-
1
-
-
84878939444
-
Mechanisms for initiating cellular DNA replication
-
Costa A., Hood I.V., Berger J.M. Mechanisms for initiating cellular DNA replication. Annu. Rev. Biochem. 2013, 82:25-54.
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 25-54
-
-
Costa, A.1
Hood, I.V.2
Berger, J.M.3
-
2
-
-
84874695795
-
Helicase activation and establishment of replication forks at chromosomal origins of replication
-
Tanaka S., Araki H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb. Perspect. Biol. 2013, 5:511-541.
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
, pp. 511-541
-
-
Tanaka, S.1
Araki, H.2
-
3
-
-
84925500198
-
Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated
-
Tognetti S., Riera A., Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 2015, 124:13-26.
-
(2015)
Chromosoma
, vol.124
, pp. 13-26
-
-
Tognetti, S.1
Riera, A.2
Speck, C.3
-
5
-
-
84928134426
-
-
Cold Spring Harbor Laboratory Press, New York
-
O'Donnell M., Langston L.D., Stillman B. Principles and Concepts of DNA Replication in Bacteria, Archaea, and Eukarya 2013, Cold Spring Harbor Laboratory Press, New York. first ed.
-
(2013)
Principles and Concepts of DNA Replication in Bacteria, Archaea, and Eukarya
-
-
O'Donnell, M.1
Langston, L.D.2
Stillman, B.3
-
7
-
-
84855272663
-
Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome
-
Guilbaud G., Rappailles A., Baker A., Chen C.L., Arneodo A., Goldar A., d'Aubenton-Carafa Y., Thermes C., Audit B., Hyrien O. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome. PLoS Comput. Biol. 2011, 7:e1002322.
-
(2011)
PLoS Comput. Biol.
, vol.7
-
-
Guilbaud, G.1
Rappailles, A.2
Baker, A.3
Chen, C.L.4
Arneodo, A.5
Goldar, A.6
d'Aubenton-Carafa, Y.7
Thermes, C.8
Audit, B.9
Hyrien, O.10
-
8
-
-
0035812808
-
Replication dynamics of the yeast genome
-
Raghuraman M.K., Winzeler E.A., Collingwood D., Hunt S., Wodicka L., Conway A., Lockhart D.J., Davis R.W., Brewer B.J., Fangman W.L. Replication dynamics of the yeast genome. Science 2001, 294:115-121.
-
(2001)
Science
, vol.294
, pp. 115-121
-
-
Raghuraman, M.K.1
Winzeler, E.A.2
Collingwood, D.3
Hunt, S.4
Wodicka, L.5
Conway, A.6
Lockhart, D.J.7
Davis, R.W.8
Brewer, B.J.9
Fangman, W.L.10
-
9
-
-
77949368063
-
GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome
-
Sekedat M.D., Fenyo D., Rogers R.S., Tackett A.J., Aitchison J.D., Chait B.T. GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome. Mol. Syst. Biol. 2010, 6:353.
-
(2010)
Mol. Syst. Biol.
, vol.6
, pp. 353
-
-
Sekedat, M.D.1
Fenyo, D.2
Rogers, R.S.3
Tackett, A.J.4
Aitchison, J.D.5
Chait, B.T.6
-
10
-
-
84903840350
-
Telomere and telomerase biology
-
Giardini M.A., Segatto M., da Silva M.S., Nunes V.S., Cano M.I. Telomere and telomerase biology. Prog. Mol. Biol. Transl. Sci. 2014, 125:1-40.
-
(2014)
Prog. Mol. Biol. Transl. Sci.
, vol.125
, pp. 1-40
-
-
Giardini, M.A.1
Segatto, M.2
da Silva, M.S.3
Nunes, V.S.4
Cano, M.I.5
-
11
-
-
84939805683
-
Replicating through telomeres: a means to an end
-
Martinez P., Blasco M.A. Replicating through telomeres: a means to an end. Trends Biochem. Sci. 2015, 40:504-515.
-
(2015)
Trends Biochem. Sci.
, vol.40
, pp. 504-515
-
-
Martinez, P.1
Blasco, M.A.2
-
12
-
-
84978094689
-
Replication of telomeres and the regulation of telomerase
-
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, S.D. Bell, M. Mechali, M.L. DePhamphilis (Eds.)
-
Pfeiffer V., Lingner J. Replication of telomeres and the regulation of telomerase. DNA Replication 2013, 576. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. first ed. S.D. Bell, M. Mechali, M.L. DePhamphilis (Eds.).
-
(2013)
DNA Replication
, pp. 576
-
-
Pfeiffer, V.1
Lingner, J.2
-
13
-
-
19544370577
-
-
Landes Bioscience, Cold Spring Harbor, NY
-
Forterre P., Filee J., Myllykallio H. Origin and Evolution of DNA and DNA Replication Machineries 2004, 24. Landes Bioscience, Cold Spring Harbor, NY.
-
(2004)
Origin and Evolution of DNA and DNA Replication Machineries
, pp. 24
-
-
Forterre, P.1
Filee, J.2
Myllykallio, H.3
-
15
-
-
84890035918
-
The common ancestor of archaea and eukarya was not an archaeon
-
Forterre P. The common ancestor of archaea and eukarya was not an archaeon. Archaea 2013, 2013:372396.
-
(2013)
Archaea
, vol.2013
, pp. 372396
-
-
Forterre, P.1
-
18
-
-
84859914242
-
Clamp loader ATPases and the evolution of DNA replication machinery
-
Kelch B.A., Makino D.L., O'Donnell M., Kuriyan J. Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol. 2012, 10:34.
-
(2012)
BMC Biol.
, vol.10
, pp. 34
-
-
Kelch, B.A.1
Makino, D.L.2
O'Donnell, M.3
Kuriyan, J.4
-
19
-
-
33745041480
-
Evolutionary relationships and structural mechanisms of AAA+ proteins
-
Erzberger J.P., Berger J.M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 2006, 35:93-114.
-
(2006)
Annu. Rev. Biophys. Biomol. Struct.
, vol.35
, pp. 93-114
-
-
Erzberger, J.P.1
Berger, J.M.2
-
22
-
-
0034737468
-
Structure of the RNA polymerase domain of E. coli primase
-
Keck J.L., Roche D.D., Lynch A.S., Berger J.M. Structure of the RNA polymerase domain of E. coli primase. Science 2000, 287:2482-2486.
-
(2000)
Science
, vol.287
, pp. 2482-2486
-
-
Keck, J.L.1
Roche, D.D.2
Lynch, A.S.3
Berger, J.M.4
-
23
-
-
0034616957
-
A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases
-
Podobnik M., McInerney P., O'Donnell M., Kuriyan J. A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases. J. Mol. Biol. 2000, 300:353-362.
-
(2000)
J. Mol. Biol.
, vol.300
, pp. 353-362
-
-
Podobnik, M.1
McInerney, P.2
O'Donnell, M.3
Kuriyan, J.4
-
24
-
-
0033564245
-
Arg304 of human DNA primase is a key contributor to catalysis and NTP binding: primase and the family X polymerases share significant sequence homology
-
Kirk B.W., Kuchta R.D. Arg304 of human DNA primase is a key contributor to catalysis and NTP binding: primase and the family X polymerases share significant sequence homology. Biochemistry 1999, 38:7727-7736.
-
(1999)
Biochemistry
, vol.38
, pp. 7727-7736
-
-
Kirk, B.W.1
Kuchta, R.D.2
-
25
-
-
0033581011
-
DNA polymerases: structural diversity and common mechanisms
-
Steitz T.A. DNA polymerases: structural diversity and common mechanisms. J. Biol. Chem. 1999, 274:17395-17398.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 17395-17398
-
-
Steitz, T.A.1
-
26
-
-
84899827339
-
An overview of Y-Family DNA polymerases and a case study of human DNA polymerase eta
-
Yang W. An overview of Y-Family DNA polymerases and a case study of human DNA polymerase eta. Biochemistry 2014, 53:2793-2803.
-
(2014)
Biochemistry
, vol.53
, pp. 2793-2803
-
-
Yang, W.1
-
27
-
-
85042340667
-
Comparison of bacterial and eukaryotic replisome components
-
Academic Press, Amsterdam, Netherlands, R.A. Bradshaw, P.D. Stahl (Eds.)
-
Yao N.Y., O'Donnell M.E. Comparison of bacterial and eukaryotic replisome components. Encyclopedia of Cell Biology 2015, 396-417. Academic Press, Amsterdam, Netherlands. R.A. Bradshaw, P.D. Stahl (Eds.).
-
(2015)
Encyclopedia of Cell Biology
, pp. 396-417
-
-
Yao, N.Y.1
O'Donnell, M.E.2
-
28
-
-
0026717535
-
Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp
-
Kong X.P., Onrust R., O'Donnell M., Kuriyan J. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 1992, 69:425-437.
-
(1992)
Cell
, vol.69
, pp. 425-437
-
-
Kong, X.P.1
Onrust, R.2
O'Donnell, M.3
Kuriyan, J.4
-
29
-
-
0025809742
-
Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme
-
Stukenberg P.T., Studwell-Vaughan P.S., O'Donnell M. Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme. J. Biol. Chem. 1991, 266:11328-11334.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 11328-11334
-
-
Stukenberg, P.T.1
Studwell-Vaughan, P.S.2
O'Donnell, M.3
-
30
-
-
84936988349
-
A proposal: evolution of PCNA's role as a marker of newly replicated DNA
-
Georgescu R., Langston L., O'Donnell M. A proposal: evolution of PCNA's role as a marker of newly replicated DNA. DNA Repair (Amst) 2015, 29:4-15.
-
(2015)
DNA Repair (Amst)
, vol.29
, pp. 4-15
-
-
Georgescu, R.1
Langston, L.2
O'Donnell, M.3
-
31
-
-
0041885325
-
Proliferating cell nuclear antigen (PCNA): a dancer with many partners
-
Maga G., Hubscher U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell Sci. 2003, 116:3051-3060.
-
(2003)
J. Cell Sci.
, vol.116
, pp. 3051-3060
-
-
Maga, G.1
Hubscher, U.2
-
32
-
-
84906101503
-
Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork
-
Georgescu R.E., Langston L.D., Yao N.Y., Yurieva O., Zhang D., Finkelstein J., Agarwal T., O'Donnell M.E. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat. Struct. Mol. Biol. 2014, 21:664-670.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 664-670
-
-
Georgescu, R.E.1
Langston, L.D.2
Yao, N.Y.3
Yurieva, O.4
Zhang, D.5
Finkelstein, J.6
Agarwal, T.7
O'Donnell, M.E.8
-
33
-
-
84928139350
-
Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation
-
Georgescu R.E., Schauer G.D., Yao N.Y., Langston L.D., Yurieva O., Zhang D., Finkelstein J., O'Donnell M.E. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Elife 2015, 4:e04988.
-
(2015)
Elife
, vol.4
-
-
Georgescu, R.E.1
Schauer, G.D.2
Yao, N.Y.3
Langston, L.D.4
Yurieva, O.5
Zhang, D.6
Finkelstein, J.7
O'Donnell, M.E.8
-
34
-
-
74749095240
-
Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins
-
Ilves I., Petojevic T., Pesavento J.J., Botchan M.R. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol. Cell 2010, 37:247-258.
-
(2010)
Mol. Cell
, vol.37
, pp. 247-258
-
-
Ilves, I.1
Petojevic, T.2
Pesavento, J.J.3
Botchan, M.R.4
-
35
-
-
33745925880
-
Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
-
Moyer S.E., Lewis P.W., Botchan M.R. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10236-10241.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10236-10241
-
-
Moyer, S.E.1
Lewis, P.W.2
Botchan, M.R.3
-
36
-
-
84856768293
-
The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes
-
Makarova K.S., Koonin E.V., Kelman Z. The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol. Direct 2012, 7:7.
-
(2012)
Biol. Direct
, vol.7
, pp. 7
-
-
Makarova, K.S.1
Koonin, E.V.2
Kelman, Z.3
-
37
-
-
79960129821
-
Cdc45: the missing RecJ ortholog in eukaryotes?
-
Sanchez-Pulido L., Ponting C.P. Cdc45: the missing RecJ ortholog in eukaryotes?. Bioinformatics 2011, 27:1885-1888.
-
(2011)
Bioinformatics
, vol.27
, pp. 1885-1888
-
-
Sanchez-Pulido, L.1
Ponting, C.P.2
-
38
-
-
47349114465
-
The Mcm2-7 complex has in vitro helicase activity
-
Bochman M.L., Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol. Cell 2008, 31:287-293.
-
(2008)
Mol. Cell
, vol.31
, pp. 287-293
-
-
Bochman, M.L.1
Schwacha, A.2
-
39
-
-
0038475879
-
Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture
-
Davey M.J., Indiani C., O'Donnell M. Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. J. Biol. Chem. 2003, 278:4491-4499.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 4491-4499
-
-
Davey, M.J.1
Indiani, C.2
O'Donnell, M.3
-
40
-
-
0037847620
-
GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast
-
Takayama Y., Kamimura Y., Okawa M., Muramatsu S., Sugino A., Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003, 17:1153-1165.
-
(2003)
Genes Dev.
, vol.17
, pp. 1153-1165
-
-
Takayama, Y.1
Kamimura, Y.2
Okawa, M.3
Muramatsu, S.4
Sugino, A.5
Araki, H.6
-
41
-
-
0034652354
-
A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase
-
Chong J.P., Hayashi M.K., Simon M.N., Xu R.M., Stillman B. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:1530-1535.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 1530-1535
-
-
Chong, J.P.1
Hayashi, M.K.2
Simon, M.N.3
Xu, R.M.4
Stillman, B.5
-
42
-
-
0033593053
-
The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity
-
Kelman Z., Lee J.K., Hurwitz J. The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:14783-14788.
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 14783-14788
-
-
Kelman, Z.1
Lee, J.K.2
Hurwitz, J.3
-
43
-
-
84859980381
-
Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis
-
Kang Y.H., Galal W.C., Farina A., Tappin I., Hurwitz J. Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6042-6047.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 6042-6047
-
-
Kang, Y.H.1
Galal, W.C.2
Farina, A.3
Tappin, I.4
Hurwitz, J.5
-
44
-
-
84925813600
-
Regulated eukaryotic DNA replication origin firing with purified proteins
-
Yeeles J.T., Deegan T.D., Janska A., Early A., Diffley J.F. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 2015, 519:431-435.
-
(2015)
Nature
, vol.519
, pp. 431-435
-
-
Yeeles, J.T.1
Deegan, T.D.2
Janska, A.3
Early, A.4
Diffley, J.F.5
-
45
-
-
84898451718
-
A conserved MCM single-stranded DNA binding element is essential for replication initiation
-
Froelich C.A., Kang S., Epling L.B., Bell S.P., Enemark E.J. A conserved MCM single-stranded DNA binding element is essential for replication initiation. Elife 2014, 3:e01993.
-
(2014)
Elife
, vol.3
-
-
Froelich, C.A.1
Kang, S.2
Epling, L.B.3
Bell, S.P.4
Enemark, E.J.5
-
46
-
-
58149505656
-
Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase
-
Brewster A.S., Wang G., Yu X., Greenleaf W.B., Carazo J.M., Tjajadi M., Klein M.G., Chen X.S. Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:20191-20196.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 20191-20196
-
-
Brewster, A.S.1
Wang, G.2
Yu, X.3
Greenleaf, W.B.4
Carazo, J.M.5
Tjajadi, M.6
Klein, M.G.7
Chen, X.S.8
-
47
-
-
0030670510
-
A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding
-
Hacker K.J., Johnson K.A. A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding. Biochemistry 1997, 36:14080-14087.
-
(1997)
Biochemistry
, vol.36
, pp. 14080-14087
-
-
Hacker, K.J.1
Johnson, K.A.2
-
48
-
-
0347157844
-
Mcm4,6,7 uses a "pump in ring" mechanism to unwind DNA by steric exclusion and actively translocate along a duplex
-
Kaplan D.L., Davey M.J., O'Donnell M. Mcm4,6,7 uses a "pump in ring" mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J. Biol. Chem. 2003, 278:49171-49182.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 49171-49182
-
-
Kaplan, D.L.1
Davey, M.J.2
O'Donnell, M.3
-
49
-
-
0036753338
-
DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands
-
Kaplan D.L., O'Donnell M. DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol. Cell 2002, 10:647-657.
-
(2002)
Mol. Cell
, vol.10
, pp. 647-657
-
-
Kaplan, D.L.1
O'Donnell, M.2
-
50
-
-
33745823112
-
Mechanisms of helicases
-
Patel S.S., Donmez I. Mechanisms of helicases. J. Biol. Chem. 2006, 281:18265-18268.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 18265-18268
-
-
Patel, S.S.1
Donmez, I.2
-
51
-
-
48249113056
-
Translocation and unwinding mechanisms of RNA and DNA helicases
-
Pyle A.M. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu. Rev. Biophys. 2008, 37:317-336.
-
(2008)
Annu. Rev. Biophys.
, vol.37
, pp. 317-336
-
-
Pyle, A.M.1
-
52
-
-
84876571933
-
Switching from single-stranded to double-stranded DNA limits the unwinding processivity of ring-shaped T7 DNA helicase
-
Jeong Y.J., Rajagopal V., Patel S.S. Switching from single-stranded to double-stranded DNA limits the unwinding processivity of ring-shaped T7 DNA helicase. Nucleic Acids Res. 2013, 41:4219-4229.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 4219-4229
-
-
Jeong, Y.J.1
Rajagopal, V.2
Patel, S.S.3
-
53
-
-
1542782549
-
Substrate requirements for duplex DNA translocation by the eukaryal and archaeal minichromosome maintenance helicases
-
Shin J.H., Jiang Y., Grabowski B., Hurwitz J., Kelman Z. Substrate requirements for duplex DNA translocation by the eukaryal and archaeal minichromosome maintenance helicases. J. Biol. Chem. 2003, 278:49053-49062.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 49053-49062
-
-
Shin, J.H.1
Jiang, Y.2
Grabowski, B.3
Hurwitz, J.4
Kelman, Z.5
-
54
-
-
80052942659
-
Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase
-
Fu Y.V., Yardimci H., Long D.T., Ho T.V., Guainazzi A., Bermudez V.P., Hurwitz J., van Oijen A., Scharer O.D., Walter J.C. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 2011, 146:931-941.
-
(2011)
Cell
, vol.146
, pp. 931-941
-
-
Fu, Y.V.1
Yardimci, H.2
Long, D.T.3
Ho, T.V.4
Guainazzi, A.5
Bermudez, V.P.6
Hurwitz, J.7
van Oijen, A.8
Scharer, O.D.9
Walter, J.C.10
-
55
-
-
0034636979
-
The 3'-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase
-
Kaplan D.L. The 3'-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. J. Mol. Biol. 2000, 301:285-299.
-
(2000)
J. Mol. Biol.
, vol.301
, pp. 285-299
-
-
Kaplan, D.L.1
-
56
-
-
84871011483
-
Bypass of a protein barrier by a replicative DNA helicase
-
Yardimci H., Wang X., Loveland A.B., Tappin I., Rudner D.Z., Hurwitz J., van Oijen A.M., Walter J.C. Bypass of a protein barrier by a replicative DNA helicase. Nature 2012, 492:205-209.
-
(2012)
Nature
, vol.492
, pp. 205-209
-
-
Yardimci, H.1
Wang, X.2
Loveland, A.B.3
Tappin, I.4
Rudner, D.Z.5
Hurwitz, J.6
van Oijen, A.M.7
Walter, J.C.8
-
57
-
-
2442513338
-
The DNA-unwinding mechanism of the ring helicase of bacteriophage T7
-
Jeong Y.J., Levin M.K., Patel S.S. The DNA-unwinding mechanism of the ring helicase of bacteriophage T7. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:7264-7269.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 7264-7269
-
-
Jeong, Y.J.1
Levin, M.K.2
Patel, S.S.3
-
58
-
-
34250766751
-
Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase
-
Johnson D.S., Bai L., Smith B.Y., Patel S.S., Wang M.D. Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell 2007, 129:1299-1309.
-
(2007)
Cell
, vol.129
, pp. 1299-1309
-
-
Johnson, D.S.1
Bai, L.2
Smith, B.Y.3
Patel, S.S.4
Wang, M.D.5
-
59
-
-
84865989446
-
Breathing fluctuations in position-specific DNA base pairs are involved in regulating helicase movement into the replication fork
-
Jose D., Weitzel S.E., von Hippel P.H. Breathing fluctuations in position-specific DNA base pairs are involved in regulating helicase movement into the replication fork. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:14428-14433.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 14428-14433
-
-
Jose, D.1
Weitzel, S.E.2
von Hippel, P.H.3
-
60
-
-
0035836479
-
Molecular mechanisms of the functional coupling of the helicase (gp41) and polymerase (gp43) of bacteriophage T4 within the DNA replication fork
-
Delagoutte E., von Hippel P.H. Molecular mechanisms of the functional coupling of the helicase (gp41) and polymerase (gp43) of bacteriophage T4 within the DNA replication fork. Biochemistry 2001, 40:4459-4477.
-
(2001)
Biochemistry
, vol.40
, pp. 4459-4477
-
-
Delagoutte, E.1
von Hippel, P.H.2
-
61
-
-
47049093279
-
Coupling of DNA unwinding to nucleotide hydrolysis in a ring-shaped helicase
-
Donmez I., Patel S.S. Coupling of DNA unwinding to nucleotide hydrolysis in a ring-shaped helicase. EMBO J. 2008, 27:1718-1726.
-
(2008)
EMBO J.
, vol.27
, pp. 1718-1726
-
-
Donmez, I.1
Patel, S.S.2
-
62
-
-
0035951425
-
A general model for nucleic acid helicases and their "coupling" within macromolecular machines
-
von Hippel P.H., Delagoutte E. A general model for nucleic acid helicases and their "coupling" within macromolecular machines. Cell 2001, 104:177-190.
-
(2001)
Cell
, vol.104
, pp. 177-190
-
-
von Hippel, P.H.1
Delagoutte, E.2
-
63
-
-
84921486481
-
Cdc45 (cell division cycle protein 45) guards the gate of the eukaryote replisome helicase stabilizing leading strand engagement
-
Petojevic T., Pesavento J.J., Costa A., Liang J., Wang Z., Berger J.M., Botchan M.R. Cdc45 (cell division cycle protein 45) guards the gate of the eukaryote replisome helicase stabilizing leading strand engagement. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:E249-E258.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. E249-E258
-
-
Petojevic, T.1
Pesavento, J.J.2
Costa, A.3
Liang, J.4
Wang, Z.5
Berger, J.M.6
Botchan, M.R.7
-
64
-
-
36348987861
-
MCM forked substrate specificity involves dynamic interaction with the 5'-tail
-
Rothenberg E., Trakselis M.A., Bell S.D., Ha T. MCM forked substrate specificity involves dynamic interaction with the 5'-tail. J. Biol. Chem. 2007, 282:34229-34234.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 34229-34234
-
-
Rothenberg, E.1
Trakselis, M.A.2
Bell, S.D.3
Ha, T.4
-
65
-
-
79953769723
-
The structural basis for MCM2-7 helicase activation by GINS and Cdc45
-
Costa A., Ilves I., Tamberg N., Petojevic T., Nogales E., Botchan M.R., Berger J.M. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat. Struct. Mol. Biol. 2011, 18:471-477.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 471-477
-
-
Costa, A.1
Ilves, I.2
Tamberg, N.3
Petojevic, T.4
Nogales, E.5
Botchan, M.R.6
Berger, J.M.7
-
66
-
-
84864352599
-
ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase from a minimalist eukaryote
-
Lyubimov A.Y., Costa A., Bleichert F., Botchan M.R., Berger J.M. ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase from a minimalist eukaryote. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11999-12004.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 11999-12004
-
-
Lyubimov, A.Y.1
Costa, A.2
Bleichert, F.3
Botchan, M.R.4
Berger, J.M.5
-
67
-
-
78049431126
-
The Saccharomyces cerevisiae Mcm6/2 and Mcm5/3 ATPase active sites contribute to the function of the putative Mcm2-7 'gate'
-
Bochman M.L., Schwacha A. The Saccharomyces cerevisiae Mcm6/2 and Mcm5/3 ATPase active sites contribute to the function of the putative Mcm2-7 'gate'. Nucleic Acids Res. 2010, 38:6078-6088.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 6078-6088
-
-
Bochman, M.L.1
Schwacha, A.2
-
68
-
-
84905255551
-
A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA
-
Samel S.A., Fernandez-Cid A., Sun J., Riera A., Tognetti S., Herrera M.C., Li H., Speck C. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev. 2014, 28:1653-1666.
-
(2014)
Genes Dev.
, vol.28
, pp. 1653-1666
-
-
Samel, S.A.1
Fernandez-Cid, A.2
Sun, J.3
Riera, A.4
Tognetti, S.5
Herrera, M.C.6
Li, H.7
Speck, C.8
-
69
-
-
84939545029
-
Structure of the eukaryotic MCM complex at 3.8 A
-
Li N., Zhai Y., Zhang Y., Li W., Yang M., Lei J., Tye B.K., Gao N. Structure of the eukaryotic MCM complex at 3.8 A. Nature 2015, 524:186-191.
-
(2015)
Nature
, vol.524
, pp. 186-191
-
-
Li, N.1
Zhai, Y.2
Zhang, Y.3
Li, W.4
Yang, M.5
Lei, J.6
Tye, B.K.7
Gao, N.8
-
70
-
-
33746375404
-
Mechanism of DNA translocation in a replicative hexameric helicase
-
Enemark E.J., Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 2006, 442:270-275.
-
(2006)
Nature
, vol.442
, pp. 270-275
-
-
Enemark, E.J.1
Joshua-Tor, L.2
-
71
-
-
84949535090
-
The architecture of a eukaryotic replisome
-
Sun J., Shi Y., Georgescu R.E., Yuan Z., Chait B.T., Li H., O'Donnell M.E. The architecture of a eukaryotic replisome. Nat. Struct. Mol. Biol. 2015, 22:976-982.
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 976-982
-
-
Sun, J.1
Shi, Y.2
Georgescu, R.E.3
Yuan, Z.4
Chait, B.T.5
Li, H.6
O'Donnell, M.E.7
-
72
-
-
33645717628
-
GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks
-
Gambus A., Jones R.C., Sanchez-Diaz A., Kanemaki M., van Deursen F., Edmondson R.D., Labib K. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 2006, 8:358-366.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 358-366
-
-
Gambus, A.1
Jones, R.C.2
Sanchez-Diaz, A.3
Kanemaki, M.4
van Deursen, F.5
Edmondson, R.D.6
Labib, K.7
-
73
-
-
0015718863
-
Analysis of nucleotide pools in animal cells
-
Hauschka P.V. Analysis of nucleotide pools in animal cells. Methods Cell Biol. 1973, 7:361-462.
-
(1973)
Methods Cell Biol.
, vol.7
, pp. 361-462
-
-
Hauschka, P.V.1
-
74
-
-
0023665284
-
DNA polymerase-primase from embryos of Drosophila melanogaster DNA primase subunits
-
Cotterill S., Chui G., Lehman I.R. DNA polymerase-primase from embryos of Drosophila melanogaster DNA primase subunits. J. Biol. Chem. 1987, 262:16105-16108.
-
(1987)
J. Biol. Chem.
, vol.262
, pp. 16105-16108
-
-
Cotterill, S.1
Chui, G.2
Lehman, I.R.3
-
75
-
-
0028038222
-
Misincorporation of nucleotides by calf thymus DNA primase and elongation of primers containing multiple noncognate nucleotides by DNA polymerase alpha
-
Sheaff R.J., Kuchta R.D. Misincorporation of nucleotides by calf thymus DNA primase and elongation of primers containing multiple noncognate nucleotides by DNA polymerase alpha. J. Biol. Chem. 1994, 269:19225-19231.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 19225-19231
-
-
Sheaff, R.J.1
Kuchta, R.D.2
-
76
-
-
0025640874
-
Accuracy of DNA primase
-
Zhang S.S., Grosse F. Accuracy of DNA primase. J. Mol. Biol. 1990, 216:475-479.
-
(1990)
J. Mol. Biol.
, vol.216
, pp. 475-479
-
-
Zhang, S.S.1
Grosse, F.2
-
77
-
-
77949570959
-
Mechanism and evolution of DNA primases
-
Kuchta R.D., Stengel G. Mechanism and evolution of DNA primases. Biochim. Biophys. Acta 2010, 1804:1180-1189.
-
(2010)
Biochim. Biophys. Acta
, vol.1804
, pp. 1180-1189
-
-
Kuchta, R.D.1
Stengel, G.2
-
78
-
-
0035976978
-
The archaeal DNA primase: biochemical characterization of the p41-p46 complex from Pyrococcus furiosus
-
Liu L., Komori K., Ishino S., Bocquier A.A., Cann I.K., Kohda D., Ishino Y. The archaeal DNA primase: biochemical characterization of the p41-p46 complex from Pyrococcus furiosus. J. Biol. Chem. 2001, 276:45484-45490.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 45484-45490
-
-
Liu, L.1
Komori, K.2
Ishino, S.3
Bocquier, A.A.4
Cann, I.K.5
Kohda, D.6
Ishino, Y.7
-
79
-
-
9244224132
-
The heterodimeric primase of the hyperthermophilic archaeon Sulfolobus solfataricus possesses DNA and RNA primase, polymerase and 3'-terminal nucleotidyl transferase activities
-
Lao-Sirieix S.H., Bell S.D. The heterodimeric primase of the hyperthermophilic archaeon Sulfolobus solfataricus possesses DNA and RNA primase, polymerase and 3'-terminal nucleotidyl transferase activities. J. Mol. Biol. 2004, 344:1251-1263.
-
(2004)
J. Mol. Biol.
, vol.344
, pp. 1251-1263
-
-
Lao-Sirieix, S.H.1
Bell, S.D.2
-
80
-
-
0037295722
-
Identification of short 'eukaryotic' Okazaki fragments synthesized from a prokaryotic replication origin
-
Matsunaga F., Norais C., Forterre P., Myllykallio H. Identification of short 'eukaryotic' Okazaki fragments synthesized from a prokaryotic replication origin. EMBO Rep. 2003, 4:154-158.
-
(2003)
EMBO Rep.
, vol.4
, pp. 154-158
-
-
Matsunaga, F.1
Norais, C.2
Forterre, P.3
Myllykallio, H.4
-
81
-
-
0018787427
-
A high molecular weight DNA polymerase from Drosophila melanogaster embryos. Purification, structure, and partial characterization
-
Banks G.R., Boezi J.A., Lehman I.R. A high molecular weight DNA polymerase from Drosophila melanogaster embryos. Purification, structure, and partial characterization. J. Biol. Chem. 1979, 254:9886-9892.
-
(1979)
J. Biol. Chem.
, vol.254
, pp. 9886-9892
-
-
Banks, G.R.1
Boezi, J.A.2
Lehman, I.R.3
-
82
-
-
0020742292
-
Isolation of an intact DNA polymerase-primase from embryos of Drosophila melanogaster
-
Kaguni L.S., Rossignol J.M., Conaway R.C., Lehman I.R. Isolation of an intact DNA polymerase-primase from embryos of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 1983, 80:2221-2225.
-
(1983)
Proc. Natl. Acad. Sci. U.S.A.
, vol.80
, pp. 2221-2225
-
-
Kaguni, L.S.1
Rossignol, J.M.2
Conaway, R.C.3
Lehman, I.R.4
-
83
-
-
0020456518
-
Immunological comparison of purified DNA polymerase alpha from embryos of Drosophila melanogaster with forms of the enzyme present in vivo
-
Sauer B., Lehman I.R. Immunological comparison of purified DNA polymerase alpha from embryos of Drosophila melanogaster with forms of the enzyme present in vivo. J. Biol. Chem. 1982, 257:12394-12398.
-
(1982)
J. Biol. Chem.
, vol.257
, pp. 12394-12398
-
-
Sauer, B.1
Lehman, I.R.2
-
84
-
-
0020120855
-
A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos
-
Conaway R.C., Lehman I.R. A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos. Proc. Natl. Acad. Sci. U.S.A. 1982, 79:2523-2527.
-
(1982)
Proc. Natl. Acad. Sci. U.S.A.
, vol.79
, pp. 2523-2527
-
-
Conaway, R.C.1
Lehman, I.R.2
-
85
-
-
0021099814
-
Association of DNA primase with the beta/gamma subunits of DNA polymerase alpha from Drosophila melanogaster embryos
-
Kaguni L.S., Rossignol J.M., Conaway R.C., Banks G.R., Lehman I.R. Association of DNA primase with the beta/gamma subunits of DNA polymerase alpha from Drosophila melanogaster embryos. J. Biol. Chem. 1983, 258:9037-9039.
-
(1983)
J. Biol. Chem.
, vol.258
, pp. 9037-9039
-
-
Kaguni, L.S.1
Rossignol, J.M.2
Conaway, R.C.3
Banks, G.R.4
Lehman, I.R.5
-
86
-
-
0028917904
-
Active site mapping of the catalytic mouse primase subunit by alanine scanning mutagenesis
-
Copeland W.C., Tan X. Active site mapping of the catalytic mouse primase subunit by alanine scanning mutagenesis. J. Biol. Chem. 1995, 270:3905-3913.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 3905-3913
-
-
Copeland, W.C.1
Tan, X.2
-
87
-
-
34548492954
-
An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis
-
Klinge S., Hirst J., Maman J.D., Krude T., Pellegrini L. An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat. Struct. Mol. Biol. 2007, 14:875-877.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 875-877
-
-
Klinge, S.1
Hirst, J.2
Maman, J.D.3
Krude, T.4
Pellegrini, L.5
-
88
-
-
36348995555
-
An iron-sulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase
-
Weiner B.E., Huang H., Dattilo B.M., Nilges M.J., Fanning E., Chazin W.J. An iron-sulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase. J. Biol. Chem. 2007, 282:33444-33451.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 33444-33451
-
-
Weiner, B.E.1
Huang, H.2
Dattilo, B.M.3
Nilges, M.J.4
Fanning, E.5
Chazin, W.J.6
-
89
-
-
0037117724
-
The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting
-
Zerbe L.K., Kuchta R.D. The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting. Biochemistry 2002, 41:4891-4900.
-
(2002)
Biochemistry
, vol.41
, pp. 4891-4900
-
-
Zerbe, L.K.1
Kuchta, R.D.2
-
90
-
-
0027379095
-
Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication
-
Copeland W.C., Wang T.S. Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication. J. Biol. Chem. 1993, 268:26179-26189.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 26179-26189
-
-
Copeland, W.C.1
Wang, T.S.2
-
91
-
-
0025727174
-
Influence of poly(ADP-ribose) polymerase on the enzymatic synthesis of SV40 DNA
-
Eki T., Hurwitz J. Influence of poly(ADP-ribose) polymerase on the enzymatic synthesis of SV40 DNA. J. Biol. Chem. 1991, 266:3087-3100.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 3087-3100
-
-
Eki, T.1
Hurwitz, J.2
-
92
-
-
0028331879
-
Calf thymus DNA polymerase alpha-primase: "communication" and primer-template movement between the two active sites
-
Sheaff R.J., Kuchta R.D., Ilsley D. Calf thymus DNA polymerase alpha-primase: "communication" and primer-template movement between the two active sites. Biochemistry 1994, 33:2247-2254.
-
(1994)
Biochemistry
, vol.33
, pp. 2247-2254
-
-
Sheaff, R.J.1
Kuchta, R.D.2
Ilsley, D.3
-
93
-
-
84881519871
-
Mechanism for priming DNA synthesis by yeast DNA polymerase alpha
-
Perera R.L., Torella R., Klinge S., Kilkenny M.L., Maman J.D., Pellegrini L. Mechanism for priming DNA synthesis by yeast DNA polymerase alpha. Elife 2013, 2:e00482.
-
(2013)
Elife
, vol.2
-
-
Perera, R.L.1
Torella, R.2
Klinge, S.3
Kilkenny, M.L.4
Maman, J.D.5
Pellegrini, L.6
-
94
-
-
0022970582
-
Yeast DNA primase and DNA polymerase activities. An analysis of RNA priming and its coupling to DNA synthesis
-
Singh H., Brooke R.G., Pausch M.H., Williams G.T., Trainor C., Dumas L.B. Yeast DNA primase and DNA polymerase activities. An analysis of RNA priming and its coupling to DNA synthesis. J. Biol. Chem. 1986, 261:8564-8569.
-
(1986)
J. Biol. Chem.
, vol.261
, pp. 8564-8569
-
-
Singh, H.1
Brooke, R.G.2
Pausch, M.H.3
Williams, G.T.4
Trainor, C.5
Dumas, L.B.6
-
95
-
-
42949142111
-
DNA polymerases at the replication fork in eukaryotes
-
Stillman B. DNA polymerases at the replication fork in eukaryotes. Mol. Cell 2008, 30:259-260.
-
(2008)
Mol. Cell
, vol.30
, pp. 259-260
-
-
Stillman, B.1
-
96
-
-
0035169689
-
Crystal structure of a DNA-dependent RNA polymerase (DNA primase)
-
Augustin M.A., Huber R., Kaiser J.T. Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat. Struct. Biol. 2001, 8:57-61.
-
(2001)
Nat. Struct. Biol.
, vol.8
, pp. 57-61
-
-
Augustin, M.A.1
Huber, R.2
Kaiser, J.T.3
-
97
-
-
67650409702
-
3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases
-
Klinge S., Nunez-Ramirez R., Llorca O., Pellegrini L. 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases. EMBO J. 2009, 28:1978-1987.
-
(2009)
EMBO J.
, vol.28
, pp. 1978-1987
-
-
Klinge, S.1
Nunez-Ramirez, R.2
Llorca, O.3
Pellegrini, L.4
-
99
-
-
77954757691
-
The eukaryotic replicative DNA polymerases take shape
-
Johansson E., Macneill S.A. The eukaryotic replicative DNA polymerases take shape. Trends Biochem. Sci. 2010, 35:339-347.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 339-347
-
-
Johansson, E.1
Macneill, S.A.2
-
100
-
-
84885048683
-
Structures of human primase reveal design of nucleotide elongation site and mode of Pol alpha tethering
-
Kilkenny M.L., Longo M.A., Perera R.L., Pellegrini L. Structures of human primase reveal design of nucleotide elongation site and mode of Pol alpha tethering. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:15961-15966.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 15961-15966
-
-
Kilkenny, M.L.1
Longo, M.A.2
Perera, R.L.3
Pellegrini, L.4
-
101
-
-
80053260652
-
Flexible tethering of primase and DNA Pol alpha in the eukaryotic primosome
-
Nunez-Ramirez R., Klinge S., Sauguet L., Melero R., Recuero-Checa M.A., Kilkenny M., Perera R.L., Garcia-Alvarez B., Hall R.J., Nogales E., Pellegrini L., Llorca O. Flexible tethering of primase and DNA Pol alpha in the eukaryotic primosome. Nucleic Acids Res. 2011, 39:8187-8199.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 8187-8199
-
-
Nunez-Ramirez, R.1
Klinge, S.2
Sauguet, L.3
Melero, R.4
Recuero-Checa, M.A.5
Kilkenny, M.6
Perera, R.L.7
Garcia-Alvarez, B.8
Hall, R.J.9
Nogales, E.10
Pellegrini, L.11
Llorca, O.12
-
102
-
-
0033048698
-
A novel family of DNA-polymerase-associated B subunits
-
Makiniemi M., Pospiech H., Kilpelainen S., Jokela M., Vihinen M., Syvaoja J.E. A novel family of DNA-polymerase-associated B subunits. Trends Biochem. Sci. 1999, 24:14-16.
-
(1999)
Trends Biochem. Sci.
, vol.24
, pp. 14-16
-
-
Makiniemi, M.1
Pospiech, H.2
Kilpelainen, S.3
Jokela, M.4
Vihinen, M.5
Syvaoja, J.E.6
-
103
-
-
0031663505
-
The DNA replication fork in eukaryotic cells
-
Waga S., Stillman B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 1998, 67:721-751.
-
(1998)
Annu. Rev. Biochem.
, vol.67
, pp. 721-751
-
-
Waga, S.1
Stillman, B.2
-
104
-
-
81855189485
-
Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates
-
Hombauer H., Campbell C.S., Smith C.E., Desai A., Kolodner R.D. Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell 2011, 147:1040-1053.
-
(2011)
Cell
, vol.147
, pp. 1040-1053
-
-
Hombauer, H.1
Campbell, C.S.2
Smith, C.E.3
Desai, A.4
Kolodner, R.D.5
-
105
-
-
84872497264
-
Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase alpha
-
Liberti S.E., Larrea A.A., Kunkel T.A. Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase alpha. DNA Repair (Amst) 2013, 12:92-96.
-
(2013)
DNA Repair (Amst)
, vol.12
, pp. 92-96
-
-
Liberti, S.E.1
Larrea, A.A.2
Kunkel, T.A.3
-
106
-
-
0037449738
-
Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2
-
Ayyagari R., Gomes X.V., Gordenin D.A., Burgers P.M. Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2. J. Biol. Chem. 2003, 278:1618-1625.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 1618-1625
-
-
Ayyagari, R.1
Gomes, X.V.2
Gordenin, D.A.3
Burgers, P.M.4
-
107
-
-
0029092897
-
Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen
-
Li X., Li J., Harrington J., Lieber M.R., Burgers P.M. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J. Biol. Chem. 1995, 270:22109-22112.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 22109-22112
-
-
Li, X.1
Li, J.2
Harrington, J.3
Lieber, M.R.4
Burgers, P.M.5
-
108
-
-
24944460598
-
Shelterin: the protein complex that shapes and safeguards human telomeres
-
de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005, 19:2100-2110.
-
(2005)
Genes Dev.
, vol.19
, pp. 2100-2110
-
-
de Lange, T.1
-
109
-
-
0026502128
-
Protein affinity chromatography with purified yeast DNA polymerase alpha detects proteins that bind to DNA polymerase
-
Miles J., Formosa T. Protein affinity chromatography with purified yeast DNA polymerase alpha detects proteins that bind to DNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:1276-1280.
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 1276-1280
-
-
Miles, J.1
Formosa, T.2
-
110
-
-
70350572751
-
A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome
-
Gambus A., van Deursen F., Polychronopoulos D., Foltman M., Jones R.C., Edmondson R.D., Calzada A., Labib K. A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J. 2009, 28:2992-3004.
-
(2009)
EMBO J.
, vol.28
, pp. 2992-3004
-
-
Gambus, A.1
van Deursen, F.2
Polychronopoulos, D.3
Foltman, M.4
Jones, R.C.5
Edmondson, R.D.6
Calzada, A.7
Labib, K.8
-
111
-
-
84902304914
-
A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome
-
Simon A.C., Zhou J.C., Perera R.L., van Deursen F., Evrin C., Ivanova M.E., Kilkenny M.L., Renault L., Kjaer S., Matak-Vinkovic D., Labib K., Costa A., Pellegrini L. A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome. Nature 2014, 510:293-297.
-
(2014)
Nature
, vol.510
, pp. 293-297
-
-
Simon, A.C.1
Zhou, J.C.2
Perera, R.L.3
van Deursen, F.4
Evrin, C.5
Ivanova, M.E.6
Kilkenny, M.L.7
Renault, L.8
Kjaer, S.9
Matak-Vinkovic, D.10
Labib, K.11
Costa, A.12
Pellegrini, L.13
-
112
-
-
67649518170
-
Ctf4 coordinates the progression of helicase and DNA polymerase alpha
-
Tanaka H., Katou Y., Yagura M., Saitoh K., Itoh T., Araki H., Bando M., Shirahige K. Ctf4 coordinates the progression of helicase and DNA polymerase alpha. Genes Cells 2009, 14:807-820.
-
(2009)
Genes Cells
, vol.14
, pp. 807-820
-
-
Tanaka, H.1
Katou, Y.2
Yagura, M.3
Saitoh, K.4
Itoh, T.5
Araki, H.6
Bando, M.7
Shirahige, K.8
-
113
-
-
54249092768
-
Dividing the workload at a eukaryotic replication fork
-
Kunkel T.A., Burgers P.M. Dividing the workload at a eukaryotic replication fork. Trends Cell Biol. 2008, 18:521-527.
-
(2008)
Trends Cell Biol.
, vol.18
, pp. 521-527
-
-
Kunkel, T.A.1
Burgers, P.M.2
-
114
-
-
42949119884
-
Division of labor at the eukaryotic replication fork
-
Nick McElhinny S.A., Gordenin D.A., Stith C.M., Burgers P.M., Kunkel T.A. Division of labor at the eukaryotic replication fork. Mol. Cell 2008, 30:137-144.
-
(2008)
Mol. Cell
, vol.30
, pp. 137-144
-
-
Nick McElhinny, S.A.1
Gordenin, D.A.2
Stith, C.M.3
Burgers, P.M.4
Kunkel, T.A.5
-
115
-
-
34447336941
-
Yeast DNA polymerase epsilon participates in leading-strand DNA replication
-
Pursell Z.F., Isoz I., Lundstrom E.B., Johansson E., Kunkel T.A. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 2007, 317:127-130.
-
(2007)
Science
, vol.317
, pp. 127-130
-
-
Pursell, Z.F.1
Isoz, I.2
Lundstrom, E.B.3
Johansson, E.4
Kunkel, T.A.5
-
116
-
-
84873096362
-
Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas
-
Palles C., Cazier J.B., Howarth K.M., Domingo E., Jones A.M., Broderick P., Kemp Z., Spain S.L., Guarino E., Salguero I., Sherborne A., Chubb D., Carvajal-Carmona L.G., Ma Y., Kaur K., Dobbins S., Barclay E., Gorman M., Martin L., Kovac M.B., Humphray S., Lucassen A., Holmes C.C., Bentley D., Donnelly P., Taylor J., Petridis C., Roylance R., Sawyer E.J., Kerr D.J., Clark S., Grimes J., Kearsey S.E., Thomas H.J., McVean G., Houlston R.S., Tomlinson I. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 2013, 45:136-144.
-
(2013)
Nat. Genet.
, vol.45
, pp. 136-144
-
-
Palles, C.1
Cazier, J.B.2
Howarth, K.M.3
Domingo, E.4
Jones, A.M.5
Broderick, P.6
Kemp, Z.7
Spain, S.L.8
Guarino, E.9
Salguero, I.10
Sherborne, A.11
Chubb, D.12
Carvajal-Carmona, L.G.13
Ma, Y.14
Kaur, K.15
Dobbins, S.16
Barclay, E.17
Gorman, M.18
Martin, L.19
Kovac, M.B.20
Humphray, S.21
Lucassen, A.22
Holmes, C.C.23
Bentley, D.24
Donnelly, P.25
Taylor, J.26
Petridis, C.27
Roylance, R.28
Sawyer, E.J.29
Kerr, D.J.30
Clark, S.31
Grimes, J.32
Kearsey, S.E.33
Thomas, H.J.34
McVean, G.35
Houlston, R.S.36
Tomlinson, I.37
more..
-
118
-
-
0025054609
-
A third essential DNA polymerase in S. cerevisiae
-
Morrison A., Araki H., Clark A.B., Hamatake R.K., Sugino A. A third essential DNA polymerase in S. cerevisiae. Cell 1990, 62:1143-1151.
-
(1990)
Cell
, vol.62
, pp. 1143-1151
-
-
Morrison, A.1
Araki, H.2
Clark, A.B.3
Hamatake, R.K.4
Sugino, A.5
-
119
-
-
84924180985
-
Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation
-
Clausen A.R., Lujan S.A., Burkholder A.B., Orebaugh C.D., Williams J.S., Clausen M.F., Malc E.P., Mieczkowski P.A., Fargo D.C., Smith D.J., Kunkel T.A. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat. Struct. Mol. Biol. 2015, 22:185-191.
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 185-191
-
-
Clausen, A.R.1
Lujan, S.A.2
Burkholder, A.B.3
Orebaugh, C.D.4
Williams, J.S.5
Clausen, M.F.6
Malc, E.P.7
Mieczkowski, P.A.8
Fargo, D.C.9
Smith, D.J.10
Kunkel, T.A.11
-
120
-
-
84855267435
-
The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved
-
Miyabe I., Kunkel T.A., Carr A.M. The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet. 2011, 7:e1002407.
-
(2011)
PLoS Genet.
, vol.7
-
-
Miyabe, I.1
Kunkel, T.A.2
Carr, A.M.3
-
121
-
-
84912091104
-
Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall
-
Yu C., Gan H., Han J., Zhou Z.X., Jia S., Chabes A., Farrugia G., Ordog T., Zhang Z. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol. Cell 2014, 56:551-563.
-
(2014)
Mol. Cell
, vol.56
, pp. 551-563
-
-
Yu, C.1
Gan, H.2
Han, J.3
Zhou, Z.X.4
Jia, S.5
Chabes, A.6
Farrugia, G.7
Ordog, T.8
Zhang, Z.9
-
122
-
-
8644285427
-
Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication
-
Garg P., Stith C.M., Sabouri N., Johansson E., Burgers P.M. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev. 2004, 18:2764-2773.
-
(2004)
Genes Dev.
, vol.18
, pp. 2764-2773
-
-
Garg, P.1
Stith, C.M.2
Sabouri, N.3
Johansson, E.4
Burgers, P.M.5
-
123
-
-
0037449727
-
Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 3'-5'-exonuclease activities of Pol delta in the creation of a ligatable nick
-
Jin Y.H., Ayyagari R., Resnick M.A., Gordenin D.A., Burgers P.M. Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 3'-5'-exonuclease activities of Pol delta in the creation of a ligatable nick. J. Biol. Chem. 2003, 278:1626-1633.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 1626-1633
-
-
Jin, Y.H.1
Ayyagari, R.2
Resnick, M.A.3
Gordenin, D.A.4
Burgers, P.M.5
-
124
-
-
84937413584
-
A major role of DNA polymerase delta in replication of both the leading and lagging DNA strands
-
Johnson R.E., Klassen R., Prakash L., Prakash S. A major role of DNA polymerase delta in replication of both the leading and lagging DNA strands. Mol. Cell 2015, 59:163-175.
-
(2015)
Mol. Cell
, vol.59
, pp. 163-175
-
-
Johnson, R.E.1
Klassen, R.2
Prakash, L.3
Prakash, S.4
-
125
-
-
84937416849
-
Reconsidering DNA polymerases at the replication fork in eukaryotes
-
Stillman B. Reconsidering DNA polymerases at the replication fork in eukaryotes. Mol. Cell 2015, 59:139-141.
-
(2015)
Mol. Cell
, vol.59
, pp. 139-141
-
-
Stillman, B.1
-
126
-
-
0033529497
-
Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain
-
Dua R., Levy D.L., Campbell J.L. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J. Biol. Chem. 1999, 274:22283-22288.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 22283-22288
-
-
Dua, R.1
Levy, D.L.2
Campbell, J.L.3
-
127
-
-
0032587610
-
DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability
-
Kesti T., Flick K., Keranen S., Syvaoja J.E., Wittenberg C. DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol. Cell 1999, 3:679-685.
-
(1999)
Mol. Cell
, vol.3
, pp. 679-685
-
-
Kesti, T.1
Flick, K.2
Keranen, S.3
Syvaoja, J.E.4
Wittenberg, C.5
-
128
-
-
0019860892
-
Alternate pathways of DNA replication: DNA polymerase I-dependent replication
-
Niwa O., Bryan S.K., Moses R.E. Alternate pathways of DNA replication: DNA polymerase I-dependent replication. Proc. Natl. Acad. Sci. U.S.A. 1981, 78:7024-7027.
-
(1981)
Proc. Natl. Acad. Sci. U.S.A.
, vol.78
, pp. 7024-7027
-
-
Niwa, O.1
Bryan, S.K.2
Moses, R.E.3
-
129
-
-
53249147678
-
DNA polymerase epsilon: a polymerase of unusual size (and complexity)
-
Pursell Z.F., Kunkel T.A. DNA polymerase epsilon: a polymerase of unusual size (and complexity). Prog. Nucleic Acid Res. Mol. Biol. 2008, 82:101-145.
-
(2008)
Prog. Nucleic Acid Res. Mol. Biol.
, vol.82
, pp. 101-145
-
-
Pursell, Z.F.1
Kunkel, T.A.2
-
130
-
-
0032584599
-
Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta
-
Burgers P.M., Gerik K.J. Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 1998, 273:19756-19762.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 19756-19762
-
-
Burgers, P.M.1
Gerik, K.J.2
-
131
-
-
0034705617
-
Identification of a fourth subunit of mammalian DNA polymerase delta
-
Liu L., Mo J., Rodriguez-Belmonte E.M., Lee M.Y. Identification of a fourth subunit of mammalian DNA polymerase delta. J. Biol. Chem. 2000, 275:18739-18744.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 18739-18744
-
-
Liu, L.1
Mo, J.2
Rodriguez-Belmonte, E.M.3
Lee, M.Y.4
-
132
-
-
38049150571
-
DNA polymerase zeta (pol zeta) in higher eukaryotes
-
Gan G.N., Wittschieben J.P., Wittschieben B.O., Wood R.D. DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res. 2008, 18:174-183.
-
(2008)
Cell Res.
, vol.18
, pp. 174-183
-
-
Gan, G.N.1
Wittschieben, J.P.2
Wittschieben, B.O.3
Wood, R.D.4
-
133
-
-
84864512844
-
Pol31 and Pol32 subunits of yeast DNA polymerase delta are also essential subunits of DNA polymerase zeta
-
Johnson R.E., Prakash L., Prakash S. Pol31 and Pol32 subunits of yeast DNA polymerase delta are also essential subunits of DNA polymerase zeta. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:12455-12460.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 12455-12460
-
-
Johnson, R.E.1
Prakash, L.2
Prakash, S.3
-
134
-
-
84871256295
-
A four-subunit DNA polymerase zeta complex containing Pol delta accessory subunits is essential for PCNA-mediated mutagenesis
-
Makarova A.V., Stodola J.L., Burgers P.M. A four-subunit DNA polymerase zeta complex containing Pol delta accessory subunits is essential for PCNA-mediated mutagenesis. Nucleic Acids Res. 2012, 40:11618-11626.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 11618-11626
-
-
Makarova, A.V.1
Stodola, J.L.2
Burgers, P.M.3
-
135
-
-
83655212423
-
Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes
-
Netz D.J., Stith C.M., Stumpfig M., Kopf G., Vogel D., Genau H.M., Stodola J.L., Lill R., Burgers P.M., Pierik A.J. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat. Chem. Biol. 2011, 8:125-132.
-
(2011)
Nat. Chem. Biol.
, vol.8
, pp. 125-132
-
-
Netz, D.J.1
Stith, C.M.2
Stumpfig, M.3
Kopf, G.4
Vogel, D.5
Genau, H.M.6
Stodola, J.L.7
Lill, R.8
Burgers, P.M.9
Pierik, A.J.10
-
136
-
-
84893772675
-
Structural basis for processive DNA synthesis by yeast DNA polymerase epsilon
-
Hogg M., Osterman P., Bylund G.O., Ganai R.A., Lundstrom E.B., Sauer-Eriksson A.E., Johansson E. Structural basis for processive DNA synthesis by yeast DNA polymerase epsilon. Nat. Struct. Mol. Biol. 2014, 21:49-55.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 49-55
-
-
Hogg, M.1
Osterman, P.2
Bylund, G.O.3
Ganai, R.A.4
Lundstrom, E.B.5
Sauer-Eriksson, A.E.6
Johansson, E.7
-
137
-
-
69949128706
-
Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta
-
Swan M.K., Johnson R.E., Prakash L., Prakash S., Aggarwal A.K. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta. Nat. Struct. Mol. Biol. 2009, 16:979-986.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 979-986
-
-
Swan, M.K.1
Johnson, R.E.2
Prakash, L.3
Prakash, S.4
Aggarwal, A.K.5
-
138
-
-
0028093437
-
An explanation for lagging strand replication: polymerase hopping among DNA sliding clamps
-
Stukenberg P.T., Turner J., O'Donnell M. An explanation for lagging strand replication: polymerase hopping among DNA sliding clamps. Cell 1994, 78:877-887.
-
(1994)
Cell
, vol.78
, pp. 877-887
-
-
Stukenberg, P.T.1
Turner, J.2
O'Donnell, M.3
-
139
-
-
0030592544
-
Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA
-
Gulbis J.M., Kelman Z., Hurwitz J., O'Donnell M., Kuriyan J. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 1996, 87:297-306.
-
(1996)
Cell
, vol.87
, pp. 297-306
-
-
Gulbis, J.M.1
Kelman, Z.2
Hurwitz, J.3
O'Donnell, M.4
Kuriyan, J.5
-
140
-
-
0028618183
-
Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA
-
Krishna T.S., Kong X.P., Gary S., Burgers P.M., Kuriyan J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 1994, 79:1233-1243.
-
(1994)
Cell
, vol.79
, pp. 1233-1243
-
-
Krishna, T.S.1
Kong, X.P.2
Gary, S.3
Burgers, P.M.4
Kuriyan, J.5
-
141
-
-
0029150469
-
Characterization of the five replication factor C genes of Saccharomyces cerevisiae
-
Cullmann G., Fien K., Kobayashi R., Stillman B. Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Mol. Cell Biol. 1995, 15:4661-4671.
-
(1995)
Mol. Cell Biol.
, vol.15
, pp. 4661-4671
-
-
Cullmann, G.1
Fien, K.2
Kobayashi, R.3
Stillman, B.4
-
142
-
-
0030666224
-
Crystal structure of the delta' subunit of the clamp-loader complex of E. coli DNA polymerase III
-
Guenther B., Onrust R., Sali A., O'Donnell M., Kuriyan J. Crystal structure of the delta' subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 1997, 91:335-345.
-
(1997)
Cell
, vol.91
, pp. 335-345
-
-
Guenther, B.1
Onrust, R.2
Sali, A.3
O'Donnell, M.4
Kuriyan, J.5
-
143
-
-
3042588011
-
Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex
-
Bowman G.D., O'Donnell M., Kuriyan J. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 2004, 429:724-730.
-
(2004)
Nature
, vol.429
, pp. 724-730
-
-
Bowman, G.D.1
O'Donnell, M.2
Kuriyan, J.3
-
144
-
-
0035943342
-
Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III
-
Jeruzalmi D., O'Donnell M., Kuriyan J. Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 2001, 106:429-441.
-
(2001)
Cell
, vol.106
, pp. 429-441
-
-
Jeruzalmi, D.1
O'Donnell, M.2
Kuriyan, J.3
-
145
-
-
84455163347
-
How a DNA polymerase clamp loader opens a sliding clamp
-
Kelch B.A., Makino D.L., O'Donnell M., Kuriyan J. How a DNA polymerase clamp loader opens a sliding clamp. Science 2011, 334:1675-1680.
-
(2011)
Science
, vol.334
, pp. 1675-1680
-
-
Kelch, B.A.1
Makino, D.L.2
O'Donnell, M.3
Kuriyan, J.4
-
146
-
-
25444480278
-
Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis
-
Miyata T., Suzuki H., Oyama T., Mayanagi K., Ishino Y., Morikawa K. Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13795-13800.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 13795-13800
-
-
Miyata, T.1
Suzuki, H.2
Oyama, T.3
Mayanagi, K.4
Ishino, Y.5
Morikawa, K.6
-
147
-
-
15544366916
-
Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex
-
Goedken E.R., Kazmirski S.L., Bowman G.D., O'Donnell M., Kuriyan J. Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex. Nat. Struct. Mol. Biol. 2005, 12:183-190.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 183-190
-
-
Goedken, E.R.1
Kazmirski, S.L.2
Bowman, G.D.3
O'Donnell, M.4
Kuriyan, J.5
-
148
-
-
65549110769
-
The mechanism of ATP-dependent primer-template recognition by a clamp loader complex
-
Simonetta K.R., Kazmirski S.L., Goedken E.R., Cantor A.J., Kelch B.A., McNally R., Seyedin S.N., Makino D.L., O'Donnell M., Kuriyan J. The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Cell 2009, 137:659-671.
-
(2009)
Cell
, vol.137
, pp. 659-671
-
-
Simonetta, K.R.1
Kazmirski, S.L.2
Goedken, E.R.3
Cantor, A.J.4
Kelch, B.A.5
McNally, R.6
Seyedin, S.N.7
Makino, D.L.8
O'Donnell, M.9
Kuriyan, J.10
-
149
-
-
84908271207
-
CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication
-
Langston L.D., Zhang D., Yurieva O., Georgescu R.E., Finkelstein J., Yao N.Y., Indiani C., O'Donnell M.E. CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:15390-15395.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 15390-15395
-
-
Langston, L.D.1
Zhang, D.2
Yurieva, O.3
Georgescu, R.E.4
Finkelstein, J.5
Yao, N.Y.6
Indiani, C.7
O'Donnell, M.E.8
-
150
-
-
84882735325
-
The mini-chromosome maintenance (Mcm) complexes interact with DNA polymerase alpha-primase and stimulate its ability to synthesize RNA primers
-
You Z., De Falco M., Kamada K., Pisani F.M., Masai H. The mini-chromosome maintenance (Mcm) complexes interact with DNA polymerase alpha-primase and stimulate its ability to synthesize RNA primers. PLoS One 2013, 8:e72408.
-
(2013)
PLoS One
, vol.8
-
-
You, Z.1
De Falco, M.2
Kamada, K.3
Pisani, F.M.4
Masai, H.5
-
151
-
-
84908100701
-
DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome
-
Costa A., Renault L., Swuec P., Petojevic T., Pesavento J., Ilves I., MacLellan-Gibson K., Fleck R.A., Botchan M.R., Berger J.M. DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. Elife 2014, 3:e03273.
-
(2014)
Elife
, vol.3
-
-
Costa, A.1
Renault, L.2
Swuec, P.3
Petojevic, T.4
Pesavento, J.5
Ilves, I.6
MacLellan-Gibson, K.7
Fleck, R.A.8
Botchan, M.R.9
Berger, J.M.10
-
152
-
-
84875805105
-
Eukaryotic replisome components cooperate to process histones during chromosome replication
-
Foltman M., Evrin C., De Piccoli G., Jones R.C., Edmondson R.D., Katou Y., Nakato R., Shirahige K., Labib K. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep. 2013, 3:892-904.
-
(2013)
Cell Rep.
, vol.3
, pp. 892-904
-
-
Foltman, M.1
Evrin, C.2
De Piccoli, G.3
Jones, R.C.4
Edmondson, R.D.5
Katou, Y.6
Nakato, R.7
Shirahige, K.8
Labib, K.9
-
153
-
-
17644367887
-
Proteomic and genomic characterization of chromatin complexes at a boundary
-
Tackett A.J., Dilworth D.J., Davey M.J., O'Donnell M., Aitchison J.D., Rout M.P., Chait B.T. Proteomic and genomic characterization of chromatin complexes at a boundary. J. Cell Biol. 2005, 169:35-47.
-
(2005)
J. Cell Biol.
, vol.169
, pp. 35-47
-
-
Tackett, A.J.1
Dilworth, D.J.2
Davey, M.J.3
O'Donnell, M.4
Aitchison, J.D.5
Rout, M.P.6
Chait, B.T.7
-
154
-
-
0346363763
-
Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae
-
Iida T., Araki H. Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol. Cell Biol. 2004, 24:217-227.
-
(2004)
Mol. Cell Biol.
, vol.24
, pp. 217-227
-
-
Iida, T.1
Araki, H.2
-
155
-
-
33845925515
-
Double-stranded DNA binding, an unusual property of DNA polymerase epsilon, promotes epigenetic silencing in Saccharomyces cerevisiae
-
Tsubota T., Tajima R., Ode K., Kubota H., Fukuhara N., Kawabata T., Maki S., Maki H. Double-stranded DNA binding, an unusual property of DNA polymerase epsilon, promotes epigenetic silencing in Saccharomyces cerevisiae. J. Biol. Chem. 2006, 281:32898-32908.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 32898-32908
-
-
Tsubota, T.1
Tajima, R.2
Ode, K.3
Kubota, H.4
Fukuhara, N.5
Kawabata, T.6
Maki, S.7
Maki, H.8
-
156
-
-
34547730912
-
Characterization of a triple DNA polymerase replisome
-
McInerney P., Johnson A., Katz F., O'Donnell M. Characterization of a triple DNA polymerase replisome. Mol. Cell 2007, 27:527-538.
-
(2007)
Mol. Cell
, vol.27
, pp. 527-538
-
-
McInerney, P.1
Johnson, A.2
Katz, F.3
O'Donnell, M.4
-
157
-
-
0035830834
-
Tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain IV, located within the unique C terminus of tau, binds the replication fork, helicase, DnaB
-
Gao D., McHenry C.S. tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain IV, located within the unique C terminus of tau, binds the replication fork, helicase, DnaB. J. Biol. Chem. 2001, 276:4441-4446.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 4441-4446
-
-
Gao, D.1
McHenry, C.S.2
-
158
-
-
77951537332
-
Stoichiometry and architecture of active DNA replication machinery in Escherichia coli
-
Reyes-Lamothe R., Sherratt D.J., Leake M.C. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 2010, 328:498-501.
-
(2010)
Science
, vol.328
, pp. 498-501
-
-
Reyes-Lamothe, R.1
Sherratt, D.J.2
Leake, M.C.3
-
159
-
-
84855453503
-
Single-molecule studies reveal the function of a third polymerase in the replisome
-
Georgescu R.E., Kurth I., O'Donnell M.E. Single-molecule studies reveal the function of a third polymerase in the replisome. Nat. Struct. Mol. Biol. 2011, 19:113-116.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 113-116
-
-
Georgescu, R.E.1
Kurth, I.2
O'Donnell, M.E.3
-
160
-
-
84856072129
-
Polymerase exchange during Okazaki fragment synthesis observed in living cells
-
Lia G., Michel B., Allemand J.F. Polymerase exchange during Okazaki fragment synthesis observed in living cells. Science 2012, 335:328-331.
-
(2012)
Science
, vol.335
, pp. 328-331
-
-
Lia, G.1
Michel, B.2
Allemand, J.F.3
-
161
-
-
0029788209
-
The interaction between helicase and primase sets the replication fork clock
-
Tougu K., Marians K.J. The interaction between helicase and primase sets the replication fork clock. J. Biol. Chem. 1996, 271:21398-21405.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 21398-21405
-
-
Tougu, K.1
Marians, K.J.2
-
162
-
-
69449095740
-
Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression
-
Yao N.Y., Georgescu R.E., Finkelstein J., O'Donnell M.E. Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:13236-13241.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 13236-13241
-
-
Yao, N.Y.1
Georgescu, R.E.2
Finkelstein, J.3
O'Donnell, M.E.4
-
163
-
-
0028147234
-
The rapid dissociation of the T4 DNA polymerase holoenzyme when stopped by a DNA hairpin helix. A model for polymerase release following the termination of each Okazaki fragment
-
Hacker K.J., Alberts B.M. The rapid dissociation of the T4 DNA polymerase holoenzyme when stopped by a DNA hairpin helix. A model for polymerase release following the termination of each Okazaki fragment. J. Biol. Chem. 1994, 269:24221-24228.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 24221-24228
-
-
Hacker, K.J.1
Alberts, B.M.2
-
164
-
-
84896737683
-
Cycling of the E. coli lagging strand polymerase is triggered exclusively by the availability of a new primer at the replication fork
-
Yuan Q., McHenry C.S. Cycling of the E. coli lagging strand polymerase is triggered exclusively by the availability of a new primer at the replication fork. Nucleic Acids Res. 2014, 42:1747-1756.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 1747-1756
-
-
Yuan, Q.1
McHenry, C.S.2
-
165
-
-
84875900370
-
A solution to release twisted DNA during chromosome replication by coupled DNA polymerases
-
Kurth I., Georgescu R.E., O'Donnell M.E. A solution to release twisted DNA during chromosome replication by coupled DNA polymerases. Nature 2013, 496:119-122.
-
(2013)
Nature
, vol.496
, pp. 119-122
-
-
Kurth, I.1
Georgescu, R.E.2
O'Donnell, M.E.3
-
166
-
-
30744446944
-
The control mechanism for lagging strand polymerase recycling during bacteriophage T4 DNA replication
-
Yang J., Nelson S.W., Benkovic S.J. The control mechanism for lagging strand polymerase recycling during bacteriophage T4 DNA replication. Mol. Cell 2006, 21:153-164.
-
(2006)
Mol. Cell
, vol.21
, pp. 153-164
-
-
Yang, J.1
Nelson, S.W.2
Benkovic, S.J.3
-
167
-
-
58249114971
-
Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis
-
Hamdan S.M., Loparo J.J., Takahashi M., Richardson C.C., van Oijen A.M. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature 2009, 457:336-339.
-
(2009)
Nature
, vol.457
, pp. 336-339
-
-
Hamdan, S.M.1
Loparo, J.J.2
Takahashi, M.3
Richardson, C.C.4
van Oijen, A.M.5
-
168
-
-
0029905072
-
A coupled complex of T4 DNA replication helicase (gp41) and polymerase (gp43) can perform rapid and processive DNA strand-displacement synthesis
-
Dong F., Weitzel S.E., von Hippel P.H. A coupled complex of T4 DNA replication helicase (gp41) and polymerase (gp43) can perform rapid and processive DNA strand-displacement synthesis. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:14456-14461.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 14456-14461
-
-
Dong, F.1
Weitzel, S.E.2
von Hippel, P.H.3
-
169
-
-
34547740094
-
Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement
-
Hamdan S.M., Johnson D.E., Tanner N.A., Lee J.B., Qimron U., Tabor S., van Oijen A.M., Richardson C.C. Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement. Mol. Cell 2007, 27:539-549.
-
(2007)
Mol. Cell
, vol.27
, pp. 539-549
-
-
Hamdan, S.M.1
Johnson, D.E.2
Tanner, N.A.3
Lee, J.B.4
Qimron, U.5
Tabor, S.6
van Oijen, A.M.7
Richardson, C.C.8
-
170
-
-
0030070356
-
Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement
-
Kim S., Dallmann H.G., McHenry C.S., Marians K.J. Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell 1996, 84:643-650.
-
(1996)
Cell
, vol.84
, pp. 643-650
-
-
Kim, S.1
Dallmann, H.G.2
McHenry, C.S.3
Marians, K.J.4
-
171
-
-
84864447544
-
Collaborative coupling between polymerase and helicase for leading-strand synthesis
-
Manosas M., Spiering M.M., Ding F., Croquette V., Benkovic S.J. Collaborative coupling between polymerase and helicase for leading-strand synthesis. Nucleic Acids Res. 2012, 40:6187-6198.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 6187-6198
-
-
Manosas, M.1
Spiering, M.M.2
Ding, F.3
Croquette, V.4
Benkovic, S.J.5
-
172
-
-
0027280149
-
The Escherichia coli DNA polymerase III holoenzyme contains both products of the dnaX gene, tau and gamma, but only tau is essential
-
Blinkova A., Hervas C., Stukenberg P.T., Onrust R., O'Donnell M.E., Walker J.R. The Escherichia coli DNA polymerase III holoenzyme contains both products of the dnaX gene, tau and gamma, but only tau is essential. J. Bacteriol. 1993, 175:6018-6027.
-
(1993)
J. Bacteriol.
, vol.175
, pp. 6018-6027
-
-
Blinkova, A.1
Hervas, C.2
Stukenberg, P.T.3
Onrust, R.4
O'Donnell, M.E.5
Walker, J.R.6
-
173
-
-
0035941008
-
Two essential DNA polymerases at the bacterial replication fork
-
Dervyn E., Suski C., Daniel R., Bruand C., Chapuis J., Errington J., Janniere L., Ehrlich S.D. Two essential DNA polymerases at the bacterial replication fork. Science 2001, 294:1716-1719.
-
(2001)
Science
, vol.294
, pp. 1716-1719
-
-
Dervyn, E.1
Suski, C.2
Daniel, R.3
Bruand, C.4
Chapuis, J.5
Errington, J.6
Janniere, L.7
Ehrlich, S.D.8
-
174
-
-
0242666381
-
The essential C family DnaE polymerase is error-prone and efficient at lesion bypass
-
Bruck I., Goodman M.F., O'Donnell M. The essential C family DnaE polymerase is error-prone and efficient at lesion bypass. J. Biol. Chem. 2003, 278:44361-44368.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 44361-44368
-
-
Bruck, I.1
Goodman, M.F.2
O'Donnell, M.3
-
175
-
-
0141677891
-
Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences
-
McHenry C.S. Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol. Microbiol. 2003, 49:1157-1165.
-
(2003)
Mol. Microbiol.
, vol.49
, pp. 1157-1165
-
-
McHenry, C.S.1
-
177
-
-
23944507608
-
Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork
-
Calzada A., Hodgson B., Kanemaki M., Bueno A., Labib K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 2005, 19:1905-1919.
-
(2005)
Genes Dev.
, vol.19
, pp. 1905-1919
-
-
Calzada, A.1
Hodgson, B.2
Kanemaki, M.3
Bueno, A.4
Labib, K.5
-
178
-
-
84940581552
-
Tethering of SCF(Dia2) to the replisome promotes efficient ubiquitylation and disassembly of the CMG helicase
-
Maculins T., Nkosi P.J., Nishikawa H., Labib K. Tethering of SCF(Dia2) to the replisome promotes efficient ubiquitylation and disassembly of the CMG helicase. Curr. Biol. 2015, 25:2254-2259.
-
(2015)
Curr. Biol.
, vol.25
, pp. 2254-2259
-
-
Maculins, T.1
Nkosi, P.J.2
Nishikawa, H.3
Labib, K.4
-
179
-
-
84899846910
-
Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression
-
Sheu Y.J., Kinney J.B., Lengronne A., Pasero P., Stillman B. Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E1899-E1908.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. E1899-E1908
-
-
Sheu, Y.J.1
Kinney, J.B.2
Lengronne, A.3
Pasero, P.4
Stillman, B.5
-
180
-
-
84865188025
-
Checkpoint kinase 2 (Chk2) inhibits the activity of the Cdc45/MCM2-7/GINS (CMG) replicative helicase complex
-
Ilves I., Tamberg N., Botchan M.R. Checkpoint kinase 2 (Chk2) inhibits the activity of the Cdc45/MCM2-7/GINS (CMG) replicative helicase complex. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:13163-13170.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 13163-13170
-
-
Ilves, I.1
Tamberg, N.2
Botchan, M.R.3
-
181
-
-
84940897506
-
Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response
-
Elia A.E., Boardman A.P., Wang D.C., Huttlin E.L., Everley R.A., Dephoure N., Zhou C., Koren I., Gygi S.P., Elledge S.J. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol. Cell 2015, 59:867-881.
-
(2015)
Mol. Cell
, vol.59
, pp. 867-881
-
-
Elia, A.E.1
Boardman, A.P.2
Wang, D.C.3
Huttlin, E.L.4
Everley, R.A.5
Dephoure, N.6
Zhou, C.7
Koren, I.8
Gygi, S.P.9
Elledge, S.J.10
-
182
-
-
84946564267
-
Posttranslational regulation of human DNA polymerase iota
-
McIntyre J., McLenigan M.P., Frank E.G., Dai X., Yang W., Wang Y., Woodgate R. Posttranslational regulation of human DNA polymerase iota. J. Biol. Chem. 2015, 290:27332-27344.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 27332-27344
-
-
McIntyre, J.1
McLenigan, M.P.2
Frank, E.G.3
Dai, X.4
Yang, W.5
Wang, Y.6
Woodgate, R.7
|