-
1
-
-
84885353478
-
Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system
-
Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9: 39
-
(2013)
Plant Methods
, vol.9
-
-
Belhaj, K.1
Chaparro-Garcia, A.2
Kamoun, S.3
Nekrasov, V.4
-
2
-
-
84884161677
-
Staying on target with CRISPR-Cas
-
Carroll D (2013) Staying on target with CRISPR-Cas. Nat Biotechnol 31: 807–809
-
(2013)
Nat Biotechnol
, vol.31
, pp. 807-809
-
-
Carroll, D.1
-
3
-
-
84897964526
-
Targeted genome modification technologies and their applications in crop improvements
-
Chen K, Gao C (2014) Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep 33: 575–583
-
(2014)
Plant Cell Rep
, vol.33
, pp. 575-583
-
-
Chen, K.1
Gao, C.2
-
4
-
-
84896924524
-
Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis
-
Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111: 4632–4637
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 4632-4637
-
-
Feng, Z.1
Mao, Y.2
Xu, N.3
Zhang, B.4
Wei, P.5
Yang, D.L.6
Wang, Z.7
Zhang, Z.8
Zheng, R.9
Yang, L.10
-
5
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32: 279–284
-
(2014)
Nat Biotechnol
, vol.32
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
Cascio, V.M.4
Joung, J.K.5
-
6
-
-
84896950755
-
Specific and heritable gene editing in Arabidopsis
-
Gao Y, Zhao Y (2014) Specific and heritable gene editing in Arabidopsis. Proc Natl Acad Sci USA 111: 4357–4358
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 4357-4358
-
-
Gao, Y.1
Zhao, Y.2
-
7
-
-
84902210542
-
Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
-
Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32: 577–582
-
(2014)
Nat Biotechnol
, vol.32
, pp. 577-582
-
-
Guilinger, J.P.1
Thompson, D.B.2
Liu, D.R.3
-
9
-
-
84886926151
-
Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
-
Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41: e188
-
(2013)
Nucleic Acids Res
, vol.41
-
-
Jiang, W.1
Zhou, H.2
Bi, H.3
Fromm, M.4
Yang, B.5
Weeks, D.P.6
-
10
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
11
-
-
84871519181
-
TALENs: A widely applicable technology for targeted genome editing
-
Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14: 49–55
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 49-55
-
-
Joung, J.K.1
Sander, J.D.2
-
12
-
-
77957216653
-
The “wiry” tomato: A recessive mutant form resembling a plant affected with mosaic disease
-
Lesley MM (1928) The “wiry” tomato: a recessive mutant form resembling a plant affected with mosaic disease. J Hered 19: 337–344
-
(1928)
J Hered
, vol.19
, pp. 337-344
-
-
Lesley, M.M.1
-
13
-
-
84883785822
-
Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9, Nat Biotechnol 31: 688–691
-
(2013)
Nat Biotechnol
, vol.31
, pp. 688-691
-
-
Li, J.F.1
Norville, J.E.2
Aach, J.3
McCormack, M.4
Zhang, D.5
Bush, J.6
Church, G.M.7
Sheen, J.8
-
14
-
-
84900852939
-
CRISPR-Cas system: A powerful tool for genome engineering
-
Liu L, Fan XD (2014) CRISPR-Cas system: a powerful tool for genome engineering. Plant Mol Biol 85: 209–218
-
(2014)
Plant Mol Biol
, vol.85
, pp. 209-218
-
-
Liu, L.1
Fan, X.D.2
-
15
-
-
84908576944
-
Targeted mutagenesis of the tomato PROCERA gene using TALENs
-
Lor VS, Starker CG, Voytas DF, Weiss D, Olszewski NE (2014) Targeted mutagenesis of the tomato PROCERA gene using TALENs. Plant Physiol. 166: 1288–1291
-
(2014)
Plant Physiol
, vol.166
, pp. 1288-1291
-
-
Lor, V.S.1
Starker, C.G.2
Voytas, D.F.3
Weiss, D.4
Olszewski, N.E.5
-
16
-
-
84883828590
-
Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9, RNA-guided endonuclease
-
Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9, RNA-guided endonuclease. Nat Biotechnol 31: 691–693
-
(2013)
Nat Biotechnol
, vol.31
, pp. 691-693
-
-
Nekrasov, V.1
Staskawicz, B.2
Weigel, D.3
Jones, J.D.4
Kamoun, S.5
-
17
-
-
84882787078
-
The CRISPR craze
-
Pennisi E (2013) The CRISPR craze. Science 341: 833–836
-
(2013)
Science
, vol.341
, pp. 833-836
-
-
Pennisi, E.1
-
18
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380–1389
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
Gootenberg, J.S.4
Konermann, S.5
Trevino, A.E.6
Scott, D.A.7
Inoue, A.8
Matoba, S.9
Zhang, Y.10
-
19
-
-
84907731269
-
Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model
-
Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, et al (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166: 455–469
-
(2014)
Plant Physiol
, vol.166
, pp. 455-469
-
-
Ron, M.1
Kajala, K.2
Pauluzzi, G.3
Wang, D.4
Reynoso, M.A.5
Zumstein, K.6
Garcha, J.7
Winte, S.8
Masson, H.9
Inagaki, S.10
-
20
-
-
84863693752
-
The tomato genome sequence provides insights into fleshy fruit evolution
-
Tomato Genome Consortium
-
Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635–641
-
(2012)
Nature
, vol.485
, pp. 635-641
-
-
-
21
-
-
84902204289
-
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
-
Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32: 569–576
-
(2014)
Nat Biotechnol
, vol.32
, pp. 569-576
-
-
Tsai, S.Q.1
Wyvekens, N.2
Khayter, C.3
Foden, J.A.4
Thapar, V.5
Reyon, D.6
Goodwin, M.J.7
Aryee, M.J.8
Joung, J.K.9
-
22
-
-
77955867185
-
Genome editing with engineered zinc finger nucleases
-
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11: 636–646
-
(2010)
Nat Rev Genet
, vol.11
, pp. 636-646
-
-
Urnov, F.D.1
Rebar, E.J.2
Holmes, M.C.3
Zhang, H.S.4
Gregory, P.D.5
-
24
-
-
84921934205
-
Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
-
Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32: 947–951
-
(2014)
Nat Biotechnol
, vol.32
, pp. 947-951
-
-
Wang, Y.1
Cheng, X.2
Shan, Q.3
Zhang, Y.4
Liu, J.5
Gao, C.6
Qiu, J.L.7
-
25
-
-
79956280633
-
Assembly of designer TAL effectors by Golden Gate cloning
-
Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of designer TAL effectors by Golden Gate cloning. PLoS ONE 6: e19722
-
(2011)
Plos ONE
, vol.6
-
-
Weber, E.1
Gruetzner, R.2
Werner, S.3
Engler, C.4
Marillonnet, S.5
-
26
-
-
84899895901
-
Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops
-
Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant 7: 923–926
-
(2014)
Mol Plant
, vol.7
, pp. 923-926
-
-
Xie, K.1
Zhang, J.2
Yang, Y.3
-
27
-
-
84868120053
-
Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome
-
Yifhar T, Pekker I, Peled D, Friedlander G, Pistunov A, Sabban M, Wachsman G, Alvarez JP, Amsellem Z, Eshed Y (2012) Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell 24: 3575–3589
-
(2012)
Plant Cell
, vol.24
, pp. 3575-3589
-
-
Yifhar, T.1
Pekker, I.2
Peled, D.3
Friedlander, G.4
Pistunov, A.5
Sabban, M.6
Wachsman, G.7
Alvarez, J.P.8
Amsellem, Z.9
Eshed, Y.10
-
28
-
-
84904639258
-
The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation
-
Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12: 797–807
-
(2014)
Plant Biotechnol J
, vol.12
, pp. 797-807
-
-
Zhang, H.1
Zhang, J.2
Wei, P.3
Zhang, B.4
Gou, F.5
Feng, Z.6
Mao, Y.7
Yang, L.8
Zhang, H.9
Xu, N.10
|