메뉴 건너뛰기




Volumn 39, Issue , 2016, Pages 191-229

The Eukaryotic Replication Machine

Author keywords

Clamp loader; CMG; DNA polymerase; Helicase; PCNA clamp; Primase; Replisome

Indexed keywords

DNA DIRECTED DNA POLYMERASE; DNA DIRECTED DNA POLYMERASE ALPHA; DNA HELICASE; DNA SYNTHESOME; MULTIENZYME COMPLEX;

EID: 84963804607     PISSN: 18746047     EISSN: None     Source Type: Book Series    
DOI: 10.1016/bs.enz.2016.03.004     Document Type: Chapter
Times cited : (30)

References (182)
  • 1
    • 84878939444 scopus 로고    scopus 로고
    • Mechanisms for initiating cellular DNA replication
    • Costa A., Hood I.V., Berger J.M. Mechanisms for initiating cellular DNA replication. Annu. Rev. Biochem. 2013, 82:25-54.
    • (2013) Annu. Rev. Biochem. , vol.82 , pp. 25-54
    • Costa, A.1    Hood, I.V.2    Berger, J.M.3
  • 2
    • 84874695795 scopus 로고    scopus 로고
    • Helicase activation and establishment of replication forks at chromosomal origins of replication
    • Tanaka S., Araki H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb. Perspect. Biol. 2013, 5:511-541.
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , pp. 511-541
    • Tanaka, S.1    Araki, H.2
  • 3
    • 84925500198 scopus 로고    scopus 로고
    • Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated
    • Tognetti S., Riera A., Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 2015, 124:13-26.
    • (2015) Chromosoma , vol.124 , pp. 13-26
    • Tognetti, S.1    Riera, A.2    Speck, C.3
  • 11
    • 84939805683 scopus 로고    scopus 로고
    • Replicating through telomeres: a means to an end
    • Martinez P., Blasco M.A. Replicating through telomeres: a means to an end. Trends Biochem. Sci. 2015, 40:504-515.
    • (2015) Trends Biochem. Sci. , vol.40 , pp. 504-515
    • Martinez, P.1    Blasco, M.A.2
  • 12
    • 84978094689 scopus 로고    scopus 로고
    • Replication of telomeres and the regulation of telomerase
    • Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, S.D. Bell, M. Mechali, M.L. DePhamphilis (Eds.)
    • Pfeiffer V., Lingner J. Replication of telomeres and the regulation of telomerase. DNA Replication 2013, 576. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. first ed. S.D. Bell, M. Mechali, M.L. DePhamphilis (Eds.).
    • (2013) DNA Replication , pp. 576
    • Pfeiffer, V.1    Lingner, J.2
  • 14
    • 0033199713 scopus 로고    scopus 로고
    • Did DNA replication evolve twice independently?
    • Leipe D.D., Aravind L., Koonin E.V. Did DNA replication evolve twice independently?. Nucleic Acids Res. 1999, 27:3389-3401.
    • (1999) Nucleic Acids Res. , vol.27 , pp. 3389-3401
    • Leipe, D.D.1    Aravind, L.2    Koonin, E.V.3
  • 15
    • 84890035918 scopus 로고    scopus 로고
    • The common ancestor of archaea and eukarya was not an archaeon
    • Forterre P. The common ancestor of archaea and eukarya was not an archaeon. Archaea 2013, 2013:372396.
    • (2013) Archaea , vol.2013 , pp. 372396
    • Forterre, P.1
  • 18
    • 84859914242 scopus 로고    scopus 로고
    • Clamp loader ATPases and the evolution of DNA replication machinery
    • Kelch B.A., Makino D.L., O'Donnell M., Kuriyan J. Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol. 2012, 10:34.
    • (2012) BMC Biol. , vol.10 , pp. 34
    • Kelch, B.A.1    Makino, D.L.2    O'Donnell, M.3    Kuriyan, J.4
  • 19
    • 33745041480 scopus 로고    scopus 로고
    • Evolutionary relationships and structural mechanisms of AAA+ proteins
    • Erzberger J.P., Berger J.M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 2006, 35:93-114.
    • (2006) Annu. Rev. Biophys. Biomol. Struct. , vol.35 , pp. 93-114
    • Erzberger, J.P.1    Berger, J.M.2
  • 20
    • 34548638261 scopus 로고    scopus 로고
    • Structure and mechanism of helicases and nucleic acid translocases
    • Singleton M.R., Dillingham M.S., Wigley D.B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 2007, 76:23-50.
    • (2007) Annu. Rev. Biochem. , vol.76 , pp. 23-50
    • Singleton, M.R.1    Dillingham, M.S.2    Wigley, D.B.3
  • 22
    • 0034737468 scopus 로고    scopus 로고
    • Structure of the RNA polymerase domain of E. coli primase
    • Keck J.L., Roche D.D., Lynch A.S., Berger J.M. Structure of the RNA polymerase domain of E. coli primase. Science 2000, 287:2482-2486.
    • (2000) Science , vol.287 , pp. 2482-2486
    • Keck, J.L.1    Roche, D.D.2    Lynch, A.S.3    Berger, J.M.4
  • 23
    • 0034616957 scopus 로고    scopus 로고
    • A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases
    • Podobnik M., McInerney P., O'Donnell M., Kuriyan J. A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases. J. Mol. Biol. 2000, 300:353-362.
    • (2000) J. Mol. Biol. , vol.300 , pp. 353-362
    • Podobnik, M.1    McInerney, P.2    O'Donnell, M.3    Kuriyan, J.4
  • 24
    • 0033564245 scopus 로고    scopus 로고
    • Arg304 of human DNA primase is a key contributor to catalysis and NTP binding: primase and the family X polymerases share significant sequence homology
    • Kirk B.W., Kuchta R.D. Arg304 of human DNA primase is a key contributor to catalysis and NTP binding: primase and the family X polymerases share significant sequence homology. Biochemistry 1999, 38:7727-7736.
    • (1999) Biochemistry , vol.38 , pp. 7727-7736
    • Kirk, B.W.1    Kuchta, R.D.2
  • 25
    • 0033581011 scopus 로고    scopus 로고
    • DNA polymerases: structural diversity and common mechanisms
    • Steitz T.A. DNA polymerases: structural diversity and common mechanisms. J. Biol. Chem. 1999, 274:17395-17398.
    • (1999) J. Biol. Chem. , vol.274 , pp. 17395-17398
    • Steitz, T.A.1
  • 26
    • 84899827339 scopus 로고    scopus 로고
    • An overview of Y-Family DNA polymerases and a case study of human DNA polymerase eta
    • Yang W. An overview of Y-Family DNA polymerases and a case study of human DNA polymerase eta. Biochemistry 2014, 53:2793-2803.
    • (2014) Biochemistry , vol.53 , pp. 2793-2803
    • Yang, W.1
  • 27
    • 85042340667 scopus 로고    scopus 로고
    • Comparison of bacterial and eukaryotic replisome components
    • Academic Press, Amsterdam, Netherlands, R.A. Bradshaw, P.D. Stahl (Eds.)
    • Yao N.Y., O'Donnell M.E. Comparison of bacterial and eukaryotic replisome components. Encyclopedia of Cell Biology 2015, 396-417. Academic Press, Amsterdam, Netherlands. R.A. Bradshaw, P.D. Stahl (Eds.).
    • (2015) Encyclopedia of Cell Biology , pp. 396-417
    • Yao, N.Y.1    O'Donnell, M.E.2
  • 28
    • 0026717535 scopus 로고
    • Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp
    • Kong X.P., Onrust R., O'Donnell M., Kuriyan J. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 1992, 69:425-437.
    • (1992) Cell , vol.69 , pp. 425-437
    • Kong, X.P.1    Onrust, R.2    O'Donnell, M.3    Kuriyan, J.4
  • 29
    • 0025809742 scopus 로고
    • Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme
    • Stukenberg P.T., Studwell-Vaughan P.S., O'Donnell M. Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme. J. Biol. Chem. 1991, 266:11328-11334.
    • (1991) J. Biol. Chem. , vol.266 , pp. 11328-11334
    • Stukenberg, P.T.1    Studwell-Vaughan, P.S.2    O'Donnell, M.3
  • 30
    • 84936988349 scopus 로고    scopus 로고
    • A proposal: evolution of PCNA's role as a marker of newly replicated DNA
    • Georgescu R., Langston L., O'Donnell M. A proposal: evolution of PCNA's role as a marker of newly replicated DNA. DNA Repair (Amst) 2015, 29:4-15.
    • (2015) DNA Repair (Amst) , vol.29 , pp. 4-15
    • Georgescu, R.1    Langston, L.2    O'Donnell, M.3
  • 31
    • 0041885325 scopus 로고    scopus 로고
    • Proliferating cell nuclear antigen (PCNA): a dancer with many partners
    • Maga G., Hubscher U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell Sci. 2003, 116:3051-3060.
    • (2003) J. Cell Sci. , vol.116 , pp. 3051-3060
    • Maga, G.1    Hubscher, U.2
  • 34
    • 74749095240 scopus 로고    scopus 로고
    • Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins
    • Ilves I., Petojevic T., Pesavento J.J., Botchan M.R. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol. Cell 2010, 37:247-258.
    • (2010) Mol. Cell , vol.37 , pp. 247-258
    • Ilves, I.1    Petojevic, T.2    Pesavento, J.J.3    Botchan, M.R.4
  • 35
    • 33745925880 scopus 로고    scopus 로고
    • Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
    • Moyer S.E., Lewis P.W., Botchan M.R. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10236-10241.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10236-10241
    • Moyer, S.E.1    Lewis, P.W.2    Botchan, M.R.3
  • 36
    • 84856768293 scopus 로고    scopus 로고
    • The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes
    • Makarova K.S., Koonin E.V., Kelman Z. The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol. Direct 2012, 7:7.
    • (2012) Biol. Direct , vol.7 , pp. 7
    • Makarova, K.S.1    Koonin, E.V.2    Kelman, Z.3
  • 37
    • 79960129821 scopus 로고    scopus 로고
    • Cdc45: the missing RecJ ortholog in eukaryotes?
    • Sanchez-Pulido L., Ponting C.P. Cdc45: the missing RecJ ortholog in eukaryotes?. Bioinformatics 2011, 27:1885-1888.
    • (2011) Bioinformatics , vol.27 , pp. 1885-1888
    • Sanchez-Pulido, L.1    Ponting, C.P.2
  • 38
    • 47349114465 scopus 로고    scopus 로고
    • The Mcm2-7 complex has in vitro helicase activity
    • Bochman M.L., Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol. Cell 2008, 31:287-293.
    • (2008) Mol. Cell , vol.31 , pp. 287-293
    • Bochman, M.L.1    Schwacha, A.2
  • 39
    • 0038475879 scopus 로고    scopus 로고
    • Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture
    • Davey M.J., Indiani C., O'Donnell M. Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. J. Biol. Chem. 2003, 278:4491-4499.
    • (2003) J. Biol. Chem. , vol.278 , pp. 4491-4499
    • Davey, M.J.1    Indiani, C.2    O'Donnell, M.3
  • 40
    • 0037847620 scopus 로고    scopus 로고
    • GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast
    • Takayama Y., Kamimura Y., Okawa M., Muramatsu S., Sugino A., Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003, 17:1153-1165.
    • (2003) Genes Dev. , vol.17 , pp. 1153-1165
    • Takayama, Y.1    Kamimura, Y.2    Okawa, M.3    Muramatsu, S.4    Sugino, A.5    Araki, H.6
  • 41
    • 0034652354 scopus 로고    scopus 로고
    • A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase
    • Chong J.P., Hayashi M.K., Simon M.N., Xu R.M., Stillman B. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:1530-1535.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 1530-1535
    • Chong, J.P.1    Hayashi, M.K.2    Simon, M.N.3    Xu, R.M.4    Stillman, B.5
  • 42
    • 0033593053 scopus 로고    scopus 로고
    • The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity
    • Kelman Z., Lee J.K., Hurwitz J. The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:14783-14788.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 14783-14788
    • Kelman, Z.1    Lee, J.K.2    Hurwitz, J.3
  • 43
    • 84859980381 scopus 로고    scopus 로고
    • Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis
    • Kang Y.H., Galal W.C., Farina A., Tappin I., Hurwitz J. Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6042-6047.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 6042-6047
    • Kang, Y.H.1    Galal, W.C.2    Farina, A.3    Tappin, I.4    Hurwitz, J.5
  • 44
    • 84925813600 scopus 로고    scopus 로고
    • Regulated eukaryotic DNA replication origin firing with purified proteins
    • Yeeles J.T., Deegan T.D., Janska A., Early A., Diffley J.F. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 2015, 519:431-435.
    • (2015) Nature , vol.519 , pp. 431-435
    • Yeeles, J.T.1    Deegan, T.D.2    Janska, A.3    Early, A.4    Diffley, J.F.5
  • 45
    • 84898451718 scopus 로고    scopus 로고
    • A conserved MCM single-stranded DNA binding element is essential for replication initiation
    • Froelich C.A., Kang S., Epling L.B., Bell S.P., Enemark E.J. A conserved MCM single-stranded DNA binding element is essential for replication initiation. Elife 2014, 3:e01993.
    • (2014) Elife , vol.3
    • Froelich, C.A.1    Kang, S.2    Epling, L.B.3    Bell, S.P.4    Enemark, E.J.5
  • 47
    • 0030670510 scopus 로고    scopus 로고
    • A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding
    • Hacker K.J., Johnson K.A. A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding. Biochemistry 1997, 36:14080-14087.
    • (1997) Biochemistry , vol.36 , pp. 14080-14087
    • Hacker, K.J.1    Johnson, K.A.2
  • 48
    • 0347157844 scopus 로고    scopus 로고
    • Mcm4,6,7 uses a "pump in ring" mechanism to unwind DNA by steric exclusion and actively translocate along a duplex
    • Kaplan D.L., Davey M.J., O'Donnell M. Mcm4,6,7 uses a "pump in ring" mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J. Biol. Chem. 2003, 278:49171-49182.
    • (2003) J. Biol. Chem. , vol.278 , pp. 49171-49182
    • Kaplan, D.L.1    Davey, M.J.2    O'Donnell, M.3
  • 49
    • 0036753338 scopus 로고    scopus 로고
    • DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands
    • Kaplan D.L., O'Donnell M. DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol. Cell 2002, 10:647-657.
    • (2002) Mol. Cell , vol.10 , pp. 647-657
    • Kaplan, D.L.1    O'Donnell, M.2
  • 50
    • 33745823112 scopus 로고    scopus 로고
    • Mechanisms of helicases
    • Patel S.S., Donmez I. Mechanisms of helicases. J. Biol. Chem. 2006, 281:18265-18268.
    • (2006) J. Biol. Chem. , vol.281 , pp. 18265-18268
    • Patel, S.S.1    Donmez, I.2
  • 51
    • 48249113056 scopus 로고    scopus 로고
    • Translocation and unwinding mechanisms of RNA and DNA helicases
    • Pyle A.M. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu. Rev. Biophys. 2008, 37:317-336.
    • (2008) Annu. Rev. Biophys. , vol.37 , pp. 317-336
    • Pyle, A.M.1
  • 52
    • 84876571933 scopus 로고    scopus 로고
    • Switching from single-stranded to double-stranded DNA limits the unwinding processivity of ring-shaped T7 DNA helicase
    • Jeong Y.J., Rajagopal V., Patel S.S. Switching from single-stranded to double-stranded DNA limits the unwinding processivity of ring-shaped T7 DNA helicase. Nucleic Acids Res. 2013, 41:4219-4229.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 4219-4229
    • Jeong, Y.J.1    Rajagopal, V.2    Patel, S.S.3
  • 53
    • 1542782549 scopus 로고    scopus 로고
    • Substrate requirements for duplex DNA translocation by the eukaryal and archaeal minichromosome maintenance helicases
    • Shin J.H., Jiang Y., Grabowski B., Hurwitz J., Kelman Z. Substrate requirements for duplex DNA translocation by the eukaryal and archaeal minichromosome maintenance helicases. J. Biol. Chem. 2003, 278:49053-49062.
    • (2003) J. Biol. Chem. , vol.278 , pp. 49053-49062
    • Shin, J.H.1    Jiang, Y.2    Grabowski, B.3    Hurwitz, J.4    Kelman, Z.5
  • 55
    • 0034636979 scopus 로고    scopus 로고
    • The 3'-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase
    • Kaplan D.L. The 3'-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. J. Mol. Biol. 2000, 301:285-299.
    • (2000) J. Mol. Biol. , vol.301 , pp. 285-299
    • Kaplan, D.L.1
  • 57
    • 2442513338 scopus 로고    scopus 로고
    • The DNA-unwinding mechanism of the ring helicase of bacteriophage T7
    • Jeong Y.J., Levin M.K., Patel S.S. The DNA-unwinding mechanism of the ring helicase of bacteriophage T7. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:7264-7269.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 7264-7269
    • Jeong, Y.J.1    Levin, M.K.2    Patel, S.S.3
  • 58
    • 34250766751 scopus 로고    scopus 로고
    • Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase
    • Johnson D.S., Bai L., Smith B.Y., Patel S.S., Wang M.D. Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell 2007, 129:1299-1309.
    • (2007) Cell , vol.129 , pp. 1299-1309
    • Johnson, D.S.1    Bai, L.2    Smith, B.Y.3    Patel, S.S.4    Wang, M.D.5
  • 59
    • 84865989446 scopus 로고    scopus 로고
    • Breathing fluctuations in position-specific DNA base pairs are involved in regulating helicase movement into the replication fork
    • Jose D., Weitzel S.E., von Hippel P.H. Breathing fluctuations in position-specific DNA base pairs are involved in regulating helicase movement into the replication fork. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:14428-14433.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 14428-14433
    • Jose, D.1    Weitzel, S.E.2    von Hippel, P.H.3
  • 60
    • 0035836479 scopus 로고    scopus 로고
    • Molecular mechanisms of the functional coupling of the helicase (gp41) and polymerase (gp43) of bacteriophage T4 within the DNA replication fork
    • Delagoutte E., von Hippel P.H. Molecular mechanisms of the functional coupling of the helicase (gp41) and polymerase (gp43) of bacteriophage T4 within the DNA replication fork. Biochemistry 2001, 40:4459-4477.
    • (2001) Biochemistry , vol.40 , pp. 4459-4477
    • Delagoutte, E.1    von Hippel, P.H.2
  • 61
    • 47049093279 scopus 로고    scopus 로고
    • Coupling of DNA unwinding to nucleotide hydrolysis in a ring-shaped helicase
    • Donmez I., Patel S.S. Coupling of DNA unwinding to nucleotide hydrolysis in a ring-shaped helicase. EMBO J. 2008, 27:1718-1726.
    • (2008) EMBO J. , vol.27 , pp. 1718-1726
    • Donmez, I.1    Patel, S.S.2
  • 62
    • 0035951425 scopus 로고    scopus 로고
    • A general model for nucleic acid helicases and their "coupling" within macromolecular machines
    • von Hippel P.H., Delagoutte E. A general model for nucleic acid helicases and their "coupling" within macromolecular machines. Cell 2001, 104:177-190.
    • (2001) Cell , vol.104 , pp. 177-190
    • von Hippel, P.H.1    Delagoutte, E.2
  • 63
    • 84921486481 scopus 로고    scopus 로고
    • Cdc45 (cell division cycle protein 45) guards the gate of the eukaryote replisome helicase stabilizing leading strand engagement
    • Petojevic T., Pesavento J.J., Costa A., Liang J., Wang Z., Berger J.M., Botchan M.R. Cdc45 (cell division cycle protein 45) guards the gate of the eukaryote replisome helicase stabilizing leading strand engagement. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:E249-E258.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E249-E258
    • Petojevic, T.1    Pesavento, J.J.2    Costa, A.3    Liang, J.4    Wang, Z.5    Berger, J.M.6    Botchan, M.R.7
  • 64
    • 36348987861 scopus 로고    scopus 로고
    • MCM forked substrate specificity involves dynamic interaction with the 5'-tail
    • Rothenberg E., Trakselis M.A., Bell S.D., Ha T. MCM forked substrate specificity involves dynamic interaction with the 5'-tail. J. Biol. Chem. 2007, 282:34229-34234.
    • (2007) J. Biol. Chem. , vol.282 , pp. 34229-34234
    • Rothenberg, E.1    Trakselis, M.A.2    Bell, S.D.3    Ha, T.4
  • 66
    • 84864352599 scopus 로고    scopus 로고
    • ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase from a minimalist eukaryote
    • Lyubimov A.Y., Costa A., Bleichert F., Botchan M.R., Berger J.M. ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase from a minimalist eukaryote. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11999-12004.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 11999-12004
    • Lyubimov, A.Y.1    Costa, A.2    Bleichert, F.3    Botchan, M.R.4    Berger, J.M.5
  • 67
    • 78049431126 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae Mcm6/2 and Mcm5/3 ATPase active sites contribute to the function of the putative Mcm2-7 'gate'
    • Bochman M.L., Schwacha A. The Saccharomyces cerevisiae Mcm6/2 and Mcm5/3 ATPase active sites contribute to the function of the putative Mcm2-7 'gate'. Nucleic Acids Res. 2010, 38:6078-6088.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 6078-6088
    • Bochman, M.L.1    Schwacha, A.2
  • 68
    • 84905255551 scopus 로고    scopus 로고
    • A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA
    • Samel S.A., Fernandez-Cid A., Sun J., Riera A., Tognetti S., Herrera M.C., Li H., Speck C. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev. 2014, 28:1653-1666.
    • (2014) Genes Dev. , vol.28 , pp. 1653-1666
    • Samel, S.A.1    Fernandez-Cid, A.2    Sun, J.3    Riera, A.4    Tognetti, S.5    Herrera, M.C.6    Li, H.7    Speck, C.8
  • 70
    • 33746375404 scopus 로고    scopus 로고
    • Mechanism of DNA translocation in a replicative hexameric helicase
    • Enemark E.J., Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 2006, 442:270-275.
    • (2006) Nature , vol.442 , pp. 270-275
    • Enemark, E.J.1    Joshua-Tor, L.2
  • 73
    • 0015718863 scopus 로고
    • Analysis of nucleotide pools in animal cells
    • Hauschka P.V. Analysis of nucleotide pools in animal cells. Methods Cell Biol. 1973, 7:361-462.
    • (1973) Methods Cell Biol. , vol.7 , pp. 361-462
    • Hauschka, P.V.1
  • 74
    • 0023665284 scopus 로고
    • DNA polymerase-primase from embryos of Drosophila melanogaster DNA primase subunits
    • Cotterill S., Chui G., Lehman I.R. DNA polymerase-primase from embryos of Drosophila melanogaster DNA primase subunits. J. Biol. Chem. 1987, 262:16105-16108.
    • (1987) J. Biol. Chem. , vol.262 , pp. 16105-16108
    • Cotterill, S.1    Chui, G.2    Lehman, I.R.3
  • 75
    • 0028038222 scopus 로고
    • Misincorporation of nucleotides by calf thymus DNA primase and elongation of primers containing multiple noncognate nucleotides by DNA polymerase alpha
    • Sheaff R.J., Kuchta R.D. Misincorporation of nucleotides by calf thymus DNA primase and elongation of primers containing multiple noncognate nucleotides by DNA polymerase alpha. J. Biol. Chem. 1994, 269:19225-19231.
    • (1994) J. Biol. Chem. , vol.269 , pp. 19225-19231
    • Sheaff, R.J.1    Kuchta, R.D.2
  • 76
    • 0025640874 scopus 로고
    • Accuracy of DNA primase
    • Zhang S.S., Grosse F. Accuracy of DNA primase. J. Mol. Biol. 1990, 216:475-479.
    • (1990) J. Mol. Biol. , vol.216 , pp. 475-479
    • Zhang, S.S.1    Grosse, F.2
  • 77
    • 77949570959 scopus 로고    scopus 로고
    • Mechanism and evolution of DNA primases
    • Kuchta R.D., Stengel G. Mechanism and evolution of DNA primases. Biochim. Biophys. Acta 2010, 1804:1180-1189.
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 1180-1189
    • Kuchta, R.D.1    Stengel, G.2
  • 78
    • 0035976978 scopus 로고    scopus 로고
    • The archaeal DNA primase: biochemical characterization of the p41-p46 complex from Pyrococcus furiosus
    • Liu L., Komori K., Ishino S., Bocquier A.A., Cann I.K., Kohda D., Ishino Y. The archaeal DNA primase: biochemical characterization of the p41-p46 complex from Pyrococcus furiosus. J. Biol. Chem. 2001, 276:45484-45490.
    • (2001) J. Biol. Chem. , vol.276 , pp. 45484-45490
    • Liu, L.1    Komori, K.2    Ishino, S.3    Bocquier, A.A.4    Cann, I.K.5    Kohda, D.6    Ishino, Y.7
  • 79
    • 9244224132 scopus 로고    scopus 로고
    • The heterodimeric primase of the hyperthermophilic archaeon Sulfolobus solfataricus possesses DNA and RNA primase, polymerase and 3'-terminal nucleotidyl transferase activities
    • Lao-Sirieix S.H., Bell S.D. The heterodimeric primase of the hyperthermophilic archaeon Sulfolobus solfataricus possesses DNA and RNA primase, polymerase and 3'-terminal nucleotidyl transferase activities. J. Mol. Biol. 2004, 344:1251-1263.
    • (2004) J. Mol. Biol. , vol.344 , pp. 1251-1263
    • Lao-Sirieix, S.H.1    Bell, S.D.2
  • 80
    • 0037295722 scopus 로고    scopus 로고
    • Identification of short 'eukaryotic' Okazaki fragments synthesized from a prokaryotic replication origin
    • Matsunaga F., Norais C., Forterre P., Myllykallio H. Identification of short 'eukaryotic' Okazaki fragments synthesized from a prokaryotic replication origin. EMBO Rep. 2003, 4:154-158.
    • (2003) EMBO Rep. , vol.4 , pp. 154-158
    • Matsunaga, F.1    Norais, C.2    Forterre, P.3    Myllykallio, H.4
  • 81
    • 0018787427 scopus 로고
    • A high molecular weight DNA polymerase from Drosophila melanogaster embryos. Purification, structure, and partial characterization
    • Banks G.R., Boezi J.A., Lehman I.R. A high molecular weight DNA polymerase from Drosophila melanogaster embryos. Purification, structure, and partial characterization. J. Biol. Chem. 1979, 254:9886-9892.
    • (1979) J. Biol. Chem. , vol.254 , pp. 9886-9892
    • Banks, G.R.1    Boezi, J.A.2    Lehman, I.R.3
  • 82
  • 83
    • 0020456518 scopus 로고
    • Immunological comparison of purified DNA polymerase alpha from embryos of Drosophila melanogaster with forms of the enzyme present in vivo
    • Sauer B., Lehman I.R. Immunological comparison of purified DNA polymerase alpha from embryos of Drosophila melanogaster with forms of the enzyme present in vivo. J. Biol. Chem. 1982, 257:12394-12398.
    • (1982) J. Biol. Chem. , vol.257 , pp. 12394-12398
    • Sauer, B.1    Lehman, I.R.2
  • 84
    • 0020120855 scopus 로고
    • A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos
    • Conaway R.C., Lehman I.R. A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos. Proc. Natl. Acad. Sci. U.S.A. 1982, 79:2523-2527.
    • (1982) Proc. Natl. Acad. Sci. U.S.A. , vol.79 , pp. 2523-2527
    • Conaway, R.C.1    Lehman, I.R.2
  • 85
    • 0021099814 scopus 로고
    • Association of DNA primase with the beta/gamma subunits of DNA polymerase alpha from Drosophila melanogaster embryos
    • Kaguni L.S., Rossignol J.M., Conaway R.C., Banks G.R., Lehman I.R. Association of DNA primase with the beta/gamma subunits of DNA polymerase alpha from Drosophila melanogaster embryos. J. Biol. Chem. 1983, 258:9037-9039.
    • (1983) J. Biol. Chem. , vol.258 , pp. 9037-9039
    • Kaguni, L.S.1    Rossignol, J.M.2    Conaway, R.C.3    Banks, G.R.4    Lehman, I.R.5
  • 86
    • 0028917904 scopus 로고
    • Active site mapping of the catalytic mouse primase subunit by alanine scanning mutagenesis
    • Copeland W.C., Tan X. Active site mapping of the catalytic mouse primase subunit by alanine scanning mutagenesis. J. Biol. Chem. 1995, 270:3905-3913.
    • (1995) J. Biol. Chem. , vol.270 , pp. 3905-3913
    • Copeland, W.C.1    Tan, X.2
  • 87
    • 34548492954 scopus 로고    scopus 로고
    • An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis
    • Klinge S., Hirst J., Maman J.D., Krude T., Pellegrini L. An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat. Struct. Mol. Biol. 2007, 14:875-877.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 875-877
    • Klinge, S.1    Hirst, J.2    Maman, J.D.3    Krude, T.4    Pellegrini, L.5
  • 88
    • 36348995555 scopus 로고    scopus 로고
    • An iron-sulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase
    • Weiner B.E., Huang H., Dattilo B.M., Nilges M.J., Fanning E., Chazin W.J. An iron-sulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase. J. Biol. Chem. 2007, 282:33444-33451.
    • (2007) J. Biol. Chem. , vol.282 , pp. 33444-33451
    • Weiner, B.E.1    Huang, H.2    Dattilo, B.M.3    Nilges, M.J.4    Fanning, E.5    Chazin, W.J.6
  • 89
    • 0037117724 scopus 로고    scopus 로고
    • The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting
    • Zerbe L.K., Kuchta R.D. The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting. Biochemistry 2002, 41:4891-4900.
    • (2002) Biochemistry , vol.41 , pp. 4891-4900
    • Zerbe, L.K.1    Kuchta, R.D.2
  • 90
    • 0027379095 scopus 로고
    • Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication
    • Copeland W.C., Wang T.S. Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication. J. Biol. Chem. 1993, 268:26179-26189.
    • (1993) J. Biol. Chem. , vol.268 , pp. 26179-26189
    • Copeland, W.C.1    Wang, T.S.2
  • 91
    • 0025727174 scopus 로고
    • Influence of poly(ADP-ribose) polymerase on the enzymatic synthesis of SV40 DNA
    • Eki T., Hurwitz J. Influence of poly(ADP-ribose) polymerase on the enzymatic synthesis of SV40 DNA. J. Biol. Chem. 1991, 266:3087-3100.
    • (1991) J. Biol. Chem. , vol.266 , pp. 3087-3100
    • Eki, T.1    Hurwitz, J.2
  • 92
    • 0028331879 scopus 로고
    • Calf thymus DNA polymerase alpha-primase: "communication" and primer-template movement between the two active sites
    • Sheaff R.J., Kuchta R.D., Ilsley D. Calf thymus DNA polymerase alpha-primase: "communication" and primer-template movement between the two active sites. Biochemistry 1994, 33:2247-2254.
    • (1994) Biochemistry , vol.33 , pp. 2247-2254
    • Sheaff, R.J.1    Kuchta, R.D.2    Ilsley, D.3
  • 94
    • 0022970582 scopus 로고
    • Yeast DNA primase and DNA polymerase activities. An analysis of RNA priming and its coupling to DNA synthesis
    • Singh H., Brooke R.G., Pausch M.H., Williams G.T., Trainor C., Dumas L.B. Yeast DNA primase and DNA polymerase activities. An analysis of RNA priming and its coupling to DNA synthesis. J. Biol. Chem. 1986, 261:8564-8569.
    • (1986) J. Biol. Chem. , vol.261 , pp. 8564-8569
    • Singh, H.1    Brooke, R.G.2    Pausch, M.H.3    Williams, G.T.4    Trainor, C.5    Dumas, L.B.6
  • 95
    • 42949142111 scopus 로고    scopus 로고
    • DNA polymerases at the replication fork in eukaryotes
    • Stillman B. DNA polymerases at the replication fork in eukaryotes. Mol. Cell 2008, 30:259-260.
    • (2008) Mol. Cell , vol.30 , pp. 259-260
    • Stillman, B.1
  • 96
    • 0035169689 scopus 로고    scopus 로고
    • Crystal structure of a DNA-dependent RNA polymerase (DNA primase)
    • Augustin M.A., Huber R., Kaiser J.T. Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat. Struct. Biol. 2001, 8:57-61.
    • (2001) Nat. Struct. Biol. , vol.8 , pp. 57-61
    • Augustin, M.A.1    Huber, R.2    Kaiser, J.T.3
  • 97
    • 67650409702 scopus 로고    scopus 로고
    • 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases
    • Klinge S., Nunez-Ramirez R., Llorca O., Pellegrini L. 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases. EMBO J. 2009, 28:1978-1987.
    • (2009) EMBO J. , vol.28 , pp. 1978-1987
    • Klinge, S.1    Nunez-Ramirez, R.2    Llorca, O.3    Pellegrini, L.4
  • 99
    • 77954757691 scopus 로고    scopus 로고
    • The eukaryotic replicative DNA polymerases take shape
    • Johansson E., Macneill S.A. The eukaryotic replicative DNA polymerases take shape. Trends Biochem. Sci. 2010, 35:339-347.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 339-347
    • Johansson, E.1    Macneill, S.A.2
  • 100
    • 84885048683 scopus 로고    scopus 로고
    • Structures of human primase reveal design of nucleotide elongation site and mode of Pol alpha tethering
    • Kilkenny M.L., Longo M.A., Perera R.L., Pellegrini L. Structures of human primase reveal design of nucleotide elongation site and mode of Pol alpha tethering. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:15961-15966.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 15961-15966
    • Kilkenny, M.L.1    Longo, M.A.2    Perera, R.L.3    Pellegrini, L.4
  • 103
    • 0031663505 scopus 로고    scopus 로고
    • The DNA replication fork in eukaryotic cells
    • Waga S., Stillman B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 1998, 67:721-751.
    • (1998) Annu. Rev. Biochem. , vol.67 , pp. 721-751
    • Waga, S.1    Stillman, B.2
  • 104
    • 81855189485 scopus 로고    scopus 로고
    • Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates
    • Hombauer H., Campbell C.S., Smith C.E., Desai A., Kolodner R.D. Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell 2011, 147:1040-1053.
    • (2011) Cell , vol.147 , pp. 1040-1053
    • Hombauer, H.1    Campbell, C.S.2    Smith, C.E.3    Desai, A.4    Kolodner, R.D.5
  • 105
    • 84872497264 scopus 로고    scopus 로고
    • Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase alpha
    • Liberti S.E., Larrea A.A., Kunkel T.A. Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase alpha. DNA Repair (Amst) 2013, 12:92-96.
    • (2013) DNA Repair (Amst) , vol.12 , pp. 92-96
    • Liberti, S.E.1    Larrea, A.A.2    Kunkel, T.A.3
  • 106
    • 0037449738 scopus 로고    scopus 로고
    • Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2
    • Ayyagari R., Gomes X.V., Gordenin D.A., Burgers P.M. Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2. J. Biol. Chem. 2003, 278:1618-1625.
    • (2003) J. Biol. Chem. , vol.278 , pp. 1618-1625
    • Ayyagari, R.1    Gomes, X.V.2    Gordenin, D.A.3    Burgers, P.M.4
  • 107
    • 0029092897 scopus 로고
    • Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen
    • Li X., Li J., Harrington J., Lieber M.R., Burgers P.M. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J. Biol. Chem. 1995, 270:22109-22112.
    • (1995) J. Biol. Chem. , vol.270 , pp. 22109-22112
    • Li, X.1    Li, J.2    Harrington, J.3    Lieber, M.R.4    Burgers, P.M.5
  • 108
    • 24944460598 scopus 로고    scopus 로고
    • Shelterin: the protein complex that shapes and safeguards human telomeres
    • de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005, 19:2100-2110.
    • (2005) Genes Dev. , vol.19 , pp. 2100-2110
    • de Lange, T.1
  • 109
    • 0026502128 scopus 로고
    • Protein affinity chromatography with purified yeast DNA polymerase alpha detects proteins that bind to DNA polymerase
    • Miles J., Formosa T. Protein affinity chromatography with purified yeast DNA polymerase alpha detects proteins that bind to DNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:1276-1280.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 1276-1280
    • Miles, J.1    Formosa, T.2
  • 113
    • 54249092768 scopus 로고    scopus 로고
    • Dividing the workload at a eukaryotic replication fork
    • Kunkel T.A., Burgers P.M. Dividing the workload at a eukaryotic replication fork. Trends Cell Biol. 2008, 18:521-527.
    • (2008) Trends Cell Biol. , vol.18 , pp. 521-527
    • Kunkel, T.A.1    Burgers, P.M.2
  • 115
    • 34447336941 scopus 로고    scopus 로고
    • Yeast DNA polymerase epsilon participates in leading-strand DNA replication
    • Pursell Z.F., Isoz I., Lundstrom E.B., Johansson E., Kunkel T.A. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 2007, 317:127-130.
    • (2007) Science , vol.317 , pp. 127-130
    • Pursell, Z.F.1    Isoz, I.2    Lundstrom, E.B.3    Johansson, E.4    Kunkel, T.A.5
  • 117
    • 0007914702 scopus 로고
    • Simian virus 40 DNA replication in vitro
    • Li J.J., Kelly T.J. Simian virus 40 DNA replication in vitro. Proc. Natl. Acad. Sci. U.S.A. 1984, 81:6973-6977.
    • (1984) Proc. Natl. Acad. Sci. U.S.A. , vol.81 , pp. 6973-6977
    • Li, J.J.1    Kelly, T.J.2
  • 120
    • 84855267435 scopus 로고    scopus 로고
    • The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved
    • Miyabe I., Kunkel T.A., Carr A.M. The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet. 2011, 7:e1002407.
    • (2011) PLoS Genet. , vol.7
    • Miyabe, I.1    Kunkel, T.A.2    Carr, A.M.3
  • 121
    • 84912091104 scopus 로고    scopus 로고
    • Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall
    • Yu C., Gan H., Han J., Zhou Z.X., Jia S., Chabes A., Farrugia G., Ordog T., Zhang Z. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol. Cell 2014, 56:551-563.
    • (2014) Mol. Cell , vol.56 , pp. 551-563
    • Yu, C.1    Gan, H.2    Han, J.3    Zhou, Z.X.4    Jia, S.5    Chabes, A.6    Farrugia, G.7    Ordog, T.8    Zhang, Z.9
  • 122
    • 8644285427 scopus 로고    scopus 로고
    • Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication
    • Garg P., Stith C.M., Sabouri N., Johansson E., Burgers P.M. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev. 2004, 18:2764-2773.
    • (2004) Genes Dev. , vol.18 , pp. 2764-2773
    • Garg, P.1    Stith, C.M.2    Sabouri, N.3    Johansson, E.4    Burgers, P.M.5
  • 123
    • 0037449727 scopus 로고    scopus 로고
    • Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 3'-5'-exonuclease activities of Pol delta in the creation of a ligatable nick
    • Jin Y.H., Ayyagari R., Resnick M.A., Gordenin D.A., Burgers P.M. Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 3'-5'-exonuclease activities of Pol delta in the creation of a ligatable nick. J. Biol. Chem. 2003, 278:1626-1633.
    • (2003) J. Biol. Chem. , vol.278 , pp. 1626-1633
    • Jin, Y.H.1    Ayyagari, R.2    Resnick, M.A.3    Gordenin, D.A.4    Burgers, P.M.5
  • 124
    • 84937413584 scopus 로고    scopus 로고
    • A major role of DNA polymerase delta in replication of both the leading and lagging DNA strands
    • Johnson R.E., Klassen R., Prakash L., Prakash S. A major role of DNA polymerase delta in replication of both the leading and lagging DNA strands. Mol. Cell 2015, 59:163-175.
    • (2015) Mol. Cell , vol.59 , pp. 163-175
    • Johnson, R.E.1    Klassen, R.2    Prakash, L.3    Prakash, S.4
  • 125
    • 84937416849 scopus 로고    scopus 로고
    • Reconsidering DNA polymerases at the replication fork in eukaryotes
    • Stillman B. Reconsidering DNA polymerases at the replication fork in eukaryotes. Mol. Cell 2015, 59:139-141.
    • (2015) Mol. Cell , vol.59 , pp. 139-141
    • Stillman, B.1
  • 126
    • 0033529497 scopus 로고    scopus 로고
    • Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain
    • Dua R., Levy D.L., Campbell J.L. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J. Biol. Chem. 1999, 274:22283-22288.
    • (1999) J. Biol. Chem. , vol.274 , pp. 22283-22288
    • Dua, R.1    Levy, D.L.2    Campbell, J.L.3
  • 127
    • 0032587610 scopus 로고    scopus 로고
    • DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability
    • Kesti T., Flick K., Keranen S., Syvaoja J.E., Wittenberg C. DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol. Cell 1999, 3:679-685.
    • (1999) Mol. Cell , vol.3 , pp. 679-685
    • Kesti, T.1    Flick, K.2    Keranen, S.3    Syvaoja, J.E.4    Wittenberg, C.5
  • 128
    • 0019860892 scopus 로고
    • Alternate pathways of DNA replication: DNA polymerase I-dependent replication
    • Niwa O., Bryan S.K., Moses R.E. Alternate pathways of DNA replication: DNA polymerase I-dependent replication. Proc. Natl. Acad. Sci. U.S.A. 1981, 78:7024-7027.
    • (1981) Proc. Natl. Acad. Sci. U.S.A. , vol.78 , pp. 7024-7027
    • Niwa, O.1    Bryan, S.K.2    Moses, R.E.3
  • 129
    • 53249147678 scopus 로고    scopus 로고
    • DNA polymerase epsilon: a polymerase of unusual size (and complexity)
    • Pursell Z.F., Kunkel T.A. DNA polymerase epsilon: a polymerase of unusual size (and complexity). Prog. Nucleic Acid Res. Mol. Biol. 2008, 82:101-145.
    • (2008) Prog. Nucleic Acid Res. Mol. Biol. , vol.82 , pp. 101-145
    • Pursell, Z.F.1    Kunkel, T.A.2
  • 130
    • 0032584599 scopus 로고    scopus 로고
    • Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta
    • Burgers P.M., Gerik K.J. Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 1998, 273:19756-19762.
    • (1998) J. Biol. Chem. , vol.273 , pp. 19756-19762
    • Burgers, P.M.1    Gerik, K.J.2
  • 131
    • 0034705617 scopus 로고    scopus 로고
    • Identification of a fourth subunit of mammalian DNA polymerase delta
    • Liu L., Mo J., Rodriguez-Belmonte E.M., Lee M.Y. Identification of a fourth subunit of mammalian DNA polymerase delta. J. Biol. Chem. 2000, 275:18739-18744.
    • (2000) J. Biol. Chem. , vol.275 , pp. 18739-18744
    • Liu, L.1    Mo, J.2    Rodriguez-Belmonte, E.M.3    Lee, M.Y.4
  • 133
    • 84864512844 scopus 로고    scopus 로고
    • Pol31 and Pol32 subunits of yeast DNA polymerase delta are also essential subunits of DNA polymerase zeta
    • Johnson R.E., Prakash L., Prakash S. Pol31 and Pol32 subunits of yeast DNA polymerase delta are also essential subunits of DNA polymerase zeta. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:12455-12460.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 12455-12460
    • Johnson, R.E.1    Prakash, L.2    Prakash, S.3
  • 134
    • 84871256295 scopus 로고    scopus 로고
    • A four-subunit DNA polymerase zeta complex containing Pol delta accessory subunits is essential for PCNA-mediated mutagenesis
    • Makarova A.V., Stodola J.L., Burgers P.M. A four-subunit DNA polymerase zeta complex containing Pol delta accessory subunits is essential for PCNA-mediated mutagenesis. Nucleic Acids Res. 2012, 40:11618-11626.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 11618-11626
    • Makarova, A.V.1    Stodola, J.L.2    Burgers, P.M.3
  • 138
    • 0028093437 scopus 로고
    • An explanation for lagging strand replication: polymerase hopping among DNA sliding clamps
    • Stukenberg P.T., Turner J., O'Donnell M. An explanation for lagging strand replication: polymerase hopping among DNA sliding clamps. Cell 1994, 78:877-887.
    • (1994) Cell , vol.78 , pp. 877-887
    • Stukenberg, P.T.1    Turner, J.2    O'Donnell, M.3
  • 139
    • 0030592544 scopus 로고    scopus 로고
    • Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA
    • Gulbis J.M., Kelman Z., Hurwitz J., O'Donnell M., Kuriyan J. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 1996, 87:297-306.
    • (1996) Cell , vol.87 , pp. 297-306
    • Gulbis, J.M.1    Kelman, Z.2    Hurwitz, J.3    O'Donnell, M.4    Kuriyan, J.5
  • 140
    • 0028618183 scopus 로고
    • Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA
    • Krishna T.S., Kong X.P., Gary S., Burgers P.M., Kuriyan J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 1994, 79:1233-1243.
    • (1994) Cell , vol.79 , pp. 1233-1243
    • Krishna, T.S.1    Kong, X.P.2    Gary, S.3    Burgers, P.M.4    Kuriyan, J.5
  • 141
    • 0029150469 scopus 로고
    • Characterization of the five replication factor C genes of Saccharomyces cerevisiae
    • Cullmann G., Fien K., Kobayashi R., Stillman B. Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Mol. Cell Biol. 1995, 15:4661-4671.
    • (1995) Mol. Cell Biol. , vol.15 , pp. 4661-4671
    • Cullmann, G.1    Fien, K.2    Kobayashi, R.3    Stillman, B.4
  • 142
    • 0030666224 scopus 로고    scopus 로고
    • Crystal structure of the delta' subunit of the clamp-loader complex of E. coli DNA polymerase III
    • Guenther B., Onrust R., Sali A., O'Donnell M., Kuriyan J. Crystal structure of the delta' subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 1997, 91:335-345.
    • (1997) Cell , vol.91 , pp. 335-345
    • Guenther, B.1    Onrust, R.2    Sali, A.3    O'Donnell, M.4    Kuriyan, J.5
  • 143
    • 3042588011 scopus 로고    scopus 로고
    • Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex
    • Bowman G.D., O'Donnell M., Kuriyan J. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 2004, 429:724-730.
    • (2004) Nature , vol.429 , pp. 724-730
    • Bowman, G.D.1    O'Donnell, M.2    Kuriyan, J.3
  • 144
    • 0035943342 scopus 로고    scopus 로고
    • Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III
    • Jeruzalmi D., O'Donnell M., Kuriyan J. Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 2001, 106:429-441.
    • (2001) Cell , vol.106 , pp. 429-441
    • Jeruzalmi, D.1    O'Donnell, M.2    Kuriyan, J.3
  • 145
    • 84455163347 scopus 로고    scopus 로고
    • How a DNA polymerase clamp loader opens a sliding clamp
    • Kelch B.A., Makino D.L., O'Donnell M., Kuriyan J. How a DNA polymerase clamp loader opens a sliding clamp. Science 2011, 334:1675-1680.
    • (2011) Science , vol.334 , pp. 1675-1680
    • Kelch, B.A.1    Makino, D.L.2    O'Donnell, M.3    Kuriyan, J.4
  • 146
    • 25444480278 scopus 로고    scopus 로고
    • Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis
    • Miyata T., Suzuki H., Oyama T., Mayanagi K., Ishino Y., Morikawa K. Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13795-13800.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 13795-13800
    • Miyata, T.1    Suzuki, H.2    Oyama, T.3    Mayanagi, K.4    Ishino, Y.5    Morikawa, K.6
  • 150
    • 84882735325 scopus 로고    scopus 로고
    • The mini-chromosome maintenance (Mcm) complexes interact with DNA polymerase alpha-primase and stimulate its ability to synthesize RNA primers
    • You Z., De Falco M., Kamada K., Pisani F.M., Masai H. The mini-chromosome maintenance (Mcm) complexes interact with DNA polymerase alpha-primase and stimulate its ability to synthesize RNA primers. PLoS One 2013, 8:e72408.
    • (2013) PLoS One , vol.8
    • You, Z.1    De Falco, M.2    Kamada, K.3    Pisani, F.M.4    Masai, H.5
  • 154
    • 0346363763 scopus 로고    scopus 로고
    • Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae
    • Iida T., Araki H. Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol. Cell Biol. 2004, 24:217-227.
    • (2004) Mol. Cell Biol. , vol.24 , pp. 217-227
    • Iida, T.1    Araki, H.2
  • 155
    • 33845925515 scopus 로고    scopus 로고
    • Double-stranded DNA binding, an unusual property of DNA polymerase epsilon, promotes epigenetic silencing in Saccharomyces cerevisiae
    • Tsubota T., Tajima R., Ode K., Kubota H., Fukuhara N., Kawabata T., Maki S., Maki H. Double-stranded DNA binding, an unusual property of DNA polymerase epsilon, promotes epigenetic silencing in Saccharomyces cerevisiae. J. Biol. Chem. 2006, 281:32898-32908.
    • (2006) J. Biol. Chem. , vol.281 , pp. 32898-32908
    • Tsubota, T.1    Tajima, R.2    Ode, K.3    Kubota, H.4    Fukuhara, N.5    Kawabata, T.6    Maki, S.7    Maki, H.8
  • 156
    • 34547730912 scopus 로고    scopus 로고
    • Characterization of a triple DNA polymerase replisome
    • McInerney P., Johnson A., Katz F., O'Donnell M. Characterization of a triple DNA polymerase replisome. Mol. Cell 2007, 27:527-538.
    • (2007) Mol. Cell , vol.27 , pp. 527-538
    • McInerney, P.1    Johnson, A.2    Katz, F.3    O'Donnell, M.4
  • 157
    • 0035830834 scopus 로고    scopus 로고
    • Tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain IV, located within the unique C terminus of tau, binds the replication fork, helicase, DnaB
    • Gao D., McHenry C.S. tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain IV, located within the unique C terminus of tau, binds the replication fork, helicase, DnaB. J. Biol. Chem. 2001, 276:4441-4446.
    • (2001) J. Biol. Chem. , vol.276 , pp. 4441-4446
    • Gao, D.1    McHenry, C.S.2
  • 158
    • 77951537332 scopus 로고    scopus 로고
    • Stoichiometry and architecture of active DNA replication machinery in Escherichia coli
    • Reyes-Lamothe R., Sherratt D.J., Leake M.C. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 2010, 328:498-501.
    • (2010) Science , vol.328 , pp. 498-501
    • Reyes-Lamothe, R.1    Sherratt, D.J.2    Leake, M.C.3
  • 159
    • 84855453503 scopus 로고    scopus 로고
    • Single-molecule studies reveal the function of a third polymerase in the replisome
    • Georgescu R.E., Kurth I., O'Donnell M.E. Single-molecule studies reveal the function of a third polymerase in the replisome. Nat. Struct. Mol. Biol. 2011, 19:113-116.
    • (2011) Nat. Struct. Mol. Biol. , vol.19 , pp. 113-116
    • Georgescu, R.E.1    Kurth, I.2    O'Donnell, M.E.3
  • 160
    • 84856072129 scopus 로고    scopus 로고
    • Polymerase exchange during Okazaki fragment synthesis observed in living cells
    • Lia G., Michel B., Allemand J.F. Polymerase exchange during Okazaki fragment synthesis observed in living cells. Science 2012, 335:328-331.
    • (2012) Science , vol.335 , pp. 328-331
    • Lia, G.1    Michel, B.2    Allemand, J.F.3
  • 161
    • 0029788209 scopus 로고    scopus 로고
    • The interaction between helicase and primase sets the replication fork clock
    • Tougu K., Marians K.J. The interaction between helicase and primase sets the replication fork clock. J. Biol. Chem. 1996, 271:21398-21405.
    • (1996) J. Biol. Chem. , vol.271 , pp. 21398-21405
    • Tougu, K.1    Marians, K.J.2
  • 162
    • 69449095740 scopus 로고    scopus 로고
    • Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression
    • Yao N.Y., Georgescu R.E., Finkelstein J., O'Donnell M.E. Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:13236-13241.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 13236-13241
    • Yao, N.Y.1    Georgescu, R.E.2    Finkelstein, J.3    O'Donnell, M.E.4
  • 163
    • 0028147234 scopus 로고
    • The rapid dissociation of the T4 DNA polymerase holoenzyme when stopped by a DNA hairpin helix. A model for polymerase release following the termination of each Okazaki fragment
    • Hacker K.J., Alberts B.M. The rapid dissociation of the T4 DNA polymerase holoenzyme when stopped by a DNA hairpin helix. A model for polymerase release following the termination of each Okazaki fragment. J. Biol. Chem. 1994, 269:24221-24228.
    • (1994) J. Biol. Chem. , vol.269 , pp. 24221-24228
    • Hacker, K.J.1    Alberts, B.M.2
  • 164
    • 84896737683 scopus 로고    scopus 로고
    • Cycling of the E. coli lagging strand polymerase is triggered exclusively by the availability of a new primer at the replication fork
    • Yuan Q., McHenry C.S. Cycling of the E. coli lagging strand polymerase is triggered exclusively by the availability of a new primer at the replication fork. Nucleic Acids Res. 2014, 42:1747-1756.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 1747-1756
    • Yuan, Q.1    McHenry, C.S.2
  • 165
    • 84875900370 scopus 로고    scopus 로고
    • A solution to release twisted DNA during chromosome replication by coupled DNA polymerases
    • Kurth I., Georgescu R.E., O'Donnell M.E. A solution to release twisted DNA during chromosome replication by coupled DNA polymerases. Nature 2013, 496:119-122.
    • (2013) Nature , vol.496 , pp. 119-122
    • Kurth, I.1    Georgescu, R.E.2    O'Donnell, M.E.3
  • 166
    • 30744446944 scopus 로고    scopus 로고
    • The control mechanism for lagging strand polymerase recycling during bacteriophage T4 DNA replication
    • Yang J., Nelson S.W., Benkovic S.J. The control mechanism for lagging strand polymerase recycling during bacteriophage T4 DNA replication. Mol. Cell 2006, 21:153-164.
    • (2006) Mol. Cell , vol.21 , pp. 153-164
    • Yang, J.1    Nelson, S.W.2    Benkovic, S.J.3
  • 167
    • 58249114971 scopus 로고    scopus 로고
    • Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis
    • Hamdan S.M., Loparo J.J., Takahashi M., Richardson C.C., van Oijen A.M. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature 2009, 457:336-339.
    • (2009) Nature , vol.457 , pp. 336-339
    • Hamdan, S.M.1    Loparo, J.J.2    Takahashi, M.3    Richardson, C.C.4    van Oijen, A.M.5
  • 168
    • 0029905072 scopus 로고    scopus 로고
    • A coupled complex of T4 DNA replication helicase (gp41) and polymerase (gp43) can perform rapid and processive DNA strand-displacement synthesis
    • Dong F., Weitzel S.E., von Hippel P.H. A coupled complex of T4 DNA replication helicase (gp41) and polymerase (gp43) can perform rapid and processive DNA strand-displacement synthesis. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:14456-14461.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 14456-14461
    • Dong, F.1    Weitzel, S.E.2    von Hippel, P.H.3
  • 170
    • 0030070356 scopus 로고    scopus 로고
    • Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement
    • Kim S., Dallmann H.G., McHenry C.S., Marians K.J. Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell 1996, 84:643-650.
    • (1996) Cell , vol.84 , pp. 643-650
    • Kim, S.1    Dallmann, H.G.2    McHenry, C.S.3    Marians, K.J.4
  • 171
    • 84864447544 scopus 로고    scopus 로고
    • Collaborative coupling between polymerase and helicase for leading-strand synthesis
    • Manosas M., Spiering M.M., Ding F., Croquette V., Benkovic S.J. Collaborative coupling between polymerase and helicase for leading-strand synthesis. Nucleic Acids Res. 2012, 40:6187-6198.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 6187-6198
    • Manosas, M.1    Spiering, M.M.2    Ding, F.3    Croquette, V.4    Benkovic, S.J.5
  • 172
    • 0027280149 scopus 로고
    • The Escherichia coli DNA polymerase III holoenzyme contains both products of the dnaX gene, tau and gamma, but only tau is essential
    • Blinkova A., Hervas C., Stukenberg P.T., Onrust R., O'Donnell M.E., Walker J.R. The Escherichia coli DNA polymerase III holoenzyme contains both products of the dnaX gene, tau and gamma, but only tau is essential. J. Bacteriol. 1993, 175:6018-6027.
    • (1993) J. Bacteriol. , vol.175 , pp. 6018-6027
    • Blinkova, A.1    Hervas, C.2    Stukenberg, P.T.3    Onrust, R.4    O'Donnell, M.E.5    Walker, J.R.6
  • 174
    • 0242666381 scopus 로고    scopus 로고
    • The essential C family DnaE polymerase is error-prone and efficient at lesion bypass
    • Bruck I., Goodman M.F., O'Donnell M. The essential C family DnaE polymerase is error-prone and efficient at lesion bypass. J. Biol. Chem. 2003, 278:44361-44368.
    • (2003) J. Biol. Chem. , vol.278 , pp. 44361-44368
    • Bruck, I.1    Goodman, M.F.2    O'Donnell, M.3
  • 175
    • 0141677891 scopus 로고    scopus 로고
    • Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences
    • McHenry C.S. Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol. Microbiol. 2003, 49:1157-1165.
    • (2003) Mol. Microbiol. , vol.49 , pp. 1157-1165
    • McHenry, C.S.1
  • 177
    • 23944507608 scopus 로고    scopus 로고
    • Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork
    • Calzada A., Hodgson B., Kanemaki M., Bueno A., Labib K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 2005, 19:1905-1919.
    • (2005) Genes Dev. , vol.19 , pp. 1905-1919
    • Calzada, A.1    Hodgson, B.2    Kanemaki, M.3    Bueno, A.4    Labib, K.5
  • 178
    • 84940581552 scopus 로고    scopus 로고
    • Tethering of SCF(Dia2) to the replisome promotes efficient ubiquitylation and disassembly of the CMG helicase
    • Maculins T., Nkosi P.J., Nishikawa H., Labib K. Tethering of SCF(Dia2) to the replisome promotes efficient ubiquitylation and disassembly of the CMG helicase. Curr. Biol. 2015, 25:2254-2259.
    • (2015) Curr. Biol. , vol.25 , pp. 2254-2259
    • Maculins, T.1    Nkosi, P.J.2    Nishikawa, H.3    Labib, K.4
  • 179
    • 84899846910 scopus 로고    scopus 로고
    • Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression
    • Sheu Y.J., Kinney J.B., Lengronne A., Pasero P., Stillman B. Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E1899-E1908.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E1899-E1908
    • Sheu, Y.J.1    Kinney, J.B.2    Lengronne, A.3    Pasero, P.4    Stillman, B.5
  • 180
    • 84865188025 scopus 로고    scopus 로고
    • Checkpoint kinase 2 (Chk2) inhibits the activity of the Cdc45/MCM2-7/GINS (CMG) replicative helicase complex
    • Ilves I., Tamberg N., Botchan M.R. Checkpoint kinase 2 (Chk2) inhibits the activity of the Cdc45/MCM2-7/GINS (CMG) replicative helicase complex. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:13163-13170.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 13163-13170
    • Ilves, I.1    Tamberg, N.2    Botchan, M.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.