-
1
-
-
84868633250
-
Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease
-
Antunes MS, Smith JJ, Jantz D, Medford J. 2012. Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease. BMC Biotechnology 12, 86.
-
(2012)
BMC Biotechnology
, vol.12
, pp. 86
-
-
Antunes, M.S.1
Smith, J.J.2
Jantz, D.3
Medford, J.4
-
2
-
-
84896308706
-
Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases
-
Bae S, Park J, Kim JS. 2014. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475.
-
(2014)
Bioinformatics
, vol.30
, pp. 1473-1475
-
-
Bae, S.1
Park, J.2
Kim, J.S.3
-
3
-
-
84885353478
-
Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system
-
Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. 2013. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9, 39.
-
(2013)
Plant Methods
, vol.9
, pp. 39
-
-
Belhaj, K.1
Chaparro-Garcia, A.2
Kamoun, S.3
Nekrasov, V.4
-
4
-
-
80755187812
-
CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation
-
Bhaya D, Davison M, Rodolphe B. 2011. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics 45, 273-297.
-
(2011)
Annual Review of Genetics
, vol.45
, pp. 273-297
-
-
Bhaya, D.1
Davison, M.2
Rodolphe, B.3
-
5
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research 41, 7429-7437.
-
(2013)
Nucleic Acids Research
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
Hochschild, A.4
Zhang, F.5
Marraffini, L.A.6
-
6
-
-
80053343092
-
TAL effectors: Customizable proteins for DNA targeting
-
Bogdanove AJ, Voytas DJ. 2011. TAL effectors: customizable proteins for DNA targeting. Science 33, 1843-1846.
-
(2011)
Science
, vol.33
, pp. 1843-1846
-
-
Bogdanove, A.J.1
Voytas, D.J.2
-
7
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extra chromosomal origin
-
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extra chromosomal origin. Microbiology 151, 2551-2561.
-
(2005)
Microbiology
, vol.151
, pp. 2551-2561
-
-
Bolotin, A.1
Quinquis, B.2
Sorokin, A.3
Ehrlich, S.D.4
-
8
-
-
80051535219
-
Genome engineering with zinc-finger nucleases
-
Carroll D. 2011. Genome engineering with zinc-finger nucleases. Genetics 188, 773-782.
-
(2011)
Genetics
, vol.188
, pp. 773-782
-
-
Carroll, D.1
-
9
-
-
84894063115
-
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
-
Chen B, Gilbert LA, Cimini BA, et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479-1491.
-
(2013)
Cell
, vol.155
, pp. 1479-1491
-
-
Chen, B.1
Gilbert, L.A.2
Cimini, B.A.3
-
10
-
-
84885180675
-
Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
-
Cheng AW, Wang H, Yang H, et al. 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Research 23, 1163-1171.
-
(2013)
Cell Research
, vol.23
, pp. 1163-1171
-
-
Cheng, A.W.1
Wang, H.2
Yang, H.3
-
11
-
-
84874624936
-
Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
-
Cho SW, Kim S, Kim JM, Kim JS. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology 31, 230-232.
-
(2013)
Nature Biotechnology
, vol.31
, pp. 230-232
-
-
Cho, S.W.1
Kim, S.2
Kim, J.M.3
Kim, J.S.4
-
12
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
-
13
-
-
79958065910
-
Targeted mutagenesis of duplicated genes in soybean with zinc finger nucleases
-
Curtin SJ, Zhang F, Sander JD, et al. 2011. Targeted mutagenesis of duplicated genes in soybean with zinc finger nucleases. Plant Physiology 156, 466-473.
-
(2011)
Plant Physiology
, vol.156
, pp. 466-473
-
-
Curtin, S.J.1
Zhang, F.2
Sander, J.D.3
-
14
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
Eckert, M.R.7
Vogel, J.8
Charpentier, E.9
-
15
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
Dicarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research 47, 4336-4343.
-
(2013)
Nucleic Acids Research
, vol.47
, pp. 4336-4343
-
-
Dicarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
16
-
-
84892164223
-
A robust TALENs system for highly efficient mammalian genome editing
-
Feng Y, Zhang S, Huang, X. 2014. A robust TALENs system for highly efficient mammalian genome editing. Scientific Reports 4, 3632.
-
(2014)
Scientific Reports
, vol.4
, pp. 3632
-
-
Feng, Y.1
Zhang, S.2
Huang, X.3
-
17
-
-
84885181396
-
Efficient genome editing in plants using a CRISPR/Cas system
-
Feng Z, Zhang B, Ding W, et al. 2013. Efficient genome editing in plants using a CRISPR/Cas system. Cell Research 23, 1229-1232.
-
(2013)
Cell Research
, vol.23
, pp. 1229-1232
-
-
Feng, Z.1
Zhang, B.2
Ding, W.3
-
18
-
-
72749124013
-
Heritable targeted mutagenesis in maize using a designed endonuclease
-
Gao H, Smith J, Yang H, et al. 2010. Heritable targeted mutagenesis in maize using a designed endonuclease. Plant Journal 61, 176-187.
-
(2010)
Plant Journal
, vol.61
, pp. 176-187
-
-
Gao, H.1
Smith, J.2
Yang, H.3
-
19
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magaádan AH, Moineau S. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71.
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.E.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
Boyaval, P.6
Fremaux, C.7
Horvath, P.8
Magaádan, A.H.9
Moineau, S.10
-
20
-
-
84880088705
-
Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease
-
Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, OConnor-Giles KM. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194, 1029-1035.
-
(2013)
Genetics
, vol.194
, pp. 1029-1035
-
-
Gratz, S.J.1
Cummings, A.M.2
Nguyen, J.N.3
Hamm, D.C.4
Donohue, L.K.5
Harrison, M.M.6
Wildonger, J.7
Oconnor-Giles, K.M.8
-
21
-
-
70449753811
-
RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
-
Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Tern MP. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945-956.
-
(2009)
Cell
, vol.139
, pp. 945-956
-
-
Hale, C.R.1
Zhao, P.2
Olson, S.3
Duff, M.O.4
Graveley, B.R.5
Wells, L.6
Terns, R.M.7
Tern, M.P.8
-
22
-
-
84893287073
-
E-CRISP: Fast CRISPR target site identification
-
Heigwer F, Kerr G, Boutros M. 2014. E-CRISP: fast CRISPR target site identification. Nature Methods 122, 122-123.
-
(2014)
Nature Methods
, vol.122
, pp. 122-123
-
-
Heigwer, F.1
Kerr, G.2
Boutros, M.3
-
23
-
-
74249095519
-
CRISPR/Cas, the immune system of bacteria and archaea
-
Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167-170.
-
(2010)
Science
, vol.327
, pp. 167-170
-
-
Horvath, P.1
Barrangou, R.2
-
24
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu PD, Scott DA, Weinstein JA, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology 31, 827-832.
-
(2013)
Nature Biotechnology
, vol.31
, pp. 827-832
-
-
Hsu, P.D.1
Scott, D.A.2
Weinstein, J.A.3
-
25
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31, 227-229.
-
(2013)
Nature Biotechnology
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
Fu, Y.2
Reyon, D.3
Maeder, M.L.4
Tsai, S.Q.5
Sander, J.D.6
-
26
-
-
84899556051
-
Targeted genome editing of sweet orange using Cas9/sgRNA
-
Jiang H, Wang, N. 2014. Targeted genome editing of sweet orange using Cas9/sgRNA. PLOS ONE 9, e93806.
-
(2014)
PLOS ONE
, vol.9
, pp. e93806
-
-
Jiang, H.1
Wang, N.2
-
27
-
-
84874608929
-
RNAguided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013a. RNAguided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology 31, 233-239.
-
(2013)
Nature Biotechnology
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
28
-
-
84886926151
-
Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
-
Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. 2013b. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research 41, e188.
-
(2013)
Nucleic Acids Research
, vol.41
, pp. e188
-
-
Jiang, W.1
Zhou, H.2
Bi, H.3
Fromm, M.4
Yang, B.5
Weeks, D.P.6
-
29
-
-
84865070369
-
A programmable dual RNA guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier EA. 2012. A programmable dual RNA guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.A.6
-
30
-
-
84879016248
-
CrRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus
-
Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V. 2013. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biology 10, 841-851.
-
(2013)
RNA Biology
, vol.10
, pp. 841-851
-
-
Karvelis, T.1
Gasiunas, G.2
Miksys, A.3
Barrangou, R.4
Horvath, P.5
Siksnys, V.6
-
31
-
-
84886993480
-
CRISPR interference (CRISPR) for sequence-specific control of gene expression
-
Larson MH, Gilbert LA, Wang X, Lim WA. Weissman JS. 2013. CRISPR interference (CRISPR) for sequence-specific control of gene expression. Nature Protocols 8, 2180-2196.
-
(2013)
Nature Protocols
, vol.8
, pp. 2180-2196
-
-
Larson, M.H.1
Gilbert, L.A.2
Wang, X.3
Lim, W.A.4
Weissman, J.S.5
-
32
-
-
84883785822
-
Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
Li J, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31, 688-691.
-
(2013)
Nature Biotechnology
, vol.31
, pp. 688-691
-
-
Li, J.1
Norville, J.E.2
Aach, J.3
McCormack, M.4
Zhang, D.5
Bush, J.6
Church, G.M.7
Sheen, J.8
-
33
-
-
84886513724
-
A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes
-
Ma M, Ye AY, Zheng W, Kong L. 2013. A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. BioMed Research International 2013, 270805.
-
(2013)
BioMed Research International
, vol.2013
, pp. 270805
-
-
Ma, M.1
Ye, A.Y.2
Zheng, W.3
Kong, L.4
-
34
-
-
84855884976
-
TALE nucleases and next generation GM crops
-
Mahfouz MM, Li L. 2011. TALE nucleases and next generation GM crops. GM Crops 2, 99-103.
-
(2011)
GM Crops
, vol.2
, pp. 99-103
-
-
Mahfouz, M.M.1
Li, L.2
-
35
-
-
34248374277
-
A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
-
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. 2006. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct 1, 7.
-
(2006)
Biology Direct
, vol.1
, pp. 7
-
-
Makarova, K.S.1
Grishin, N.V.2
Shabalina, S.A.3
Wolf, Y.I.4
Koonin, E.V.5
-
37
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, Noeville JE, Chuech GM. 2013. RNA-guided human genome engineering via Cas9. Science 339, 823-826.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
Dicarlo, J.E.6
Noeville, J.E.7
Chuech, G.M.8
-
38
-
-
84888781186
-
Repurposing CRISPR/Cas9 for in situ functional assays
-
Malina A, Mills JR, Cencic R, et al. 2013. Repurposing CRISPR/Cas9 for in situ functional assays. Genes & Development 27, 2602-2614.
-
(2013)
Genes & Development
, vol.27
, pp. 2602-2614
-
-
Malina, A.1
Mills, J.R.2
Cencic, R.3
-
39
-
-
84891932593
-
Application of the CRISPR-Cas system for efficient genome engineering in plants
-
Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK. 2013. Application of the CRISPR-Cas system for efficient genome engineering in plants. Molecular Plant 6, 2008-2011.
-
(2013)
Molecular Plant
, vol.6
, pp. 2008-2011
-
-
Mao, Y.1
Zhang, H.2
Xu, N.3
Zhang, B.4
Gou, F.5
Zhu, J.K.6
-
40
-
-
77249170201
-
CRISPR interference: RNAdirected adaptive immunity in bacteria and archaea
-
Marraffini LA, Sontheimer EJ. 2010. CRISPR interference: RNAdirected adaptive immunity in bacteria and archaea. Nature Review of Genetics 11, 181-190.
-
(2010)
Nature Review of Genetics
, vol.11
, pp. 181-190
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
41
-
-
84885180177
-
Targeted mutagenesis in rice using CRISPR-Cas system
-
Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L-J. 2013. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research 23, 1233-1236.
-
(2013)
Cell Research
, vol.23
, pp. 1233-1236
-
-
Miao, J.1
Guo, D.2
Zhang, J.3
Huang, Q.4
Qin, G.5
Zhang, X.6
Wan, J.7
Gu, H.8
Qu, L.-J.9
-
42
-
-
79551685675
-
A TALE nuclease architecture for efficient genome editing
-
Miller JC, Tan S, Qiao G, et al. 2011. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology 29, 143-148.
-
(2011)
Nature Biotechnology
, vol.29
, pp. 143-148
-
-
Miller, J.C.1
Tan, S.2
Qiao, G.3
-
43
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
Mojica FJ, Diez-Villasensor C, Garcia-Martinez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution 60, 174-182.
-
(2005)
Journal of Molecular Evolution
, vol.60
, pp. 174-182
-
-
Mojica, F.J.1
Diez-Villasensor, C.2
Garcia-Martinez, J.3
Soria, E.4
-
44
-
-
84883828590
-
Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9-guided endonuclease
-
Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9-guided endonuclease. Nature Biotechnology 31, 691-693.
-
(2013)
Nature Biotechnology
, vol.31
, pp. 691-693
-
-
Nekrasov, V.1
Staskawicz, B.2
Weigel, D.3
Jones, J.D.4
Kamoun, S.5
-
45
-
-
84896733529
-
Crystal structure of Cas9 in complex with guide RNA and target DNA
-
Nishimasu H, Ran FA, Hsu PD, et al. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949.
-
(2014)
Cell
, vol.156
, pp. 935-949
-
-
Nishimasu, H.1
Ran, F.A.2
Hsu, P.D.3
-
46
-
-
77955406102
-
Site directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases
-
Osakabe K, Osakabe Y, Yoki S. 2010. Site directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proceedings of the National Academy of Sciences, USA 107, 12034-12039.
-
(2010)
Proceedings of the National Academy of Sciences, USA
, vol.107
, pp. 12034-12039
-
-
Osakabe, K.1
Osakabe, Y.2
Yoki, S.3
-
47
-
-
33847246298
-
Meganucleases and DNA double-strand break-induced recombination perspectives for gene therapy
-
Pques F, Duchateau P. 2007. Meganucleases and DNA double-strand break-induced recombination perspectives for gene therapy. Current Gene Therapy 7, 49-66.
-
(2007)
Current Gene Therapy
, vol.7
, pp. 49-66
-
-
Pques, F.1
Duchateau, P.2
-
48
-
-
84884155038
-
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
-
Pattanayak V, Lin S, Guilinger JP, et al. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology 31, 839-843.
-
(2013)
Nature Biotechnology
, vol.31
, pp. 839-843
-
-
Pattanayak, V.1
Lin, S.2
Guilinger, J.P.3
-
49
-
-
15844390228
-
CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
-
Pourcel C, Salvignol G, Vergnaud G. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653-663.
-
(2005)
Microbiology
, vol.151
, pp. 653-663
-
-
Pourcel, C.1
Salvignol, G.2
Vergnaud, G.3
-
50
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. 2013a. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 5, 1173-1183.
-
(2013)
Cell
, vol.5
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
Weissman, J.S.5
Arkin, A.P.6
Lim, W.A.7
-
51
-
-
84874643080
-
Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways
-
Qi Y, Zhang Y, Zhang F, Baller JA, Cleland SC, Ryu Y, Starker CG, Voytas DF. 2013b. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Research 23, 547-554.
-
(2013)
Genome Research
, vol.23
, pp. 547-554
-
-
Qi, Y.1
Zhang, Y.2
Zhang, F.3
Baller, J.A.4
Cleland, S.C.5
Ryu, Y.6
Starker, C.G.7
Voytas, D.F.8
-
52
-
-
84884288934
-
Double nicking by RNA guided CRISPR-Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu PD, Lin CY, et al. 2013. Double nicking by RNA guided CRISPR-Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
-
53
-
-
75849154794
-
CRISPI: A CRISPR interactive database
-
Rousseau C, Gonnet M, Le Romancer M, Nicolas J. 2009. CRISPI: a CRISPR interactive database. Bioinformatics 25, 3317-3318.
-
(2009)
Bioinformatics
, vol.25
, pp. 3317-3318
-
-
Rousseau, C.1
Gonnet, M.2
Le Romancer, M.3
Nicolas, J.4
-
54
-
-
84897134020
-
CRISPRs and epigenome editing
-
Rusk N. 2014. CRISPRs and epigenome editing. Nature Methods 11, 28.
-
(2014)
Nature Methods
, vol.11
, pp. 28
-
-
Rusk, N.1
-
55
-
-
84880737219
-
Rapid and efficient gene modification in rice and brachypodium using TALENs
-
Shan Q, Wang Y, Chen K, et al. 2013a. Rapid and efficient gene modification in rice and brachypodium using TALENs. Molecular Plant 6, 1365-1368.
-
(2013)
Molecular Plant
, vol.6
, pp. 1365-1368
-
-
Shan, Q.1
Wang, Y.2
Chen, K.3
-
56
-
-
85042815594
-
Targeted genome modification of crop plants using a CRISPR-Cas system
-
Shan Q, Wang Y, Li J, et al. 2013b. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31, 686-688.
-
(2013)
Nature Biotechnology
, vol.31
, pp. 686-688
-
-
Shan, Q.1
Wang, Y.2
Li, J.3
-
57
-
-
84877103949
-
Generation of gene-modified mice via Cas9/RNA mediated gene targeting
-
Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X. 2013. Generation of gene-modified mice via Cas9/RNA mediated gene targeting. Cell Research 23, 720-723.
-
(2013)
Cell Research
, vol.23
, pp. 720-723
-
-
Shen, B.1
Zhang, J.2
Wu, H.3
Wang, J.4
Ma, K.5
Li, Z.6
Zhang, X.7
Zhang, P.8
Huang, X.9
-
58
-
-
84897954175
-
Efficient genome modification by CRISPR-Cas9 nicknase with minimal off-target effects
-
Shen B, Zhang W, Zhang J, et al. 2014. Efficient genome modification by CRISPR-Cas9 nicknase with minimal off-target effects. Nature Methods 11, 399-402.
-
(2014)
Nature Methods
, vol.11
, pp. 399-402
-
-
Shen, B.1
Zhang, W.2
Zhang, J.3
-
59
-
-
66249147273
-
Precise genome modification in the crop species Zea mays using zinc finger nucleases
-
Shukla VK, Doyon Y, Miller JC, et al. 2009. Precise genome modification in the crop species Zea mays using zinc finger nucleases. Nature 459, 437-443.
-
(2009)
Nature
, vol.459
, pp. 437-443
-
-
Shukla, V.K.1
Doyon, Y.2
Miller, J.C.3
-
60
-
-
84863678546
-
TAL effector RVD specificities and efficiencies
-
Streubel J, Blcher C, Landgraf A, Boch J. 2012. TAL effector RVD specificities and efficiencies. Nature Biotechnology 30, 593-595.
-
(2012)
Nature Biotechnology
, vol.30
, pp. 593-595
-
-
Streubel, J.1
Blcher, C.2
Landgraf, A.3
Boch, J.4
-
61
-
-
84899120939
-
CRISPR/Cas9 mediated targeted mutagenesis in the liverwort Marchantia polymorpha L
-
Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I, Kohchi T. 2014. CRISPR/Cas9 mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant and Cell Physiology 55, 475-481.
-
(2014)
Plant and Cell Physiology
, vol.55
, pp. 475-481
-
-
Sugano, S.S.1
Shirakawa, M.2
Takagi, J.3
Matsuda, Y.4
Shimada, T.5
Hara-Nishimura, I.6
Kohchi, T.7
-
62
-
-
66249093890
-
High frequency modification of plant genes using engineered zinc finger nucleases
-
Townsend JA, Wright DA, Winfrey RJ, et al. 2009. High frequency modification of plant genes using engineered zinc finger nucleases. Nature 459, 437-443.
-
(2009)
Nature
, vol.459
, pp. 437-443
-
-
Townsend, J.A.1
Wright, D.A.2
Winfrey, R.J.3
-
63
-
-
84890831873
-
RNA guided genome editing for target gene mutations in wheat
-
Upadhyay SK, Kumar J, Alok A, Tuli R. 2013. RNA guided genome editing for target gene mutations in wheat. G3: Genes, Genomes, Genetics 3, 2233-2238.
-
(2013)
G3: Genes, Genomes, Genetics
, vol.3
, pp. 2233-2238
-
-
Upadhyay, S.K.1
Kumar, J.2
Alok, A.3
Tuli, R.4
-
64
-
-
68249102788
-
CRISPR-based adaptive and heritable immunity in prokaryotes
-
van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ. 2009. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences 34, 401-407.
-
(2009)
Trends in Biochemical Sciences
, vol.34
, pp. 401-407
-
-
Van Der Oost, J.1
Jore, M.M.2
Westra, E.R.3
Lundgren, M.4
Brouns, S.J.5
-
65
-
-
84874627868
-
Plant genome engineering with sequence-specific nucleases
-
Voytas DF. 2013. Plant genome engineering with sequence-specific nucleases. Annual Review of Plant Biology 64, 327-350.
-
(2013)
Annual Review of Plant Biology
, vol.64
, pp. 327-350
-
-
Voytas, D.F.1
-
66
-
-
84908160831
-
A CRISPR-based approach for proteomic analysis of a single genomic locus
-
Waldrip ZJ, Byrum SD, Storey AJ, et al. 2014. A CRISPR-based approach for proteomic analysis of a single genomic locus. Epigenetics 9, 1207-1211.
-
(2014)
Epigenetics
, vol.9
, pp. 1207-1211
-
-
Waldrip, Z.J.1
Byrum, S.D.2
Storey, A.J.3
-
67
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
-
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910-918.
-
(2013)
Cell
, vol.153
, pp. 910-918
-
-
Wang, H.1
Yang, H.2
Shivalila, C.S.3
Dawlaty, M.M.4
Cheng, A.W.5
Zhang, F.6
Jaenisch, R.7
-
68
-
-
84921934205
-
Simultaneous editing of three homoeoalleles in haxaploid bread wheat confers heritable resistance to powdery mildew
-
Wang Y, Cheng X, Shan Q, Zhag Y, Liu J, Gao C, Qiu J-L. 2014. Simultaneous editing of three homoeoalleles in haxaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32, 947-951.
-
(2014)
Nature Biotechnology
, vol.32
, pp. 947-951
-
-
Wang, Y.1
Cheng, X.2
Shan, Q.3
Zhag, Y.4
Liu, J.5
Gao, C.6
Qiu, J.-L.7
-
69
-
-
79956280633
-
Assembly of designer TAL effectors by Golden Gate cloning
-
Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S. 2011. Assembly of designer TAL effectors by Golden Gate cloning. PLOS ONE 6, e19722.
-
(2011)
PLOS ONE
, vol.6
, pp. e19722
-
-
Weber, E.1
Gruetzner, R.2
Werner, S.3
Engler, C.4
Marillonnet, S.5
-
70
-
-
84879410743
-
TALEN or Cas9-rapid, efficient and specific choices for genome modifications
-
Wei CX, Liu JY, Yu ZS, Zhang B, Gao GJ, Jiao RJ. 2013. TALEN or Cas9-rapid, efficient and specific choices for genome modifications. Journal of Genetics and Genomics 40, 281-289.
-
(2013)
Journal of Genetics and Genomics
, vol.40
, pp. 281-289
-
-
Wei, C.X.1
Liu, J.Y.2
Yu, Z.S.3
Zhang, B.4
Gao, G.J.5
Jiao, R.J.6
-
71
-
-
77953285393
-
Genome editing in plant cells by zinc finger nucleases
-
Weinthal D, Tovkach A, Zeevi V, Tzfira T. 2010. Genome editing in plant cells by zinc finger nucleases. Trends in Plant Science 15, 308-321.
-
(2010)
Trends in Plant Science
, vol.15
, pp. 308-321
-
-
Weinthal, D.1
Tovkach, A.2
Zeevi, V.3
Tzfira, T.4
-
72
-
-
84857097177
-
RNA guided genetic silencing systems in bacteria and archaea
-
Wiedenheft B, Sternberg SH, Doudna JA. 2012. RNA guided genetic silencing systems in bacteria and archaea. Nature 482, 331-338.
-
(2012)
Nature
, vol.482
, pp. 331-338
-
-
Wiedenheft, B.1
Sternberg, S.H.2
Doudna, J.A.3
-
73
-
-
66349134987
-
Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense
-
Wiedenheft B, Zhou K, Jinek M, Coyle S M, Ma W, Doudna JA. 2009. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17, 904-912.
-
(2009)
Structure
, vol.17
, pp. 904-912
-
-
Wiedenheft, B.1
Zhou, K.2
Jinek, M.3
Coyle, S.M.4
Ma, W.5
Doudna, J.A.6
-
74
-
-
84898889321
-
CasOT: A genome-wide Cas9/gRNA off-target searching tool
-
Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B. 2014. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30, 1180-1182.
-
(2014)
Bioinformatics
, vol.30
, pp. 1180-1182
-
-
Xiao, A.1
Cheng, Z.2
Kong, L.3
Zhu, Z.4
Lin, S.5
Gao, G.6
Zhang, B.7
-
75
-
-
84884962826
-
RNA-guided genome editing in plants using a CRISPR-Cas system
-
Xie K, Yang Y. 2013. RNA-guided genome editing in plants using a CRISPR-Cas system. Molecular Plant 6, 1975-1983.
-
(2013)
Molecular Plant
, vol.6
, pp. 1975-1983
-
-
Xie, K.1
Yang, Y.2
-
76
-
-
84899895901
-
Genome-wide prediction of highly specific guide RNA spacers for the CRISPR-Cas9 mediated genome editing in model plants and major crops
-
Xie K, Zhang J, Yang Y. 2014. Genome-wide prediction of highly specific guide RNA spacers for the CRISPR-Cas9 mediated genome editing in model plants and major crops. Molecular Plant 7, 923-926.
-
(2014)
Molecular Plant
, vol.7
, pp. 923-926
-
-
Xie, K.1
Zhang, J.2
Yang, Y.3
-
77
-
-
84884289608
-
One-step generation of mice-carrying reported and conditional alleles by CRISPR/Cas-mediated genome engineering
-
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. 2013. One-step generation of mice-carrying reported and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370-1379.
-
(2013)
Cell
, vol.154
, pp. 1370-1379
-
-
Yang, H.1
Wang, H.2
Shivalila, C.S.3
Cheng, A.W.4
Shi, L.5
Jaenisch, R.6
-
78
-
-
77955395799
-
High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases
-
Zhang F, Maeder ML, Unger-Wallace E, et al. 2010. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proceedings of the National Academy of Sciences, USA 107, 12028-12033.
-
(2010)
Proceedings of the National Academy of Sciences, USA
, vol.107
, pp. 12028-12033
-
-
Zhang, F.1
Maeder, M.L.2
Unger-Wallace, E.3
-
79
-
-
84904639258
-
The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation
-
Zhang H, Zhang J, Wei P, et al. 2014. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal 12, 797-807.
-
(2014)
Plant Biotechnology Journal
, vol.12
, pp. 797-807
-
-
Zhang, H.1
Zhang, J.2
Wei, P.3
|