메뉴 건너뛰기




Volumn 59, Issue 2, 2015, Pages 163-175

A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands

Author keywords

[No Author keywords available]

Indexed keywords

DEOXYCYTIDINE TRIPHOSPHATE; DEOXYGUANOSINE TRIPHOSPHATE; DNA DIRECTED DNA POLYMERASE DELTA; DNA POLYMERASE; EXONUCLEASE; HOLOENZYME; MUTAGENIC AGENT; DNA DIRECTED DNA POLYMERASE ALPHA; DNA DIRECTED DNA POLYMERASE GAMMA; EXODEOXYRIBONUCLEASE; EXODEOXYRIBONUCLEASE I; FUNGAL DNA; POL3 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN; URA3 PROTEIN, S CEREVISIAE;

EID: 84937413584     PISSN: 10972765     EISSN: 10974164     Source Type: Journal    
DOI: 10.1016/j.molcel.2015.05.038     Document Type: Article
Times cited : (161)

References (47)
  • 1
    • 81055141516 scopus 로고    scopus 로고
    • PCNA binding domains in all three subunits of yeast DNA polymerase δ modulate its function in DNA replication
    • Acharya N., Klassen R., Johnson R.E., Prakash L., Prakash S. PCNA binding domains in all three subunits of yeast DNA polymerase δ modulate its function in DNA replication. Proc. Natl. Acad. Sci. USA 2011, 108:17927-17932.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 17927-17932
    • Acharya, N.1    Klassen, R.2    Johnson, R.E.3    Prakash, L.4    Prakash, S.5
  • 2
    • 0024430208 scopus 로고
    • Structure and function of the Saccharomyces cerevisiae CDC2 gene encoding the large subunit of DNA polymerase III
    • Boulet A., Simon M., Faye G., Bauer G.A., Burgers P.M.J. Structure and function of the Saccharomyces cerevisiae CDC2 gene encoding the large subunit of DNA polymerase III. EMBO J. 1989, 8:1849-1854.
    • (1989) EMBO J. , vol.8 , pp. 1849-1854
    • Boulet, A.1    Simon, M.2    Faye, G.3    Bauer, G.A.4    Burgers, P.M.J.5
  • 3
    • 84872485372 scopus 로고    scopus 로고
    • Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase δ
    • Clausen A.R., Zhang S., Burgers P.M., Lee M.Y., Kunkel T.A. Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase δ. DNA Repair (Amst.) 2013, 12:121-127.
    • (2013) DNA Repair (Amst.) , vol.12 , pp. 121-127
    • Clausen, A.R.1    Zhang, S.2    Burgers, P.M.3    Lee, M.Y.4    Kunkel, T.A.5
  • 6
    • 0034955240 scopus 로고    scopus 로고
    • Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control
    • Feng W., D'Urso G. Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control. Mol. Cell. Biol. 2001, 21:4495-4504.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 4495-4504
    • Feng, W.1    D'Urso, G.2
  • 8
    • 84941097040 scopus 로고    scopus 로고
    • Switching between polymerase and exonuclease sites in DNA polymerase ε
    • Ganai R.A., Bylund G.O., Johansson E. Switching between polymerase and exonuclease sites in DNA polymerase ε. Nucleic Acids Res. 2015, 43:932-942.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 932-942
    • Ganai, R.A.1    Bylund, G.O.2    Johansson, E.3
  • 9
    • 0037066720 scopus 로고    scopus 로고
    • Human exonuclease I is required for 5' and 3' mismatch repair
    • Genschel J., Bazemore L.R., Modrich P. Human exonuclease I is required for 5' and 3' mismatch repair. J.Biol. Chem. 2002, 277:13302-13311.
    • (2002) J.Biol. Chem. , vol.277 , pp. 13302-13311
    • Genschel, J.1    Bazemore, L.R.2    Modrich, P.3
  • 11
    • 84871181366 scopus 로고    scopus 로고
    • DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast
    • Handa T., Kanke M., Takahashi T.S., Nakagawa T., Masukata H. DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast. Mol. Biol. Cell 2012, 23:3240-3253.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 3240-3253
    • Handa, T.1    Kanke, M.2    Takahashi, T.S.3    Nakagawa, T.4    Masukata, H.5
  • 12
    • 0017138261 scopus 로고
    • Sequential function of gene products relative to DNA synthesis in the yeast cell cycle
    • Hartwell L.H. Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J.Mol. Biol. 1976, 104:803-817.
    • (1976) J.Mol. Biol. , vol.104 , pp. 803-817
    • Hartwell, L.H.1
  • 13
    • 74749095240 scopus 로고    scopus 로고
    • Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins
    • Ilves I., Petojevic T., Pesavento J.J., Botchan M.R. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol. Cell 2010, 37:247-258.
    • (2010) Mol. Cell , vol.37 , pp. 247-258
    • Ilves, I.1    Petojevic, T.2    Pesavento, J.J.3    Botchan, M.R.4
  • 14
    • 0029870366 scopus 로고    scopus 로고
    • Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability
    • Johnson R.E., Kovvali G.K., Prakash L., Prakash S. Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability. J.Biol. Chem. 1996, 271:7285-7288.
    • (1996) J.Biol. Chem. , vol.271 , pp. 7285-7288
    • Johnson, R.E.1    Kovvali, G.K.2    Prakash, L.3    Prakash, S.4
  • 15
    • 0032587610 scopus 로고    scopus 로고
    • DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability
    • Kesti T., Flick K., Keränen S., Syväoja J.E., Wittenberg C. DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol. Cell 1999, 3:679-685.
    • (1999) Mol. Cell , vol.3 , pp. 679-685
    • Kesti, T.1    Flick, K.2    Keränen, S.3    Syväoja, J.E.4    Wittenberg, C.5
  • 16
    • 84923844518 scopus 로고    scopus 로고
    • Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA
    • 3, 257
    • Koh K.D., Balachander S., Hesselberth J.R., Storici F. Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat. Methods 2015, 12:251-257. 3, 257.
    • (2015) Nat. Methods , vol.12 , pp. 251-257
    • Koh, K.D.1    Balachander, S.2    Hesselberth, J.R.3    Storici, F.4
  • 19
    • 0001313535 scopus 로고
    • The distribution of the numbers of mutants in bacterial populations
    • Lea D.E., Coulson C.A. The distribution of the numbers of mutants in bacterial populations. J.Genet. 1949, 49:264-285.
    • (1949) J.Genet. , vol.49 , pp. 264-285
    • Lea, D.E.1    Coulson, C.A.2
  • 21
    • 84887156806 scopus 로고    scopus 로고
    • Ribonucleotides are signals for mismatch repair of leading-strand replication errors
    • Lujan S.A., Williams J.S., Clausen A.R., Clark A.B., Kunkel T.A. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol. Cell 2013, 50:437-443.
    • (2013) Mol. Cell , vol.50 , pp. 437-443
    • Lujan, S.A.1    Williams, J.S.2    Clausen, A.R.3    Clark, A.B.4    Kunkel, T.A.5
  • 22
    • 84855267435 scopus 로고    scopus 로고
    • The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved
    • Miyabe I., Kunkel T.A., Carr A.M. The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet. 2011, 7:e1002407.
    • (2011) PLoS Genet. , vol.7
    • Miyabe, I.1    Kunkel, T.A.2    Carr, A.M.3
  • 23
    • 0026004621 scopus 로고
    • Eukaryotic DNA polymerase amino acid sequence required for 3'----5' exonuclease activity
    • Morrison A., Bell J.B., Kunkel T.A., Sugino A. Eukaryotic DNA polymerase amino acid sequence required for 3'----5' exonuclease activity. Proc. Natl. Acad. Sci. USA 1991, 88:9473-9477.
    • (1991) Proc. Natl. Acad. Sci. USA , vol.88 , pp. 9473-9477
    • Morrison, A.1    Bell, J.B.2    Kunkel, T.A.3    Sugino, A.4
  • 24
    • 0022504637 scopus 로고
    • Genealogy of principal strains of the yeast genetic stock center
    • Mortimer R.K., Johnston J.R. Genealogy of principal strains of the yeast genetic stock center. Genetics 1986, 113:35-43.
    • (1986) Genetics , vol.113 , pp. 35-43
    • Mortimer, R.K.1    Johnston, J.R.2
  • 25
    • 33745925880 scopus 로고    scopus 로고
    • Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
    • Moyer S.E., Lewis P.W., Botchan M.R. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. USA 2006, 103:10236-10241.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 10236-10241
    • Moyer, S.E.1    Lewis, P.W.2    Botchan, M.R.3
  • 26
    • 0028979332 scopus 로고
    • DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint
    • Navas T.A., Zhou Z., Elledge S.J. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 1995, 80:29-39.
    • (1995) Cell , vol.80 , pp. 29-39
    • Navas, T.A.1    Zhou, Z.2    Elledge, S.J.3
  • 27
    • 34047260752 scopus 로고    scopus 로고
    • Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of Saccharomyces cerevisiae DNA polymerase delta
    • Nick McElhinny S.A., Stith C.M., Burgers P.M., Kunkel T.A. Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of Saccharomyces cerevisiae DNA polymerase delta. J.Biol. Chem. 2007, 282:2324-2332.
    • (2007) J.Biol. Chem. , vol.282 , pp. 2324-2332
    • Nick McElhinny, S.A.1    Stith, C.M.2    Burgers, P.M.3    Kunkel, T.A.4
  • 31
    • 0034805293 scopus 로고    scopus 로고
    • Invivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta
    • Pavlov Y.I., Shcherbakova P.V., Kunkel T.A. Invivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta. Genetics 2001, 159:47-64.
    • (2001) Genetics , vol.159 , pp. 47-64
    • Pavlov, Y.I.1    Shcherbakova, P.V.2    Kunkel, T.A.3
  • 32
    • 34447336941 scopus 로고    scopus 로고
    • Yeast DNA polymerase ε participates in leading-strand DNA replication
    • Pursell Z.F., Isoz I., Lundström E.-B., Johansson E., Kunkel T.A. Yeast DNA polymerase ε participates in leading-strand DNA replication. Science 2007, 317:127-130.
    • (2007) Science , vol.317 , pp. 127-130
    • Pursell, Z.F.1    Isoz, I.2    Lundström, E.-B.3    Johansson, E.4    Kunkel, T.A.5
  • 33
  • 34
    • 0025900035 scopus 로고
    • The 3' to 5' exonuclease activity located in the DNA polymerase δ subunit of Saccharomyces cerevisiae is required for accurate replication
    • Simon M., Giot L., Faye G. The 3' to 5' exonuclease activity located in the DNA polymerase δ subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J. 1991, 10:2165-2170.
    • (1991) EMBO J. , vol.10 , pp. 2165-2170
    • Simon, M.1    Giot, L.2    Faye, G.3
  • 35
    • 0024977355 scopus 로고
    • DNA polymerase III, a second essential DNA polymerase, is encoded by the S.cerevisiae CDC2 gene
    • Sitney K.C., Budd M.E., Campbell J.L. DNA polymerase III, a second essential DNA polymerase, is encoded by the S.cerevisiae CDC2 gene. Cell 1989, 56:599-605.
    • (1989) Cell , vol.56 , pp. 599-605
    • Sitney, K.C.1    Budd, M.E.2    Campbell, J.L.3
  • 36
    • 0034130841 scopus 로고    scopus 로고
    • EXO1 and MSH6 are high-copy suppressors of conditional mutations in the MSH2 mismatch repair gene of Saccharomyces cerevisiae
    • Sokolsky T., Alani E. EXO1 and MSH6 are high-copy suppressors of conditional mutations in the MSH2 mismatch repair gene of Saccharomyces cerevisiae. Genetics 2000, 155:589-599.
    • (2000) Genetics , vol.155 , pp. 589-599
    • Sokolsky, T.1    Alani, E.2
  • 37
    • 79960697460 scopus 로고    scopus 로고
    • Ddc1 checkpoint protein and DNA polymerase e interact with nick-containing DNA repair intermediate in cell free extracts of Saccharomyces cerevisiae
    • Sukhanova M.V., D'Herin C., van der Kemp P.A., Koval V.V., Boiteux S., Lavrik O.I. Ddc1 checkpoint protein and DNA polymerase e interact with nick-containing DNA repair intermediate in cell free extracts of Saccharomyces cerevisiae. DNA Repair (Amst.) 2011, 10:815-825.
    • (2011) DNA Repair (Amst.) , vol.10 , pp. 815-825
    • Sukhanova, M.V.1    D'Herin, C.2    van der Kemp, P.A.3    Koval, V.V.4    Boiteux, S.5    Lavrik, O.I.6
  • 38
    • 84856689701 scopus 로고    scopus 로고
    • Differential requirement for the N-terminal catalytic domain of the DNApolymerase ε p255 subunit in the mitotic cell cycle and the endocycle
    • Suyari O., Kawai M., Ida H., Yoshida H., Sakaguchi K., Yamaguchi M. Differential requirement for the N-terminal catalytic domain of the DNApolymerase ε p255 subunit in the mitotic cell cycle and the endocycle. Gene 2012, 495:104-114.
    • (2012) Gene , vol.495 , pp. 104-114
    • Suyari, O.1    Kawai, M.2    Ida, H.3    Yoshida, H.4    Sakaguchi, K.5    Yamaguchi, M.6
  • 40
    • 0030806219 scopus 로고    scopus 로고
    • Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2
    • Tishkoff D.X., Boerger A.L., Bertrand P., Filosi N., Gaida G.M., Kane M.F., Kolodner R.D. Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc. Natl. Acad. Sci. USA 1997, 94:7487-7492.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 7487-7492
    • Tishkoff, D.X.1    Boerger, A.L.2    Bertrand, P.3    Filosi, N.4    Gaida, G.M.5    Kane, M.F.6    Kolodner, R.D.7
  • 41
    • 0032588388 scopus 로고    scopus 로고
    • The 3'->5' exonucleases of DNA polymerases δ and ε and the 5'->3' exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae
    • Tran H.T., Gordenin D.A., Resnick M.A. The 3'->5' exonucleases of DNA polymerases δ and ε and the 5'->3' exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol. Cell. Biol. 1999, 19:2000-2007.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 2000-2007
    • Tran, H.T.1    Gordenin, D.A.2    Resnick, M.A.3
  • 42
    • 0025967720 scopus 로고
    • Replication factors required for SV40 DNA replication invitro. II. Switching of DNA polymerase alpha and delta during initiation of leading and lagging strand synthesis
    • Tsurimoto T., Stillman B. Replication factors required for SV40 DNA replication invitro. II. Switching of DNA polymerase alpha and delta during initiation of leading and lagging strand synthesis. J.Biol. Chem. 1991, 266:1961-1968.
    • (1991) J.Biol. Chem. , vol.266 , pp. 1961-1968
    • Tsurimoto, T.1    Stillman, B.2
  • 43
    • 0026089096 scopus 로고
    • Replication factors required for SV40 DNA replication invitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins
    • Tsurimoto T., Stillman B. Replication factors required for SV40 DNA replication invitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J.Biol. Chem. 1991, 266:1950-1960.
    • (1991) J.Biol. Chem. , vol.266 , pp. 1950-1960
    • Tsurimoto, T.1    Stillman, B.2
  • 44
    • 0025328320 scopus 로고
    • Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin
    • Tsurimoto T., Melendy T., Stillman B. Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature 1990, 346:534-539.
    • (1990) Nature , vol.346 , pp. 534-539
    • Tsurimoto, T.1    Melendy, T.2    Stillman, B.3
  • 45
    • 0028337685 scopus 로고
    • Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication invitro
    • Waga S., Stillman B. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication invitro. Nature 1994, 369:207-212.
    • (1994) Nature , vol.369 , pp. 207-212
    • Waga, S.1    Stillman, B.2
  • 47
    • 84912091104 scopus 로고    scopus 로고
    • Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall
    • Yu C., Gan H., Han J., Zhou Z.X., Jia S., Chabes A., Farrugia G., Ordog T., Zhang Z. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol. Cell 2014, 56:551-563.
    • (2014) Mol. Cell , vol.56 , pp. 551-563
    • Yu, C.1    Gan, H.2    Han, J.3    Zhou, Z.X.4    Jia, S.5    Chabes, A.6    Farrugia, G.7    Ordog, T.8    Zhang, Z.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.