 2013. 00474
-
(2013)
Front. Plant Sci
, vol.4
, pp. 474
-
-
Bosch, M.1
Hazen, S.P.2
-
14
-
-
84908584019
-
Efficient gene editing in tomato in the first generation using the CRISPR/Cas9 system
-
Brooks, C., Nekrasov, V., Lippman, Z., and Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the CRISPR/Cas9 system. Plant Physiol. 166, 1292-1297. doi: 10. 1104/pp. 114. 247577
-
(2014)
Plant Physiol
, vol.166
, pp. 1292-1297
-
-
Brooks, C.1
Nekrasov, V.2
Lippman, Z.3
Van Eck, J.4
-
15
-
-
84957112148
-
Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) Using the CRISPR/Cas System
-
Butler, N. M., Atkins, P. A., Voytas, D. F., and Douches, D. S. (2015). Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) Using the CRISPR/Cas System. PLoS ONE 10: e0144591. doi: 10. 1371/journal. pone. 0144591
-
(2015)
PLoS ONE
, vol.10
-
-
Butler, N.M.1
Atkins, P.A.2
Voytas, D.F.3
Douches, D.S.4
-
16
-
-
84942418558
-
CRISPR/Cas9-mediated genome editing in soybean hairy roots
-
Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C., Jiang, B., et al. (2015). CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10: e0136064. doi: 10. 1371/journal. pone. 0136064
-
(2015)
PLoS ONE
, vol.10
-
-
Cai, Y.1
Chen, L.2
Liu, X.3
Sun, S.4
Wu, C.5
Jiang, B.6
-
17
-
-
84946416320
-
High-frequency, precise modification of the tomato genome
-
Cermak, T., Baltes, N. J., Cegan, R., Zhang, Y., and Voytas, D. F. (2015). High-frequency, precise modification of the tomato genome. Genome Biol. 16, 232. doi: 10. 1186/s13059-015-0796-9
-
(2015)
Genome Biol
, vol.16
, pp. 232
-
-
Cermak, T.1
Baltes, N.J.2
Cegan, R.3
Zhang, Y.4
Voytas, D.F.5
-
18
-
-
84947776272
-
Boosting plant immunity with CRISPR/Cas
-
Chaparro-Garcia, A., Kamoun, S., and Nekrasov, V. (2015). Boosting plant immunity with CRISPR/Cas. Genome Biol. 16, 254. doi: 10. 1186/s13059-015-0829-4
-
(2015)
Genome Biol
, vol.16
, pp. 254
-
-
Chaparro-Garcia, A.1
Kamoun, S.2
Nekrasov, V.3
-
19
-
-
84897964526
-
Targeted genome modification technologies and their applications in crop improvements
-
Chen, K., and Gao, C. (2014). Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep. 33, 575-583. doi: 10. 1007/s00299-013-1539-6
-
(2014)
Plant Cell Rep
, vol.33
, pp. 575-583
-
-
Chen, K.1
Gao, C.2
-
20
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823. doi: 10. 1126/science. 1231143
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
-
22
-
-
84922664019
-
Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice
-
Endo, M., Mikami, M., and Toki, S. (2014). Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 1, 1-7. doi: 10. 1093/pcp/pcu154
-
(2014)
Plant Cell Physiol
, vol.1
, pp. 1-7
-
-
Endo, M.1
Mikami, M.2
Toki, S.3
-
23
-
-
84937702694
-
Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation
-
Fan, D., Liu, T., Li, C., Jiao, B., Li, S., Hou, Y., et al. (2015). Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci. Rep. 5, 12217. doi: 10. 1038/srep12217
-
(2015)
Sci. Rep
, vol.5
-
-
Fan, D.1
Liu, T.2
Li, C.3
Jiao, B.4
Li, S.5
Hou, Y.6
-
24
-
-
84904068340
-
Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana
-
Fauser, F., Schiml, S., and Puchta, H. (2014). Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79, 348-359. doi: 10. 1111/tpj. 12554
-
(2014)
Plant J
, vol.79
, pp. 348-359
-
-
Fauser, F.1
Schiml, S.2
Puchta, H.3
-
25
-
-
84896924524
-
Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis
-
Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.-L., et al. (2014). Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 111, 4632-4637. doi: 10. 1073/pnas. 1400822111
-
(2014)
Proc. Natl. Acad. Sci. U. S. A
, vol.111
, pp. 4632-4637
-
-
Feng, Z.1
Mao, Y.2
Xu, N.3
Zhang, B.4
Wei, P.5
Yang, D.-L.6
-
26
-
-
84885181396
-
Efficient genome editing in plants using a CRISPR/Cas system
-
Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., et al. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1229-1232. doi: 10. 1038/cr. 2013. 114
-
(2013)
Cell Res
, vol.23
, pp. 1229-1232
-
-
Feng, Z.1
Zhang, B.2
Ding, W.3
Liu, X.4
Yang, D.-L.5
Wei, P.6
-
27
-
-
84896405585
-
Precision genetic modifications: A new era in molecular biology and crop improvement
-
Fichtner, F., Urrea Castellanos, R., and Ülker, B. (2014). Precision genetic modifications: a new era in molecular biology and crop improvement. Planta 239, 921-939. doi: 10. 1007/s00425-014-2029-y
-
(2014)
Planta
, vol.239
, pp. 921-939
-
-
Fichtner, F.1
Urrea Castellanos, R.2
Ülker, B.3
-
28
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., and Joung, J. K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279-284. doi: 10. 1038/nbt. 2808
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
Cascio, V.M.4
Joung, J.K.5
-
29
-
-
84879264708
-
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
-
Gaj, T., Gersbach, C. A., and Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397-405. doi: 10. 1016/j. tibtech. 2013. 04. 004
-
(2013)
Trends Biotechnol
, vol.31
, pp. 397-405
-
-
Gaj, T.1
Gersbach, C.A.2
Barbas, C.F.3
-
30
-
-
84919838986
-
CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum
-
Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., et al. (2014). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol. Biol. 87, 99-110. doi: 10. 1007/s11103-014-0263-0
-
(2014)
Plant Mol. Biol
, vol.87
, pp. 99-110
-
-
Gao, J.1
Wang, G.2
Ma, S.3
Xie, X.4
Wu, X.5
Zhang, X.6
-
31
-
-
84897546295
-
Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing
-
Gao, Y., and Zhao, Y. (2014a). Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. 56, 343-349. doi: 10. 1111/jipb. 12152
-
(2014)
J. Integr. Plant Biol
, vol.56
, pp. 343-349
-
-
Gao, Y.1
Zhao, Y.2
-
32
-
-
84896950755
-
Specific and heritable gene editing in Arabidopsis
-
Gao, Y., and Zhao, Y. (2014b). Specific and heritable gene editing in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 111, 4357-4358. doi: 10. 1073/pnas. 1402295111
-
(2014)
Proc. Natl. Acad. Sci. U. S. A
, vol.111
, pp. 4357-4358
-
-
Gao, Y.1
Zhao, Y.2
-
33
-
-
84857957558
-
Confronting the gordian knot
-
Giddings, L. V., Potrykus, I., Ammann, K., and Fedoroff, N. V. (2012). Confronting the gordian knot. Nat. Biotechnol. 30, 208-209. doi: 10. 1038/nbt. 2145
-
(2012)
Nat. Biotechnol
, vol.30
, pp. 208-209
-
-
Giddings, L.V.1
Potrykus, I.2
Ammann, K.3
Fedoroff, N.V.4
-
34
-
-
84908352138
-
Genome-scale CRISPR-mediated control of gene repression and activation
-
Gilbert, L. A., Horlbeck, M. A., Adamson, B., Villalta, J. E., Chen, Y., Whitehead, E. H., et al. (2015). Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647-661. doi: 10. 1016/j. cell. 2014. 09. 029
-
(2015)
Cell
, vol.159
, pp. 647-661
-
-
Gilbert, L.A.1
Horlbeck, M.A.2
Adamson, B.3
Villalta, J.E.4
Chen, Y.5
Whitehead, E.H.6
-
35
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442-451. doi: 10. 1016/j. cell. 2013. 06. 044
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
Larson, M.H.2
Morsut, L.3
Liu, Z.4
Brar, G.A.5
Torres, S.E.6
-
36
-
-
84901594468
-
Precise plant breeding using new genome editing techniques: Opportunities, safety and regulation in the EU
-
Hartung, F., and Schiemann, J. (2014). Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J. 78, 742-752. doi: 10. 1111/tpj. 12413
-
(2014)
Plant J
, vol.78
, pp. 742-752
-
-
Hartung, F.1
Schiemann, J.2
-
37
-
-
84885398906
-
A CRISPR/Cas for high-throughput silencing
-
Heintze, J., Luft, C., and Ketteler, R. (2013). A CRISPR/Cas for high-throughput silencing. Front. Genet. 4: 193. doi: 10. 3389/fgene. 2013. 00193
-
(2013)
Front. Genet
, vol.4
, pp. 193
-
-
Heintze, J.1
Luft, C.2
Ketteler, R.3
-
38
-
-
84910126816
-
Progress of cereal transformation technology mediated by Agrobacterium tumefaciens
-
Hiei, Y., Ishida, Y., and Komari, T. (2014). Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front. Plant Sci. 5: 628. doi: 10. 3389/fpls. 2014. 00628
-
(2014)
Front. Plant Sci
, vol.5
, pp. 628
-
-
Hiei, Y.1
Ishida, Y.2
Komari, T.3
-
39
-
-
79958243028
-
Environmental risk assessment of genetically modified plants-concepts and controversies
-
Hilbeck, A., Meier, M., Römbke, J., Jänsch, S., Teichmann, H., and Tappeser, B. (2011). Environmental risk assessment of genetically modified plants-concepts and controversies. Environ. Sci. Eur. 23, 1-12. doi: 10. 1186/2190-4715-23-13
-
(2011)
Environ. Sci. Eur
, vol.23
, pp. 1-12
-
-
Hilbeck, A.1
Meier, M.2
Römbke, J.3
Jänsch, S.4
Teichmann, H.5
Tappeser, B.6
-
40
-
-
84920435758
-
Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles
-
Hyun, Y., Kim, J., Cho, S. W., Choi, Y., Kim, J.-S., and Coupland, G. (2015). Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta 241, 271-284. doi: 10. 1007/s00425-014-2180-5
-
(2015)
Planta
, vol.241
, pp. 271-284
-
-
Hyun, Y.1
Kim, J.2
Cho, S.W.3
Choi, Y.4
Kim, J.-S.5
Coupland, G.6
-
41
-
-
84944937432
-
CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening
-
Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M., and Toki, S. (2015). CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophy. Res. Commun. 467, 76-82. doi: 10. 1016/j. bbrc. 2015. 09. 117
-
(2015)
Biochem. Biophy. Res. Commun
, vol.467
, pp. 76-82
-
-
Ito, Y.1
Nishizawa-Yokoi, A.2
Endo, M.3
Mikami, M.4
Toki, S.5
-
42
-
-
84928261737
-
Targeted genome modifications in soybean with CRISPR/Cas9
-
Jacobs, T. B., LaFayette, P. R., Schmitz, R. J., and Parrott, W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 15: 16. doi: 10. 1186/s12896-015-0131-2
-
(2015)
BMC Biotechnol
, vol.15
, pp. 16
-
-
Jacobs, T.B.1
LaFayette, P.R.2
Schmitz, R.J.3
Parrott, W.A.4
-
43
-
-
84934878723
-
Function genomics of abiotic stress tolerance in plants: A CRISPR approach
-
Jain, M. (2015). Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front. Plant Sci. 6: 375. doi: 10. 3389/fpls. 2015. 00375
-
(2015)
Front. Plant Sci
, vol.6
, pp. 375
-
-
Jain, M.1
-
44
-
-
84947775797
-
Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants
-
Ji, X., Zhang, H., Zhang, Y., Wang, Y., and Gao, C. (2015). Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants 1, 15144. doi: 10. 1038/nplants. 2015. 144
-
(2015)
Nat. Plants
, vol.1
-
-
Ji, X.1
Zhang, H.2
Zhang, Y.3
Wang, Y.4
Gao, C.5
-
45
-
-
84899556051
-
Targeted genome editing of sweet orange using Cas9/sgRNA
-
Jia, H., and Wang, N. (2014). Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9: e93806. doi: 10. 1371/journal. pone. 0093806
-
(2014)
PLoS ONE
, vol.9
-
-
Jia, H.1
Wang, N.2
-
46
-
-
84903398817
-
Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations
-
Jiang, W., Yang, B., and Weeks, D. P. (2014). Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS ONE 9: e99225. doi: 10. 1371/journal. pone. 0099225
-
(2014)
PLoS ONE
, vol.9
-
-
Jiang, W.1
Yang, B.2
Weeks, D.P.3
-
47
-
-
84886926151
-
Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
-
Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., and Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41: e188. doi: 10. 1093/nar/gkt780
-
(2013)
Nucleic Acids Res
, vol.41
-
-
Jiang, W.1
Zhou, H.2
Bi, H.3
Fromm, M.4
Yang, B.5
Weeks, D.P.6
-
48
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
Jinek, M., East, A., Cheng, A., and Li, S. (2013). RNA-programmed genome editing in human cells. Elife 2: e00471. doi: 10. 7554/eLife. 00471
-
(2013)
Elife
, vol.2
-
-
Jinek, M.1
East, A.2
Cheng, A.3
Li, S.4
-
49
-
-
84893157352
-
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
-
Jinek, M., Jiang, F., Taylor, D. W., Sternberg, S. H., Kaya, E., Ma, E., et al. (2014). Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343: 1247997. doi: 10. 1126/science. 1247997
-
(2014)
Science
, vol.343
-
-
Jinek, M.1
Jiang, F.2
Taylor, D.W.3
Sternberg, S.H.4
Kaya, E.5
Ma, E.6
-
50
-
-
85027948074
-
Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta
-
Johnson, R. A., Gurevich, V., Filler, S., Samach, A., and Levy, A. (2015). Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta. Plant Mol. Biol. 87, 143-156. doi: 10. 1007/s11103-014-0266-x
-
(2015)
Plant Mol. Biol
, vol.87
, pp. 143-156
-
-
Johnson, R.A.1
Gurevich, V.2
Filler, S.3
Samach, A.4
Levy, A.5
-
51
-
-
84928825287
-
Regulatory uncertainty over genome editing
-
Jones, H. D. (2015). Regulatory uncertainty over genome editing. Nat Plants 1, 14011. doi: 10. 1038/nplants. 2014. 11
-
(2015)
Nat Plants
, vol.1
-
-
Jones, H.D.1
-
52
-
-
84921613414
-
Looking forward to genetically edited fruit crops
-
Kanchiswamy, C. N., Sargent, D. J., Velasco, R., Maffei, M. E., and Malnoy, M. (2015). Looking forward to genetically edited fruit crops. Trends Biotechnol. 33, 62-64. doi: 10. 1016/j. tibtech. 2014. 07. 003
-
(2015)
Trends Biotechnol
, vol.33
, pp. 62-64
-
-
Kanchiswamy, C.N.1
Sargent, D.J.2
Velasco, R.3
Maffei, M.E.4
Malnoy, M.5
-
53
-
-
84964198529
-
Development and characterization of transgenic chickpea (Cicer arietinum L.) plants with cry1Ac gene using tissue culture independent protocol
-
Khatodia, S., Kharb, P., Batra, P., and Chowdhury, V. K. (2014). Development and characterization of transgenic chickpea (Cicer arietinum L.) plants with cry1Ac gene using tissue culture independent protocol. Int. J. Adv. Res. 2, 323-331.
-
(2014)
Int. J. Adv. Res
, vol.2
, pp. 323-331
-
-
Khatodia, S.1
Kharb, P.2
Batra, P.3
Chowdhury, V.K.4
-
54
-
-
84964205879
-
Trending: The Cas nuclease mediated genome editing technique
-
Khatodia, S., and Khurana, S. M. P. (2014). Trending: the Cas nuclease mediated genome editing technique. Biotech Today 4, 46-49. doi: 10. 5958/2322-0996. 2014. 00019. 2
-
(2014)
Biotech Today
, vol.4
, pp. 46-49
-
-
Khatodia, S.1
Khurana, S.M.P.2
-
55
-
-
84898778301
-
A guide to genome engineering with programmable nucleases
-
Kim, H., and Kim, J. S. (2014). A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321-334. doi: 10. 1038/nrg3686
-
(2014)
Nat. Rev. Genet
, vol.15
, pp. 321-334
-
-
Kim, H.1
Kim, J.S.2
-
56
-
-
84902299964
-
Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk
-
Kissoudis, C., van de Wiel, C., Visser, R. G. F., and van der Linden, G. (2014). Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front. Plant Sci. 5: 207. doi: 10. 3389/fpls. 2014. 00207
-
(2014)
Front. Plant Sci
, vol.5
, pp. 207
-
-
Kissoudis, C.1
van de Wiel, C.2
Visser, R.G.F.3
van der Linden, G.4
-
57
-
-
84922522034
-
The CRISPR-Cas system for plant genome editing: Advances and opportunities
-
Kumar, V., and Jain, M. (2014). The CRISPR-Cas system for plant genome editing: advances and opportunities. J. Exp. Bot. 66, 47-57. doi: 10. 1093/jxb/eru429
-
(2014)
J. Exp. Bot
, vol.66
, pp. 47-57
-
-
Kumar, V.1
Jain, M.2
-
58
-
-
84929000302
-
The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop
-
Kyndt, T., Quispe, D., Zhai, H., Jarret, R., Ghislain, M., Liu, Q., et al. (2015). The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc. Natl. Acad. Sci. U. S. A. 112, 5844-5849. doi: 10. 1073/pnas. 1419685112
-
(2015)
Proc. Natl. Acad. Sci. U. S. A
, vol.112
, pp. 5844-5849
-
-
Kyndt, T.1
Quispe, D.2
Zhai, H.3
Jarret, R.4
Ghislain, M.5
Liu, Q.6
-
59
-
-
84929701098
-
Synthetic RNAs for gene regulation: Design principles and computational tools
-
Laganà, A., Shasha, D., and Croce, C. M. (2014). Synthetic RNAs for gene regulation: design principles and computational tools. Front. Bioeng. Biotechnol. 2: 65. doi: 10. 3389/fbioe. 2014. 00065
-
(2014)
Front. Bioeng. Biotechnol
, vol.2
, pp. 65
-
-
Laganà, A.1
Shasha, D.2
Croce, C.M.3
-
60
-
-
84886993480
-
CRISPR interference (CRISPRi) for sequence-specific control of gene expression
-
Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S., and Qi, L. S. (2013). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180-2196. doi: 10. 1038/nprot. 2013. 132
-
(2013)
Nat. Protoc
, vol.8
, pp. 2180-2196
-
-
Larson, M.H.1
Gilbert, L.A.2
Wang, X.3
Lim, W.A.4
Weissman, J.S.5
Qi, L.S.6
-
61
-
-
84903312241
-
Key applications of plant metabolic engineering
-
Lau, W., Fischbach, M. A., Osbourn, A., and Sattely, E. S. (2014). Key applications of plant metabolic engineering. PLoS Biol. 12: e1001879. doi: 10. 1371/journal. pbio. 1001879
-
(2014)
PLoS Biol
, vol.12
-
-
Lau, W.1
Fischbach, M.A.2
Osbourn, A.3
Sattely, E.S.4
-
62
-
-
84883785822
-
Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., et al. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688-691. doi: 10. 1038/nbt. 2654
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 688-691
-
-
Li, J.F.1
Norville, J.E.2
Aach, J.3
McCormack, M.4
Zhang, D.5
Bush, J.6
-
63
-
-
84953342474
-
The molecular mechanism of CRISPR/Cas9 system and its application in gene therapy of human diseases
-
Liang, Q., Huashan, L., Yunhan, J., and Chunsheng, D. (2015). The molecular mechanism of CRISPR/Cas9 system and its application in gene therapy of human diseases. Yi Chuan 37, 974-982. doi: 10. 16288/j. yczz. 15-109
-
(2015)
Yi Chuan
, vol.37
, pp. 974-982
-
-
Liang, Q.1
Huashan, L.2
Yunhan, J.3
Chunsheng, D.4
-
64
-
-
84894321885
-
Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system
-
Liang, Z., Zhang, K., Chen, K., and Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics 41, 63-68. doi: 10. 1016/j. jgg. 2013. 12. 001
-
(2014)
J. Genet. Genomics
, vol.41
, pp. 63-68
-
-
Liang, Z.1
Zhang, K.2
Chen, K.3
Gao, C.4
-
65
-
-
84900852939
-
CRISPR-Cas system: A powerful tool for genome engineering
-
Liu, L., and Fan, X. D. (2014). CRISPR-Cas system: a powerful tool for genome engineering. Plant Mol. Biol. 85, 209-218. doi: 10. 1007/s11103-014-0188-7
-
(2014)
Plant Mol. Biol
, vol.85
, pp. 209-218
-
-
Liu, L.1
Fan, X.D.2
-
66
-
-
84886092842
-
Advanced genetic tools for plant biotechnology
-
Liu, W., Yuan, J. S., and Stewart, C. N. (2013). Advanced genetic tools for plant biotechnology. Nat. Rev. Genet. 14, 781-793. doi: 10. 1038/nrg3583
-
(2013)
Nat. Rev. Genet
, vol.14
, pp. 781-793
-
-
Liu, W.1
Yuan, J.S.2
Stewart, C.N.3
-
67
-
-
84942931752
-
A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
-
Lowder, L. G., Zhang, D., Baltes, N. J., Paul, J. W. III, Tang, X., Zheng, X., et al. (2015). A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169, 971-985. doi: 10. 1104/pp. 15. 00636
-
(2015)
Plant Physiol
, vol.169
, pp. 971-985
-
-
Lowder, L.G.1
Zhang, D.2
Baltes, N.J.3
Paul, J.W.4
Tang, X.5
Zheng, X.6
-
68
-
-
84899929404
-
Plant genome engineering in full bloom
-
Lozano-Juste, J., and Cutler, S. R. (2014). Plant genome engineering in full bloom. Trends Plant Sci. 19, 284-287. doi: 10. 1016/j. tplants. 2014. 02. 014
-
(2014)
Trends Plant Sci
, vol.19
, pp. 284-287
-
-
Lozano-Juste, J.1
Cutler, S.R.2
-
69
-
-
84857925027
-
Deployment of new biotechnologies in plant breeding
-
Lusser, M., Parisi, C., Plan, D., and Rodríguez-Cerezo, E. (2012). Deployment of new biotechnologies in plant breeding. Nat. Biotechnol. 30, 231-239. doi: 10. 1038/nbt. 2142
-
(2012)
Nat. Biotechnol
, vol.30
, pp. 231-239
-
-
Lusser, M.1
Parisi, C.2
Plan, D.3
Rodríguez-Cerezo, E.4
-
70
-
-
84938748218
-
A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants
-
Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., et al. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8, 1274-1284. doi: 10. 1016/j. molp. 2015. 04. 007
-
(2015)
Mol. Plant
, vol.8
, pp. 1274-1284
-
-
Ma, X.1
Zhang, Q.2
Zhu, Q.3
Liu, W.4
Chen, Y.5
Qiu, R.6
-
71
-
-
84964205856
-
-
WO2014110274A2. Washington, DC: U. S. Patent and Trademark Office
-
Maheswari, A., Comai, L., and Chan, S. (2014). Generation of Haploid Plants. WO2014110274A2. Washington, DC: U. S. Patent and Trademark Office.
-
(2014)
Generation of Haploid Plants
-
-
Maheswari, A.1
Comai, L.2
Chan, S.3
-
72
-
-
84921467997
-
Genome engineering via TALENs and CRISPR/Cas9 systems: Challenges and perspectives
-
Mahfouz, M. M., Piatek, A., and Stewart, C. N. (2014). Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol. J. 12, 1006-1014. doi: 10. 1111/pbi. 12256
-
(2014)
Plant Biotechnol. J
, vol.12
, pp. 1006-1014
-
-
Mahfouz, M.M.1
Piatek, A.2
Stewart, C.N.3
-
73
-
-
84884160273
-
CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
-
Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., et al. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833-838. doi: 10. 1038/nbt. 2675
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 833-838
-
-
Mali, P.1
Aach, J.2
Stranges, P.B.3
Esvelt, K.M.4
Moosburner, M.5
Kosuri, S.6
-
74
-
-
84891932593
-
Application of the CRISPR-Cas system for efficient genome engineering in plants
-
Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., and Zhu, J.-K. (2013). Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol. Plant 6, 2008-2011. doi: 10. 1093/mp/sst121
-
(2013)
Mol. Plant
, vol.6
, pp. 2008-2011
-
-
Mao, Y.1
Zhang, H.2
Xu, N.3
Zhang, B.4
Gou, F.5
Zhu, J.-K.6
-
75
-
-
84885180177
-
Targeted mutagenesis in rice using CRISPR-Cas system
-
Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., et al. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233-1236. doi: 10. 1038/cr. 2013. 123
-
(2013)
Cell Res
, vol.23
, pp. 1233-1236
-
-
Miao, J.1
Guo, D.2
Zhang, J.3
Huang, Q.4
Qin, G.5
Zhang, X.6
-
76
-
-
85013017478
-
CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme
-
Michno, J. M., Wang, X., Liu, J., Curtin, S. J., Kono, T. J., and Stupar, R. M. (2015). CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6, 243-252. doi: 10. 1080/21645698. 2015. 1106063
-
(2015)
GM Crops Food
, vol.6
, pp. 243-252
-
-
Michno, J.M.1
Wang, X.2
Liu, J.3
Curtin, S.J.4
Kono, T.J.5
Stupar, R.M.6
-
77
-
-
84883828590
-
Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease
-
Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G., and Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691-693. doi: 10. 1038/nbt. 2655
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 691-693
-
-
Nekrasov, V.1
Staskawicz, B.2
Weigel, D.3
Jones, J.D.G.4
Kamoun, S.5
-
78
-
-
84914671859
-
Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer
-
Nonaka, S., and Ezura, H. (2014). Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer. Front. Plant Sci. 5: 681. doi: 10. 3389/fpls. 2014. 00681
-
(2014)
Front. Plant Sci
, vol.5
, pp. 681
-
-
Nonaka, S.1
Ezura, H.2
-
79
-
-
84938521400
-
Genome editing with engineered nucleases in plants
-
Osakabe, Y., and Osakabe, K. (2015). Genome editing with engineered nucleases in plants. Plant Cell Physiol. 56, 389-400. doi: 10. 1093/pcp/pcu170
-
(2015)
Plant Cell Physiol
, vol.56
, pp. 389-400
-
-
Osakabe, Y.1
Osakabe, K.2
-
80
-
-
84928212884
-
RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors
-
Piatek, A., Ali, Z., Baazim, H., Li, L., Abulfaraj, A., Al-Shareef, S., et al. (2014). RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 13, 578-589. doi: 10. 1111/pbi. 12284
-
(2014)
Plant Biotechnol. J
, vol.13
, pp. 578-589
-
-
Piatek, A.1
Ali, Z.2
Baazim, H.3
Li, L.4
Abulfaraj, A.5
Al-Shareef, S.6
-
81
-
-
84870601200
-
Transgenic or not? No simple answer! New biotechnology-based plant breeding techniques and the regulatory landscape
-
Podevin, N., Devos, Y., Davies, H. V., and Nielsen, K. M. (2012). Transgenic or not? No simple answer! New biotechnology-based plant breeding techniques and the regulatory landscape. EMBO Rep. 13, 1057-1061. doi: 10. 1038/embor. 2012. 168
-
(2012)
EMBO Rep
, vol.13
, pp. 1057-1061
-
-
Podevin, N.1
Devos, Y.2
Davies, H.V.3
Nielsen, K.M.4
-
82
-
-
84925534357
-
A light-inducible CRISPR-Cas9 system for control of endogenous gene activation
-
Polstein, L. R., and Gersbach, C. A. (2015). A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11, 198-200. doi: 10. 1038/nchembio. 1753
-
(2015)
Nat. Chem. Biol
, vol.11
, pp. 198-200
-
-
Polstein, L.R.1
Gersbach, C.A.2
-
83
-
-
85027953332
-
Using CRISPR/Cas in three dimensions: Towards synthetic plant genomes, transcriptomes and epigenomes
-
[Epub ahead of print]
-
Puchta, H. (2016). Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant J. doi: 10. 1111/tpj. 13100 [Epub ahead of print].
-
(2016)
Plant J
-
-
Puchta, H.1
-
84
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., et al. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183. doi: 10. 1016/j. cell. 2013. 02. 022
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
Weissman, J.S.5
Arkin, A.P.6
-
85
-
-
84947024957
-
The CRISPR-Cas9 technology: Closer to the ultimate toolkit for targeted genome editing
-
Quétier, F. (2016). The CRISPR-Cas9 technology: closer to the ultimate toolkit for targeted genome editing. Plant Sci. 242, 65-76. doi: 10. 1016/j. plantsci. 2015. 09. 003
-
(2016)
Plant Sci
, vol.242
, pp. 65-76
-
-
Quétier, F.1
-
86
-
-
84901843996
-
Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA
-
Ramakrishna, S., Kwaku Dad, A. B., Beloor, J., Gopalappa, R., Lee, S. K., and Kim, H. (2014). Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020-1027. doi: 10. 1101/gr. 171264. 113
-
(2014)
Genome Res
, vol.24
, pp. 1020-1027
-
-
Ramakrishna, S.1
Kwaku Dad, A.B.2
Beloor, J.3
Gopalappa, R.4
Lee, S.K.5
Kim, H.6
-
87
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran, F. A., Hsu, P. D., Lin, C.-Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., et al. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389. doi: 10. 1016/j. cell. 2013. 08. 021
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.-Y.3
Gootenberg, J.S.4
Konermann, S.5
Trevino, A.E.6
-
88
-
-
84907731269
-
Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model
-
Ron, M., Kajala, K., Pauluzzi, G., Wang, D., Reynoso, M. A., Zumstein, K., et al. (2014). Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 166, 455-469. doi: 10. 1104/pp. 114. 239392
-
(2014)
Plant Physiol
, vol.166
, pp. 455-469
-
-
Ron, M.1
Kajala, K.2
Pauluzzi, G.3
Wang, D.4
Reynoso, M.A.5
Zumstein, K.6
-
89
-
-
84908015428
-
The non-homologous end-joining pathway is involved in stable transformation in rice
-
Saika, H., Nishizawa-Yokoi, A., and Toki, S. (2014). The non-homologous end-joining pathway is involved in stable transformation in rice. Front. Plant Sci. 5: 560. doi: 10. 3389/fpls. 2014. 00560
-
(2014)
Front. Plant Sci
, vol.5
, pp. 560
-
-
Saika, H.1
Nishizawa-Yokoi, A.2
Toki, S.3
-
90
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander, J. D., and Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347-355. doi: 10. 1038/nbt. 2842
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
91
-
-
84957656529
-
Opportunities for products of new plant breeding techniques
-
[Epub ahead of print]
-
Schaart, J. G., van de Wiel, C. C. M., Lotz, L. A. P., and Smulders, M. J. M. (2015). Opportunities for products of new plant breeding techniques. Trends Plant Sci. doi: 10. 1016/j. tplants. 2015. 11. 006 [Epub ahead of print].
-
(2015)
Trends Plant Sci
-
-
Schaart, J.G.1
van de Wiel, C.C.M.2
Lotz, L.A.P.3
Smulders, M.J.M.4
-
92
-
-
84916624400
-
The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny
-
Schiml, S., Fauser, F., and Puchta, H. (2014). The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. 80, 1139-1150. doi: 10. 1111/tpj. 12704
-
(2014)
Plant J
, vol.80
, pp. 1139-1150
-
-
Schiml, S.1
Fauser, F.2
Puchta, H.3
-
93
-
-
85042815594
-
Targeted genome modification of crop plants using a CRISPR-Cas system
-
Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., et al. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686-688. doi: 10. 1038/nbt. 2650
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 686-688
-
-
Shan, Q.1
Wang, Y.2
Li, J.3
Zhang, Y.4
Chen, K.5
Liang, Z.6
-
94
-
-
84922264247
-
Positive-negative-selection-mediated gene targeting in rice
-
Shimatani, Z., Nishizawa-Yokoi, A., Endo, M., Toki, S., and Terada, R. (2015). Positive-negative-selection-mediated gene targeting in rice. Front. Plant Sci. 5: 748. doi: 10. 3389/fpls. 2014. 00748
-
(2015)
Front. Plant Sci
, vol.5
, pp. 748
-
-
Shimatani, Z.1
Nishizawa-Yokoi, A.2
Endo, M.3
Toki, S.4
Terada, R.5
-
95
-
-
35348890199
-
Bacterial DNA repair by non-homologous end joining
-
Shuman, S., and Glickman, M. S. (2007). Bacterial DNA repair by non-homologous end joining. Nat. Rev. Microbiol. 5, 852-861. doi: 10. 1038/nrmicro1768
-
(2007)
Nat. Rev. Microbiol
, vol.5
, pp. 852-861
-
-
Shuman, S.1
Glickman, M.S.2
-
96
-
-
84899120939
-
CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L
-
Sugano, S. S., Shirakawa, M., Takagi, J., Matsuda, Y., Shimada, T., Hara-Nishimura, I., et al. (2014). CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol. 55, 475-481. doi: 10. 1093/pcp/pcu014
-
(2014)
Plant Cell Physiol
, vol.55
, pp. 475-481
-
-
Sugano, S.S.1
Shirakawa, M.2
Takagi, J.3
Matsuda, Y.4
Shimada, T.5
Hara-Nishimura, I.6
-
97
-
-
84930651072
-
Targeted mutagenesis in soybean using the CRISPR-Cas9 system
-
Sun, X., Hu, Z., Chen, R., Jiang, Q., Song, G., Zhang, H., et al. (2015). Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci. Rep. 5, 10342. doi: 10. 1038/srep10342
-
(2015)
Sci. Rep
, vol.5
-
-
Sun, X.1
Hu, Z.2
Chen, R.3
Jiang, Q.4
Song, G.5
Zhang, H.6
-
98
-
-
84942901283
-
Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA
-
Svitashev, S., Young, J. K., Schwartz, C., Gao, H., Falco, S. C., and Cigan, A. M. (2015). Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169, 931-945. doi: 10. 1104/pp. 15. 00793
-
(2015)
Plant Physiol
, vol.169
, pp. 931-945
-
-
Svitashev, S.1
Young, J.K.2
Schwartz, C.3
Gao, H.4
Falco, S.C.5
Cigan, A.M.6
-
99
-
-
84908328232
-
A protein-tagging system for signal amplification in gene expression and fluorescence imaging
-
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., and Vale, R. D. (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635-646. doi: 10. 1016/j. cell. 2014. 09. 039
-
(2014)
Cell
, vol.159
, pp. 635-646
-
-
Tanenbaum, M.E.1
Gilbert, L.A.2
Qi, L.S.3
Weissman, J.S.4
Vale, R.D.5
-
100
-
-
84953344352
-
Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus
-
Tingting, L., Di, F., Lingyu, R., Yuanzhong, J., Rui, L., and Keming, L. (2015). Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus. Yi Chuan 37, 1044-1052. doi: 10. 16288/j. yczz. 15-303
-
(2015)
Yi Chuan
, vol.37
, pp. 1044-1052
-
-
Tingting, L.1
Di, F.2
Lingyu, R.3
Yuanzhong, J.4
Rui, L.5
Keming, L.6
-
101
-
-
84902204289
-
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
-
Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A., Thapar, V., Reyon, D., et al. (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569-576. doi: 10. 1038/nbt. 2908
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 569-576
-
-
Tsai, S.Q.1
Wyvekens, N.2
Khayter, C.3
Foden, J.A.4
Thapar, V.5
Reyon, D.6
-
102
-
-
84890831873
-
RNA-guided genome editing for target gene mutations in wheat
-
Upadhyay, S. K., Kumar, J., Alok, A., and Tuli, R. (2013). RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) 3, 2233-2238. doi: 10. 1534/g3. 113. 008847
-
(2013)
G3 (Bethesda)
, vol.3
, pp. 2233-2238
-
-
Upadhyay, S.K.1
Kumar, J.2
Alok, A.3
Tuli, R.4
-
103
-
-
84903317244
-
Precision genome engineering and agriculture: Opportunities and regulatory challenges
-
Voytas, D. F., and Gao, C. (2014). Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. 12: e1001877. doi: 10. 1371/journal. pbio. 1001877
-
(2014)
PLoS Biol
, vol.12
-
-
Voytas, D.F.1
Gao, C.2
-
104
-
-
84938988571
-
Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system
-
Wang, S., Zhang, S., Wang, W., Xiong, X., Meng, F., and Cui, X. (2015). Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep. 34, 1473-1476. doi: 10. 1007/s00299-015-1816-7
-
(2015)
Plant Cell Rep
, vol.34
, pp. 1473-1476
-
-
Wang, S.1
Zhang, S.2
Wang, W.3
Xiong, X.4
Meng, F.5
Cui, X.6
-
105
-
-
84921934205
-
Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
-
Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., et al. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951. doi: 10. 1038/nbt. 2969
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 947-951
-
-
Wang, Y.1
Cheng, X.2
Shan, Q.3
Zhang, Y.4
Liu, J.5
Gao, C.6
-
106
-
-
84938709908
-
The regulatory status of genome-edited crops
-
Wolt, J. D., Wang, K., and Yang, B. (2015). The regulatory status of genome-edited crops. Plant Biotechnol. J. 14, 510-518. doi: 10. 1111/pbi. 12444
-
(2015)
Plant Biotechnol. J
, vol.14
, pp. 510-518
-
-
Wolt, J.D.1
Wang, K.2
Yang, B.3
-
107
-
-
84947255513
-
DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins
-
Woo, J. W., Kim, J., Kwon, S. I., Corvalan, C., Cho, S. W., Kim, H., et al. (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162-1164. doi: 10. 1038/nbt. 3389
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 1162-1164
-
-
Woo, J.W.1
Kim, J.2
Kwon, S.I.3
Corvalan, C.4
Cho, S.W.5
Kim, H.6
-
108
-
-
33845604556
-
DNA double-strand break repair: All's well that ends well
-
Wyman, C., and Kanaar, R. (2006). DNA double-strand break repair: all's well that ends well. Annu. Rev. Genet. 40, 363-383. doi: 10. 1146/annurev. genet. 40. 110405. 090451
-
(2006)
Annu. Rev. Genet
, vol.40
, pp. 363-383
-
-
Wyman, C.1
Kanaar, R.2
-
109
-
-
84925262435
-
Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system
-
Xie, K., Minkenberg, B., and Yang, Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. U. S. A. 112, 3570-3575. doi: 10. 1073/pnas. 1420294112
-
(2015)
Proc. Natl. Acad. Sci. U. S. A
, vol.112
, pp. 3570-3575
-
-
Xie, K.1
Minkenberg, B.2
Yang, Y.3
-
110
-
-
84884962826
-
RNA-guided genome editing in plants using a CRISPR-Cas system
-
Xie, K., and Yang, Y. (2013). RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant 6, 1975-1983. doi: 10. 1093/mp/sst119
-
(2013)
Mol. Plant
, vol.6
, pp. 1975-1983
-
-
Xie, K.1
Yang, Y.2
-
111
-
-
84964313841
-
A CRISPR/Cas9 toolkit for multiplex genome editing in plants
-
Xing, H.-L., Dong, L., Wang, Z.-P., Zhang, H.-Y., Han, C.-Y., Liu, B., et al. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14: 327. doi: 10. 1186/s12870-014-0327-y
-
(2014)
BMC Plant Biol
, vol.14
, pp. 327
-
-
Xing, H.-L.1
Dong, L.2
Wang, Z.-P.3
Zhang, H.-Y.4
Han, C.-Y.5
Liu, B.6
-
112
-
-
84935033103
-
Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system
-
Xu, R. F., Li, H., Qin, R. Y., Li, J., Qiu, C. H., Yang, Y. C., et al. (2015). Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep. 5, 11491. doi: 10. 1038/srep11491
-
(2015)
Sci. Rep
, vol.5
-
-
Xu, R.F.1
Li, H.2
Qin, R.Y.3
Li, J.4
Qiu, C.H.5
Yang, Y.C.6
-
113
-
-
84894081804
-
Cas9-based tools for targeted genome editing and transcriptional control
-
Xu, T., Li, Y., Van Nostrand, J. D., He, Z., and Zhou, J. (2014). Cas9-based tools for targeted genome editing and transcriptional control. Appl. Environ. Microbiol. 80, 1544-1552. doi: 10. 1128/AEM. 03786-13
-
(2014)
Appl. Environ. Microbiol
, vol.80
, pp. 1544-1552
-
-
Xu, T.1
Li, Y.2
Van Nostrand, J.D.3
He, Z.4
Zhou, J.5
-
114
-
-
84943602335
-
A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing
-
Yin, K., Han, T., Liu, G., Chen, T., Wang, Y., Yu, A. Y., et al. (2015). A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci. Rep. 5, 14926. doi: 10. 1038/srep14926
-
(2015)
Sci. Rep
, vol.5
-
-
Yin, K.1
Han, T.2
Liu, G.3
Chen, T.4
Wang, Y.5
Yu, A.Y.6
-
115
-
-
84923297110
-
A split-Cas9 architecture for inducible genome editing and transcription modulation
-
Zetsche, B., Volz, S. E., and Zhang, F. (2015). A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139-142. doi: 10. 1038/nbt. 3149
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 139-142
-
-
Zetsche, B.1
Volz, S.E.2
Zhang, F.3
-
116
-
-
84904639258
-
The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation
-
Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., et al. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12, 797-807. doi: 10. 1111/pbi. 12200
-
(2014)
Plant Biotechnol. J
, vol.12
, pp. 797-807
-
-
Zhang, H.1
Zhang, J.2
Wei, P.3
Zhang, B.4
Gou, F.5
Feng, Z.6
-
117
-
-
84902002231
-
CRISPR/Cas technology: A revolutionary approach for genome engineering
-
Zhang, L., and Zhou, Q. (2014). CRISPR/Cas technology: a revolutionary approach for genome engineering. Sci. China Life Sci. 57, 639-640. doi: 10. 1007/s11427-014-4670-x
-
(2014)
Sci. China Life Sci
, vol.57
, pp. 639-640
-
-
Zhang, L.1
Zhou, Q.2
-
118
-
-
84949557262
-
A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis
-
Zhang, Z., Mao, Y., Ha, S., Liu, W., Botella, J. R., and Zhu, J. K. (2015). A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep. 1-5. doi: 10. 1007/s00299-015-1900-z
-
(2015)
Plant Cell Rep
, pp. 1-5
-
-
Zhang, Z.1
Mao, Y.2
Ha, S.3
Liu, W.4
Botella, J.R.5
Zhu, J.K.6
-
119
-
-
84921549293
-
Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice
-
Zhou, H., Liu, B., Weeks, D. P., Spalding, M. H., and Yang, B. (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. 42, 10903-10914. doi: 10. 1093/nar/gku806
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 10903-10914
-
-
Zhou, H.1
Liu, B.2
Weeks, D.P.3
Spalding, M.H.4
Yang, B.5
-
120
-
-
84942827085
-
Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy
-
Zhou, X., Jacobs, T. B., Xue, L.-J., Harding, S. A., and Tsai, C. J. (2015). Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol. 208, 298-301. doi: 10. 1111/nph. 13470
-
(2015)
New Phytol
, vol.208
, pp. 298-301
-
-
Zhou, X.1
Jacobs, T.B.2
Xue, L.-J.3
Harding, S.A.4
Tsai, C.J.5
|