-
1
-
-
84938393719
-
Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier
-
[1] Villa, C.H., et al. Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier. Ther. Deliv. 6 (2015), 795–826.
-
(2015)
Ther. Deliv.
, vol.6
, pp. 795-826
-
-
Villa, C.H.1
-
2
-
-
84055193022
-
International seminar on the red blood cells as vehicles for drugs
-
[2] Godfrin, Y., et al. International seminar on the red blood cells as vehicles for drugs. Expert. Opin. Biol. Ther. 12 (2012), 127–133.
-
(2012)
Expert. Opin. Biol. Ther.
, vol.12
, pp. 127-133
-
-
Godfrin, Y.1
-
3
-
-
0030878357
-
Red cell-mediated therapy: opportunities and challenges
-
[3] Krantz, A., Red cell-mediated therapy: opportunities and challenges. Blood Cells Mol. Dis. 23 (1997), 58–68.
-
(1997)
Blood Cells Mol. Dis.
, vol.23
, pp. 58-68
-
-
Krantz, A.1
-
4
-
-
0031851084
-
Erythrocyte engineering for drug delivery and targeting
-
[4] Magnani, M., et al. Erythrocyte engineering for drug delivery and targeting. Biotechnol. Appl. Biochem. 28:Pt 1 (1998), 1–6.
-
(1998)
Biotechnol. Appl. Biochem.
, vol.28
, pp. 1-6
-
-
Magnani, M.1
-
5
-
-
77949878932
-
Drug delivery by red blood cells: vascular carriers designed by mother nature
-
[5] Muzykantov, V.R., Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin. Drug Deliv. 7 (2010), 403–427.
-
(2010)
Expert Opin. Drug Deliv.
, vol.7
, pp. 403-427
-
-
Muzykantov, V.R.1
-
6
-
-
39449126839
-
Drug loaded erythrocytes: as novel drug delivery system
-
[6] Patel, P.D., et al. Drug loaded erythrocytes: as novel drug delivery system. Curr. Pharm. Des. 14 (2008), 63–70.
-
(2008)
Curr. Pharm. Des.
, vol.14
, pp. 63-70
-
-
Patel, P.D.1
-
7
-
-
0037275959
-
Carrier erythrocytes: an overview
-
[7] Hamidi, M., Tajerzadeh, H., Carrier erythrocytes: an overview. Drug Deliv. 10 (2003), 9–20.
-
(2003)
Drug Deliv.
, vol.10
, pp. 9-20
-
-
Hamidi, M.1
Tajerzadeh, H.2
-
8
-
-
33644789797
-
Fibrin affinity of erythrocyte-coupled tissue-type plasminogen activators endures hemodynamic forces and enhances fibrinolysis in vivo
-
[8] Ganguly, K., et al. Fibrin affinity of erythrocyte-coupled tissue-type plasminogen activators endures hemodynamic forces and enhances fibrinolysis in vivo. J. Pharmacol. Exp. Ther. 316:3 (2006), 1130–1136.
-
(2006)
J. Pharmacol. Exp. Ther.
, vol.316
, Issue.3
, pp. 1130-1136
-
-
Ganguly, K.1
-
9
-
-
70349335374
-
Soluble urokinase receptor conjugated to carrier red blood cells binds latent pro-urokinase and alters its functional profile
-
[9] Murciano, J.C., et al. Soluble urokinase receptor conjugated to carrier red blood cells binds latent pro-urokinase and alters its functional profile. J. Control. Release 139:3 (2009), 190–196.
-
(2009)
J. Control. Release
, vol.139
, Issue.3
, pp. 190-196
-
-
Murciano, J.C.1
-
10
-
-
0042855871
-
Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes
-
[10] Murciano, J.-C., et al. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat. Biotechnol. 21:8 (2003), 891–896.
-
(2003)
Nat. Biotechnol.
, vol.21
, Issue.8
, pp. 891-896
-
-
Murciano, J.-C.1
-
11
-
-
84893452925
-
Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application
-
[11] He, H., et al. Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application. J. Control. Release 176 (2014), 123–132.
-
(2014)
J. Control. Release
, vol.176
, pp. 123-132
-
-
He, H.1
-
12
-
-
84885124629
-
Human erythrocytes as drug carriers: loading efficiency and side effects of hypotonic dialysis, chlorpromazine treatment and fusion with liposomes
-
[12] Favretto, M.E., et al. Human erythrocytes as drug carriers: loading efficiency and side effects of hypotonic dialysis, chlorpromazine treatment and fusion with liposomes. J. Control. Release 170:3 (2013), 343–351.
-
(2013)
J. Control. Release
, vol.170
, Issue.3
, pp. 343-351
-
-
Favretto, M.E.1
-
13
-
-
84904284885
-
Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes
-
[13] Shi, J., et al. Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. Proc. Natl. Acad. Sci. 111 (2014), 10131–10136.
-
(2014)
Proc. Natl. Acad. Sci.
, vol.111
, pp. 10131-10136
-
-
Shi, J.1
-
14
-
-
84861206965
-
Targeting recombinant thrombomodulin fusion protein to red blood cells provides multifaceted thromboprophylaxis
-
[14] Zaitsev, S., et al. Targeting recombinant thrombomodulin fusion protein to red blood cells provides multifaceted thromboprophylaxis. Blood 119:20 (2012), 4779–4785.
-
(2012)
Blood
, vol.119
, Issue.20
, pp. 4779-4785
-
-
Zaitsev, S.1
-
15
-
-
0020531959
-
Red blood cell targeting to collagen-coated surfaces
-
[15] Samokhin, G.P., et al. Red blood cell targeting to collagen-coated surfaces. FEBS Lett. 154:2 (1983), 257–261.
-
(1983)
FEBS Lett.
, vol.154
, Issue.2
, pp. 257-261
-
-
Samokhin, G.P.1
-
16
-
-
0021959375
-
Targeting of enzyme immobilized on erythrocyte membrane to collagen-coated surface
-
[16] Muzykantov, V.R., et al. Targeting of enzyme immobilized on erythrocyte membrane to collagen-coated surface. FEBS Lett. 182:1 (1985), 62–66.
-
(1985)
FEBS Lett.
, vol.182
, Issue.1
, pp. 62-66
-
-
Muzykantov, V.R.1
-
17
-
-
0022979072
-
Immunotargeting of erythrocyte-bound streptokinase provides local lysis of a fibrin clot
-
[17] Muzykantov, V.R., et al. Immunotargeting of erythrocyte-bound streptokinase provides local lysis of a fibrin clot. Biochim. Biophys. Acta 884:2 (1986), 355–362.
-
(1986)
Biochim. Biophys. Acta
, vol.884
, Issue.2
, pp. 355-362
-
-
Muzykantov, V.R.1
-
18
-
-
0022974712
-
Carrier-directed targeting of liposomes and erythrocytes to denuded areas of vessel wall
-
[18] Smirnov, V.N., et al. Carrier-directed targeting of liposomes and erythrocytes to denuded areas of vessel wall. Proc. Natl. Acad. Sci. U. S. A. 83:17 (1986), 6603–6607.
-
(1986)
Proc. Natl. Acad. Sci. U. S. A.
, vol.83
, Issue.17
, pp. 6603-6607
-
-
Smirnov, V.N.1
-
19
-
-
0023222030
-
Directed targeting of immunoerythrocytes provides local protection of endothelial cells from damage by hydrogen peroxide
-
[19] Muzykantov, V.R., et al. Directed targeting of immunoerythrocytes provides local protection of endothelial cells from damage by hydrogen peroxide. Am. J. Pathol. 128:2 (1987), 276–285.
-
(1987)
Am. J. Pathol.
, vol.128
, Issue.2
, pp. 276-285
-
-
Muzykantov, V.R.1
-
20
-
-
0022494120
-
Red blood cell targeting to smooth muscle cells
-
[20] Glukhova, M.A., et al. Red blood cell targeting to smooth muscle cells. FEBS Lett. 198:1 (1986), 155–158.
-
(1986)
FEBS Lett.
, vol.198
, Issue.1
, pp. 155-158
-
-
Glukhova, M.A.1
-
21
-
-
84899056211
-
Approaches to erythrocyte-mediated drug delivery
-
[21] Magnani, M., Rossi, L., Approaches to erythrocyte-mediated drug delivery. Expert Opin Drug Deliv 11:5 (2014), 677–687.
-
(2014)
Expert Opin Drug Deliv
, vol.11
, Issue.5
, pp. 677-687
-
-
Magnani, M.1
Rossi, L.2
-
22
-
-
84898782723
-
Targeting and depletion of circulating leukocytes and cancer cells by lipophilic antibody-modified erythrocytes
-
[22] Mukthavaram, R., et al. Targeting and depletion of circulating leukocytes and cancer cells by lipophilic antibody-modified erythrocytes. J. Control. Release 183 (2014), 146–153.
-
(2014)
J. Control. Release
, vol.183
, pp. 146-153
-
-
Mukthavaram, R.1
-
23
-
-
84891763984
-
Distearoyl anchor-painted erythrocytes with prolonged ligand retention and circulation properties in vivo
-
[23] Shi, G., et al. Distearoyl anchor-painted erythrocytes with prolonged ligand retention and circulation properties in vivo. Adv. Healthcare Mater. 3:1 (2014), 142–148.
-
(2014)
Adv. Healthcare Mater.
, vol.3
, Issue.1
, pp. 142-148
-
-
Shi, G.1
-
24
-
-
77949673546
-
Signaling, delivery and age as emerging issues in the benefit/risk ratio outcome of tPA for treatment of CNS ischemic disorders
-
[24] Armstead, W.M., et al. Signaling, delivery and age as emerging issues in the benefit/risk ratio outcome of tPA for treatment of CNS ischemic disorders. J. Neurochem. 113:2 (2010), 303–312.
-
(2010)
J. Neurochem.
, vol.113
, Issue.2
, pp. 303-312
-
-
Armstead, W.M.1
-
25
-
-
54049147394
-
Cerebrovascular thromboprophylaxis in mice by erythrocyte-coupled tissue-type plasminogen activator
-
[25] Danielyan, K., et al. Cerebrovascular thromboprophylaxis in mice by erythrocyte-coupled tissue-type plasminogen activator. Circulation 118:14 (2008), 1442–1449.
-
(2008)
Circulation
, vol.118
, Issue.14
, pp. 1442-1449
-
-
Danielyan, K.1
-
26
-
-
70450184289
-
Erythrocyte-bound tissue plasminogen activator is neuroprotective in experimental traumatic brain injury
-
[26] Stein, S.C., et al. Erythrocyte-bound tissue plasminogen activator is neuroprotective in experimental traumatic brain injury. J. Neurotrauma 26:9 (2009), 1585–1592.
-
(2009)
J. Neurotrauma
, vol.26
, Issue.9
, pp. 1585-1592
-
-
Stein, S.C.1
-
27
-
-
81155138207
-
Red blood cell-coupled tissue plasminogen activator prevents impairment of cerebral vasodilatory responses through inhibition of c-Jun-N-terminal kinase and potentiation of p38 mitogen-activated protein kinase after cerebral photothrombosis in the newborn pig
-
[27] Armstead, W.M., et al. Red blood cell-coupled tissue plasminogen activator prevents impairment of cerebral vasodilatory responses through inhibition of c-Jun-N-terminal kinase and potentiation of p38 mitogen-activated protein kinase after cerebral photothrombosis in the newborn pig. Pediatr. Crit. Care Med. 12:6 (2011), e369–e375.
-
(2011)
Pediatr. Crit. Care Med.
, vol.12
, Issue.6
, pp. e369-e375
-
-
Armstead, W.M.1
-
28
-
-
84856212785
-
Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan
-
[28] Pisapia, J.M., et al. Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan. Exp. Neurol. 233:1 (2012), 357–363.
-
(2012)
Exp. Neurol.
, vol.233
, Issue.1
, pp. 357-363
-
-
Pisapia, J.M.1
-
29
-
-
68249122804
-
Red blood cells-coupled tPA prevents impairment of cerebral vasodilatory responses and tissue injury in pediatric cerebral hypoxia/ischemia through inhibition of ERK MAPK activation
-
[29] Armstead, W.M., et al. Red blood cells-coupled tPA prevents impairment of cerebral vasodilatory responses and tissue injury in pediatric cerebral hypoxia/ischemia through inhibition of ERK MAPK activation. J. Cereb. Blood Flow Metab. 29:8 (2009), 1463–1474.
-
(2009)
J. Cereb. Blood Flow Metab.
, vol.29
, Issue.8
, pp. 1463-1474
-
-
Armstead, W.M.1
-
30
-
-
84933566142
-
Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytes
-
[30] Atukorale, P.U., et al. Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytes. Nanoscale 7:26 (2015), 11420–11432.
-
(2015)
Nanoscale
, vol.7
, Issue.26
, pp. 11420-11432
-
-
Atukorale, P.U.1
-
31
-
-
33947398717
-
The glycocalyx protects erythrocyte-bound tissue-type plasminogen activator from enzymatic inhibition
-
[31] Ganguly, K., et al. The glycocalyx protects erythrocyte-bound tissue-type plasminogen activator from enzymatic inhibition. J Pharmacol Exp Ther 321:1 (2007), 158–164.
-
(2007)
J Pharmacol Exp Ther
, vol.321
, Issue.1
, pp. 158-164
-
-
Ganguly, K.1
-
32
-
-
77953732621
-
The spatial dynamics of fibrin clot dissolution catalyzed by erythrocyte-bound vs. free fibrinolytics
-
[32] Gersh, K.C., et al. The spatial dynamics of fibrin clot dissolution catalyzed by erythrocyte-bound vs. free fibrinolytics. J. Thromb. Haemost. 8:5 (2010), 1066–1074.
-
(2010)
J. Thromb. Haemost.
, vol.8
, Issue.5
, pp. 1066-1074
-
-
Gersh, K.C.1
-
33
-
-
79955951798
-
Flow-dependent channel formation in clots by an erythrocyte-bound fibrinolytic agent
-
[33] Gersh, K.C., et al. Flow-dependent channel formation in clots by an erythrocyte-bound fibrinolytic agent. Blood 117:18 (2011), 4964–4967.
-
(2011)
Blood
, vol.117
, Issue.18
, pp. 4964-4967
-
-
Gersh, K.C.1
-
34
-
-
84918571737
-
Factors influencing RBC alloimmunization: lessons learned from murine models
-
[34] Ryder, A.B., Zimring, J.C., Hendrickson, J.E., Factors influencing RBC alloimmunization: lessons learned from murine models. Transfus. Med. Hemother. 41 (2014), 406–419.
-
(2014)
Transfus. Med. Hemother.
, vol.41
, pp. 406-419
-
-
Ryder, A.B.1
Zimring, J.C.2
Hendrickson, J.E.3
-
35
-
-
84903489893
-
Red blood cell alloimmunization mitigation strategies
-
[35] Hendrickson, J.E., Tormey, C.A., Shaz, B.H., Red blood cell alloimmunization mitigation strategies. Transfus. Med. Rev. 28 (2014), 137–144.
-
(2014)
Transfus. Med. Rev.
, vol.28
, pp. 137-144
-
-
Hendrickson, J.E.1
Tormey, C.A.2
Shaz, B.H.3
-
36
-
-
0028869143
-
A prospective study to determine the frequency and clinical significance of alloimmunization post-transfusion
-
[36] Heddle, N.M., et al. A prospective study to determine the frequency and clinical significance of alloimmunization post-transfusion. Br. J. Haematol. 91 (1995), 1000–1005.
-
(1995)
Br. J. Haematol.
, vol.91
, pp. 1000-1005
-
-
Heddle, N.M.1
-
37
-
-
84886874276
-
High prevalence of red blood cell alloimmunization in sickle cell disease despite transfusion from Rh-matched minority donors
-
[37] Chou, S.T., et al. High prevalence of red blood cell alloimmunization in sickle cell disease despite transfusion from Rh-matched minority donors. Blood 122 (2013), 1062–1071.
-
(2013)
Blood
, vol.122
, pp. 1062-1071
-
-
Chou, S.T.1
-
38
-
-
84891871753
-
Transfusion of murine red blood cells expressing the human KEL glycoprotein induces clinically significant alloantibodies
-
[38] Stowell, S.R., et al. Transfusion of murine red blood cells expressing the human KEL glycoprotein induces clinically significant alloantibodies. Transfusion 54 (2014), 179–189.
-
(2014)
Transfusion
, vol.54
, pp. 179-189
-
-
Stowell, S.R.1
-
39
-
-
84870994430
-
Generation of transgenic mice with antithetical KEL1 and KEL2 human blood group antigens on red blood cells
-
[39] Smith, N.H., et al. Generation of transgenic mice with antithetical KEL1 and KEL2 human blood group antigens on red blood cells. Transfusion 52 (2012), 2620–2630.
-
(2012)
Transfusion
, vol.52
, pp. 2620-2630
-
-
Smith, N.H.1
-
40
-
-
84886490466
-
A novel role for C3 in antibody-induced red blood cell clearance and antigen modulation
-
[40] Girard-Pierce, K.R., et al. A novel role for C3 in antibody-induced red blood cell clearance and antigen modulation. Blood 122 (2013), 1793–1801.
-
(2013)
Blood
, vol.122
, pp. 1793-1801
-
-
Girard-Pierce, K.R.1
-
41
-
-
84878911512
-
Resistance of a subset of red blood cells to clearance by antibodies in a mouse model of incompatible transfusion
-
[41] Liepkalns, J.S., et al. Resistance of a subset of red blood cells to clearance by antibodies in a mouse model of incompatible transfusion. Transfusion 53 (2013), 1319–1327.
-
(2013)
Transfusion
, vol.53
, pp. 1319-1327
-
-
Liepkalns, J.S.1
-
42
-
-
84871965318
-
Engineering antigens for in situ erythrocyte binding induces T-cell deletion
-
[42] Kontos, S., et al. Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc. Natl. Acad. Sci. 110 (2013), 17–18.
-
(2013)
Proc. Natl. Acad. Sci.
, vol.110
, pp. 17-18
-
-
Kontos, S.1
-
43
-
-
84936809151
-
Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase
-
[43] Lorentz, K.M., et al. Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase. Sci. Adv., 1, 2015, e1500112.
-
(2015)
Sci. Adv.
, vol.1
, pp. e1500112
-
-
Lorentz, K.M.1
-
44
-
-
0345768477
-
Tolerance evaluation of L-asparaginase loaded in red blood cells
-
[44] Kravtzoff, R., et al. Tolerance evaluation of L-asparaginase loaded in red blood cells. Eur. J. Clin. Pharmacol. 51 (1996), 221–225.
-
(1996)
Eur. J. Clin. Pharmacol.
, vol.51
, pp. 221-225
-
-
Kravtzoff, R.1
-
45
-
-
0029995124
-
Improved pharmacodynamics of L-asparaginase-loaded in human red blood cells
-
[45] Kravtzoff, R., et al. Improved pharmacodynamics of L-asparaginase-loaded in human red blood cells. Eur. J. Clin. Pharmacol. 49 (1996), 465–470.
-
(1996)
Eur. J. Clin. Pharmacol.
, vol.49
, pp. 465-470
-
-
Kravtzoff, R.1
-
46
-
-
0025003462
-
Erythrocytes as carriers for L-asparaginase. Methodological and mouse in-vivo studies
-
[46] Kravtzoff, R., et al. Erythrocytes as carriers for L-asparaginase. Methodological and mouse in-vivo studies. J. Pharm. Pharmacol. 42 (1990), 473–476.
-
(1990)
J. Pharm. Pharmacol.
, vol.42
, pp. 473-476
-
-
Kravtzoff, R.1
-
47
-
-
2442496750
-
Asparaginase antibody and asparaginase activity in children with higher-risk acute lymphoblastic leukemia: Children's Cancer Group Study CCG-1961
-
[47] Panosyan, E.H., et al. Asparaginase antibody and asparaginase activity in children with higher-risk acute lymphoblastic leukemia: Children's Cancer Group Study CCG-1961. J. Pediatr. Hematol. Oncol. 26 (2004), 217–226.
-
(2004)
J. Pediatr. Hematol. Oncol.
, vol.26
, pp. 217-226
-
-
Panosyan, E.H.1
-
48
-
-
77958589565
-
Immunogenicity of therapeutics: a matter of efficacy and safety
-
[48] Nechansky, A., Kircheis, R., Immunogenicity of therapeutics: a matter of efficacy and safety. Expert Opin. Drug Discovery 5 (2010), 1067–1079.
-
(2010)
Expert Opin. Drug Discovery
, vol.5
, pp. 1067-1079
-
-
Nechansky, A.1
Kircheis, R.2
-
49
-
-
84957894648
-
Immune response to enzyme replacement therapies in lysosomal storage diseases and the role of immune tolerance induction
-
[49] Kishnani, P.S., et al. Immune response to enzyme replacement therapies in lysosomal storage diseases and the role of immune tolerance induction. Mol. Genet. Metab. 117:2 (2016), 68–83.
-
(2016)
Mol. Genet. Metab.
, vol.117
, Issue.2
, pp. 68-83
-
-
Kishnani, P.S.1
-
50
-
-
84930001878
-
Platelet-delivered ADAMTS13 inhibits arterial thrombosis and prevents thrombotic thrombocytopenic purpura in murine models
-
[50] Pickens, B., et al. Platelet-delivered ADAMTS13 inhibits arterial thrombosis and prevents thrombotic thrombocytopenic purpura in murine models. Blood 125 (2015), 3326–3334.
-
(2015)
Blood
, vol.125
, pp. 3326-3334
-
-
Pickens, B.1
-
51
-
-
84920935888
-
Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance
-
[51] Maldonado, R.A., et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc. Natl. Acad. Sci. 112 (2015), E156–E165.
-
(2015)
Proc. Natl. Acad. Sci.
, vol.112
, pp. E156-E165
-
-
Maldonado, R.A.1
-
52
-
-
84959107365
-
War and peace: factor VIII and the adaptive immune response
-
[52] Georgescu, M.T., et al. War and peace: factor VIII and the adaptive immune response. Cell. Immunol. 301 (2016), 2–7.
-
(2016)
Cell. Immunol.
, vol.301
, pp. 2-7
-
-
Georgescu, M.T.1
-
53
-
-
14844292862
-
Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells
-
[53] Giarratana, M.-C., et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat. Biotechnol. 23 (2005), 69–74.
-
(2005)
Nat. Biotechnol.
, vol.23
, pp. 69-74
-
-
Giarratana, M.-C.1
-
54
-
-
84859829497
-
Ex-vivo generation of human red cells for transfusion
-
[54] Anstee, D.J., Gampel, A., Toye, A.M., Ex-vivo generation of human red cells for transfusion. Curr. Opin. Hematol. 19 (2012), 163–169.
-
(2012)
Curr. Opin. Hematol.
, vol.19
, pp. 163-169
-
-
Anstee, D.J.1
Gampel, A.2
Toye, A.M.3
-
55
-
-
84895901710
-
Extensive ex vivo expansion of functional human erythroid precursors established from umbilical cord blood cells by defined factors
-
[55] Huang, X., et al. Extensive ex vivo expansion of functional human erythroid precursors established from umbilical cord blood cells by defined factors. Mol. Ther. 22 (2014), 451–463.
-
(2014)
Mol. Ther.
, vol.22
, pp. 451-463
-
-
Huang, X.1
-
56
-
-
81055124027
-
Proof of principle for transfusion of in vitro-generated red blood cells
-
[56] Giarratana, M.-C., et al. Proof of principle for transfusion of in vitro-generated red blood cells. Blood 118 (2011), 5071–5079.
-
(2011)
Blood
, vol.118
, pp. 5071-5079
-
-
Giarratana, M.-C.1
-
57
-
-
84929166074
-
Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
-
[57] Maruyama, T., et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33 (2015), 538–542.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 538-542
-
-
Maruyama, T.1
-
58
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
[58] Sander, J.D., Joung, J.K., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32 (2014), 347–355.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
59
-
-
77955867185
-
Genome editing with engineered zinc finger nucleases
-
[59] Urnov, F.D., et al. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11 (2010), 636–646.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 636-646
-
-
Urnov, F.D.1
-
60
-
-
1942509539
-
Red blood cell blood group antigens: structure and function
-
[60] Reid, M.E., Mohandas, N., Red blood cell blood group antigens: structure and function. Semin. Hematol. 41 (2004), 93–117.
-
(2004)
Semin. Hematol.
, vol.41
, pp. 93-117
-
-
Reid, M.E.1
Mohandas, N.2
-
61
-
-
85146485237
-
The Blood Group Antigen FactsBook
-
Elsevier/Academic Press Amsterdam
-
[61] Reid, M.E., Lomas-Francis, C., Olsson, M.L., The Blood Group Antigen FactsBook. 2012, Elsevier/Academic Press, Amsterdam.
-
(2012)
-
-
Reid, M.E.1
Lomas-Francis, C.2
Olsson, M.L.3
-
62
-
-
58149158216
-
Red cell membrane: past, present, and future
-
[62] Mohandas, N., Gallagher, P.G., Red cell membrane: past, present, and future. Blood 112 (2008), 3939–3948.
-
(2008)
Blood
, vol.112
, pp. 3939-3948
-
-
Mohandas, N.1
Gallagher, P.G.2
-
63
-
-
84907030234
-
The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network
-
[63] Sosa, J.M., et al. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network. Clin. Hemorheol. Microcirc. 57:3 (2013), 275–289.
-
(2013)
Clin. Hemorheol. Microcirc.
, vol.57
, Issue.3
, pp. 275-289.
-
-
Sosa, J.M.1
-
64
-
-
42049115740
-
Disorders of red cell membrane
-
[64] An, X., Mohandas, N., Disorders of red cell membrane. Br. J. Haematol. 141 (2008), 367–375.
-
(2008)
Br. J. Haematol.
, vol.141
, pp. 367-375
-
-
An, X.1
Mohandas, N.2
-
65
-
-
0029014486
-
Perturbation of red blood cell membrane rigidity by extracellular ligands
-
[65] Paulitschke, M., et al. Perturbation of red blood cell membrane rigidity by extracellular ligands. Blood 86 (1995), 342–348.
-
(1995)
Blood
, vol.86
, pp. 342-348
-
-
Paulitschke, M.1
-
66
-
-
0024470421
-
Inhibition of malarial parasite invasion by monoclonal antibodies against glycophorin A correlates with reduction in red cell membrane deformability
-
[66] Pasvol, G., et al. Inhibition of malarial parasite invasion by monoclonal antibodies against glycophorin A correlates with reduction in red cell membrane deformability. Blood 74 (1989), 1836–1843.
-
(1989)
Blood
, vol.74
, pp. 1836-1843
-
-
Pasvol, G.1
-
67
-
-
84859419010
-
Assessment of oxidant susceptibility of red blood cells in various species based on cell deformability
-
[67] Simmonds, M.J., et al. Assessment of oxidant susceptibility of red blood cells in various species based on cell deformability. Biorheology 48 (2011), 293–304.
-
(2011)
Biorheology
, vol.48
, pp. 293-304
-
-
Simmonds, M.J.1
-
68
-
-
57049177923
-
Additive effect of red blood cell rigidity and adherence to endothelial cells in inducing vascular resistance
-
[68] Kaul, D.K., et al. Additive effect of red blood cell rigidity and adherence to endothelial cells in inducing vascular resistance. Am. J. Physiol. Heart Circ. Physiol. 295 (2008), H1788–H1793.
-
(2008)
Am. J. Physiol. Heart Circ. Physiol.
, vol.295
, pp. H1788-H1793
-
-
Kaul, D.K.1
-
69
-
-
0021723554
-
Red blood cell deformability influences platelets–vessel wall interaction in flowing blood
-
[69] Aarts, P.A., Heethaar, R.M., Sixma, J.J., Red blood cell deformability influences platelets–vessel wall interaction in flowing blood. Blood 64 (1984), 1228–1233.
-
(1984)
Blood
, vol.64
, pp. 1228-1233
-
-
Aarts, P.A.1
Heethaar, R.M.2
Sixma, J.J.3
-
70
-
-
0038481255
-
Immune adherence revisited: novel players in an old game
-
[70] Hess, C., Schifferli, J.A., Immune adherence revisited: novel players in an old game. News Physiol. Sci. 18 (2003), 104–108.
-
(2003)
News Physiol. Sci.
, vol.18
, pp. 104-108
-
-
Hess, C.1
Schifferli, J.A.2
-
71
-
-
0018875296
-
Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte
-
[71] Fearon, D.T., Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte. J. Exp. Med. 152 (1980), 20–30.
-
(1980)
J. Exp. Med.
, vol.152
, pp. 20-30
-
-
Fearon, D.T.1
-
72
-
-
0035668198
-
Heteropolymer-mediated clearance of immune complexes via erythrocyte CR1: mechanisms and applications
-
[72] Lindorfer, M.A., et al. Heteropolymer-mediated clearance of immune complexes via erythrocyte CR1: mechanisms and applications. Immunol. Rev. 183 (2001), 10–24.
-
(2001)
Immunol. Rev.
, vol.183
, pp. 10-24
-
-
Lindorfer, M.A.1
-
73
-
-
0026317879
-
Use of heteropolymeric monoclonal antibodies to attach antigens to the C3b receptor of human erythrocytes: a potential therapeutic treatment
-
[73] Taylor, R.P., et al. Use of heteropolymeric monoclonal antibodies to attach antigens to the C3b receptor of human erythrocytes: a potential therapeutic treatment. Proc. Natl. Acad. Sci. U. S. A. 88 (1991), 3305–3309.
-
(1991)
Proc. Natl. Acad. Sci. U. S. A.
, vol.88
, pp. 3305-3309
-
-
Taylor, R.P.1
-
74
-
-
0030899530
-
The primate erythrocyte complement receptor (CR1) as a privileged site: binding of immunoglobulin G to erythrocyte CR1 does not target erythrocytes for phagocytosis
-
[74] Reinagel, M.L., et al. The primate erythrocyte complement receptor (CR1) as a privileged site: binding of immunoglobulin G to erythrocyte CR1 does not target erythrocytes for phagocytosis. Blood 89 (1997), 1068–1077.
-
(1997)
Blood
, vol.89
, pp. 1068-1077
-
-
Reinagel, M.L.1
-
75
-
-
0036802373
-
Visualization of the transfer reaction: tracking immune complexes from erythrocyte complement receptor 1 to macrophages
-
[75] Craig, M.L., Bankovich, A.J., Taylor, R.P., Visualization of the transfer reaction: tracking immune complexes from erythrocyte complement receptor 1 to macrophages. Clin. Immunol. 105 (2002), 36–47.
-
(2002)
Clin. Immunol.
, vol.105
, pp. 36-47
-
-
Craig, M.L.1
Bankovich, A.J.2
Taylor, R.P.3
-
76
-
-
14044259330
-
Processing of C3b-opsonized immune complexes bound to non-complement receptor 1 (CR1) sites on red cells: phagocytosis, transfer, and associations with CR1
-
[76] Craig, M.L., Waitumbi, J.N., Taylor, R.P., Processing of C3b-opsonized immune complexes bound to non-complement receptor 1 (CR1) sites on red cells: phagocytosis, transfer, and associations with CR1. J. Immunol. 174 (2005), 3059–3066.
-
(2005)
J. Immunol.
, vol.174
, pp. 3059-3066
-
-
Craig, M.L.1
Waitumbi, J.N.2
Taylor, R.P.3
-
77
-
-
0028859797
-
Antigen-based heteropolymers. A potential therapy for binding and clearing autoantibodies via erythrocyte CR1
-
[77] Ferguson, P.J., et al. Antigen-based heteropolymers. A potential therapy for binding and clearing autoantibodies via erythrocyte CR1. Arthritis Rheum. 38 (1995), 190–200.
-
(1995)
Arthritis Rheum.
, vol.38
, pp. 190-200
-
-
Ferguson, P.J.1
-
78
-
-
0032525002
-
Escherichia coli bound to the primate erythrocyte complement receptor via bispecific monoclonal antibodies are transferred to and phagocytosed by human monocytes in an in vitro model
-
[78] Kuhn, S.E., et al. Escherichia coli bound to the primate erythrocyte complement receptor via bispecific monoclonal antibodies are transferred to and phagocytosed by human monocytes in an in vitro model. J. Immunol. 160 (1998), 5088–5097.
-
(1998)
J. Immunol.
, vol.160
, pp. 5088-5097
-
-
Kuhn, S.E.1
-
79
-
-
0035882036
-
Targeting of Pseudomonas aeruginosa in the bloodstream with bispecific monoclonal antibodies
-
[79] Lindorfer, M.A., et al. Targeting of Pseudomonas aeruginosa in the bloodstream with bispecific monoclonal antibodies. J. Immunol. 167 (2001), 2240–2249.
-
(2001)
J. Immunol.
, vol.167
, pp. 2240-2249
-
-
Lindorfer, M.A.1
-
80
-
-
0027932831
-
Cross-linked bispecific monoclonal antibody heteropolymers facilitate the clearance of human IgM from the circulation of squirrel monkeys
-
[80] Reist, C.J., et al. Cross-linked bispecific monoclonal antibody heteropolymers facilitate the clearance of human IgM from the circulation of squirrel monkeys. Eur. J. Immunol. 24 (1994), 2018–2025.
-
(1994)
Eur. J. Immunol.
, vol.24
, pp. 2018-2025
-
-
Reist, C.J.1
-
81
-
-
24644486865
-
The erythrocyte viral trap: transgenic expression of viral receptor on erythrocytes attenuates coxsackievirus B infection
-
[81] Asher, D.R., Cerny, A.M., Finberg, R.W., The erythrocyte viral trap: transgenic expression of viral receptor on erythrocytes attenuates coxsackievirus B infection. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 12897–12902.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 12897-12902
-
-
Asher, D.R.1
Cerny, A.M.2
Finberg, R.W.3
-
82
-
-
0035863785
-
Bispecific monoclonal antibodies mediate binding of dengue virus to erythrocytes in a monkey model of passive viremia
-
[82] Hahn, C.S., et al. Bispecific monoclonal antibodies mediate binding of dengue virus to erythrocytes in a monkey model of passive viremia. J. Immunol. 166 (2001), 1057–1065.
-
(2001)
J. Immunol.
, vol.166
, pp. 1057-1065
-
-
Hahn, C.S.1
-
83
-
-
33748768760
-
Human complement receptor type 1-directed loading of tissue plasminogen activator on circulating erythrocytes for prophylactic fibrinolysis
-
[83] Zaitsev, S., et al. Human complement receptor type 1-directed loading of tissue plasminogen activator on circulating erythrocytes for prophylactic fibrinolysis. Blood 108 (2006), 1895–1902.
-
(2006)
Blood
, vol.108
, pp. 1895-1902
-
-
Zaitsev, S.1
-
84
-
-
77956574961
-
The Knops blood-group system: a review
-
[84] Moulds, J.M., The Knops blood-group system: a review. Immunohematology 26:1 (2010), 2–7.
-
(2010)
Immunohematology
, vol.26
, Issue.1
, pp. 2-7
-
-
Moulds, J.M.1
-
85
-
-
0031466796
-
The structure and function of band 3 (AE1): recent developments (review)
-
[85] Tanner, M.J., The structure and function of band 3 (AE1): recent developments (review). Mol. Membr. Biol. 14 (1997), 155–165.
-
(1997)
Mol. Membr. Biol.
, vol.14
, pp. 155-165
-
-
Tanner, M.J.1
-
86
-
-
16044367177
-
Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton
-
[86] Peters, L.L., et al. Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton. Cell 86 (1996), 917–927.
-
(1996)
Cell
, vol.86
, pp. 917-927
-
-
Peters, L.L.1
-
87
-
-
84891516068
-
The Diego blood group system: a review
-
[87] Figueroa, D., The Diego blood group system: a review. Immunohematology 29 (2013), 73–81.
-
(2013)
Immunohematology
, vol.29
, pp. 73-81
-
-
Figueroa, D.1
-
88
-
-
77649154817
-
MNS blood group system: a review
-
[88] Reid, M.E., MNS blood group system: a review. Immunohematology 25 (2009), 95–101.
-
(2009)
Immunohematology
, vol.25
, pp. 95-101
-
-
Reid, M.E.1
-
89
-
-
77954687045
-
Sustained thromboprophylaxis mediated by an RBC-targeted pro-urokinase zymogen activated at the site of clot formation
-
[89] Zaitsev, S., et al. Sustained thromboprophylaxis mediated by an RBC-targeted pro-urokinase zymogen activated at the site of clot formation. Blood 115 (2010), 5241–5248.
-
(2010)
Blood
, vol.115
, pp. 5241-5248
-
-
Zaitsev, S.1
-
90
-
-
77249117354
-
Targeting of a mutant plasminogen activator to circulating red blood cells for prophylactic fibrinolysis
-
[90] Zaitsev, S., et al. Targeting of a mutant plasminogen activator to circulating red blood cells for prophylactic fibrinolysis. J. Pharmacol. Exp. Ther. 332 (2010), 1022–1031.
-
(2010)
J. Pharmacol. Exp. Ther.
, vol.332
, pp. 1022-1031
-
-
Zaitsev, S.1
-
91
-
-
0027616610
-
Monoclonal antibodies against Kell glycoprotein: serology, immunochemistry and quantification of antigen sites
-
[91] Parsons, S.F., Gardner, B., Anstee, D.J., Monoclonal antibodies against Kell glycoprotein: serology, immunochemistry and quantification of antigen sites. Transfus. Med. 3 (1993), 137–142.
-
(1993)
Transfus. Med.
, vol.3
, pp. 137-142
-
-
Parsons, S.F.1
Gardner, B.2
Anstee, D.J.3
-
92
-
-
34547789294
-
McLeod syndrome: a neurohaematological disorder: McLeod syndrome
-
[92] Jung, H.H., Danek, A., Frey, B.M., McLeod syndrome: a neurohaematological disorder: McLeod syndrome. Vox Sang. 93 (2007), 112–121.
-
(2007)
Vox Sang.
, vol.93
, pp. 112-121
-
-
Jung, H.H.1
Danek, A.2
Frey, B.M.3
-
93
-
-
0034307527
-
Identification of the Dombrock blood group glycoprotein as a polymorphic member of the ADP-ribosyltransferase gene family
-
[93] Gubin, A.N., et al. Identification of the Dombrock blood group glycoprotein as a polymorphic member of the ADP-ribosyltransferase gene family. Blood 96:7 (2000), 2621–2627.
-
(2000)
Blood
, vol.96
, Issue.7
, pp. 2621-2627
-
-
Gubin, A.N.1
-
94
-
-
78049421423
-
The Dombrock blood group system: a review
-
[94] Lomas-Francis, C., Reid, M.E., The Dombrock blood group system: a review. Immunohematology 26 (2010), 71–78.
-
(2010)
Immunohematology
, vol.26
, pp. 71-78
-
-
Lomas-Francis, C.1
Reid, M.E.2
-
95
-
-
84864778475
-
The LW blood group system: a review
-
[95] Grandstaff Moulds, M.K., The LW blood group system: a review. Immunohematology 27:4 (2011), 136–142.
-
(2011)
Immunohematology
, vol.27
, Issue.4
, pp. 136-142
-
-
Grandstaff Moulds, M.K.1
-
96
-
-
34948850854
-
Epinephrine-induced activation of LW-mediated sickle cell adhesion and vaso-occlusion in vivo
-
[96] Zennadi, R., et al. Epinephrine-induced activation of LW-mediated sickle cell adhesion and vaso-occlusion in vivo. Blood 110 (2007), 2708–2717.
-
(2007)
Blood
, vol.110
, pp. 2708-2717
-
-
Zennadi, R.1
-
97
-
-
84904470443
-
A new blood group antigen is defined by anti-CD59, detected in a CD59-deficient patient
-
[97] Anliker, M., et al. A new blood group antigen is defined by anti-CD59, detected in a CD59-deficient patient. Transfusion 54:7 (2014), 1817–1822.
-
(2014)
Transfusion
, vol.54
, Issue.7
, pp. 1817-1822
-
-
Anliker, M.1
-
98
-
-
33344462311
-
Protection of erythrocytes from human complement-mediated lysis by membrane-targeted recombinant soluble CD59: a new approach to PNH therapy
-
[98] Hill, A., et al. Protection of erythrocytes from human complement-mediated lysis by membrane-targeted recombinant soluble CD59: a new approach to PNH therapy. Blood 107 (2006), 2131–2137.
-
(2006)
Blood
, vol.107
, pp. 2131-2137
-
-
Hill, A.1
-
99
-
-
58149386516
-
The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis
-
[99] Montel-Hagen, A., et al. The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis. Blood 112 (2008), 4729–4738.
-
(2008)
Blood
, vol.112
, pp. 4729-4738
-
-
Montel-Hagen, A.1
-
100
-
-
0034651012
-
The Rh blood group system: a review
-
[100] Avent, N.D., Reid, M.E., The Rh blood group system: a review. Blood 95 (2000), 375–387.
-
(2000)
Blood
, vol.95
, pp. 375-387
-
-
Avent, N.D.1
Reid, M.E.2
-
101
-
-
79955013437
-
The Rh and RhAG blood group systems
-
[101] Chou, S.T., Westhoff, C.M., The Rh and RhAG blood group systems. Immunohematology 26 (2010), 178–186.
-
(2010)
Immunohematology
, vol.26
, pp. 178-186
-
-
Chou, S.T.1
Westhoff, C.M.2
-
102
-
-
77953097228
-
Function of human Rh based on structure of RhCG at 2.1 A
-
[102] Gruswitz, F., et al. Function of human Rh based on structure of RhCG at 2.1 A. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 9638–9643.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 9638-9643
-
-
Gruswitz, F.1
-
103
-
-
0346023953
-
ScFv-mediated in vivo targeting of DAF to erythrocytes inhibits lysis by complement
-
[103] Spitzer, D., et al. ScFv-mediated in vivo targeting of DAF to erythrocytes inhibits lysis by complement. Mol. Immunol. 40:13 (2004), 911–919.
-
(2004)
Mol. Immunol.
, vol.40
, Issue.13
, pp. 911-919
-
-
Spitzer, D.1
-
104
-
-
1842411843
-
A recombinant human scFv anti-Rh(D) antibody with multiple valences using a C-terminal fragment of C4-binding protein
-
[104] Libyh, M.T., et al. A recombinant human scFv anti-Rh(D) antibody with multiple valences using a C-terminal fragment of C4-binding protein. Blood 90:10 (1997), 3978–3983.
-
(1997)
Blood
, vol.90
, Issue.10
, pp. 3978-3983
-
-
Libyh, M.T.1
-
105
-
-
18244424748
-
A soluble recombinant multimeric anti-Rh(D) single-chain Fv/CR1 molecule restores the immune complex binding ability of CR1-deficient erythrocytes
-
[105] Oudin, S., et al. A soluble recombinant multimeric anti-Rh(D) single-chain Fv/CR1 molecule restores the immune complex binding ability of CR1-deficient erythrocytes. J. Immunol. 164:3 (2000), 1505–1513.
-
(2000)
J. Immunol.
, vol.164
, Issue.3
, pp. 1505-1513
-
-
Oudin, S.1
-
106
-
-
34250325127
-
Identification of peptide ligands facilitating nanoparticle attachment to erythrocytes
-
[106] Hall, S.S., Mitragotri, S., Daugherty, P.S., Identification of peptide ligands facilitating nanoparticle attachment to erythrocytes. Biotechnol. Prog. 23:3 (2007), 749–754.
-
(2007)
Biotechnol. Prog.
, vol.23
, Issue.3
, pp. 749-754
-
-
Hall, S.S.1
Mitragotri, S.2
Daugherty, P.S.3
-
107
-
-
78649928659
-
Improving protein pharmacokinetics by engineering erythrocyte affinity
-
[107] Kontos, S., Hubbell, J.A., Improving protein pharmacokinetics by engineering erythrocyte affinity. Mol. Pharm. 7:6 (2010), 2141–2147.
-
(2010)
Mol. Pharm.
, vol.7
, Issue.6
, pp. 2141-2147
-
-
Kontos, S.1
Hubbell, J.A.2
-
108
-
-
77955175216
-
Strategies in the design of nanoparticles for therapeutic applications
-
[108] Petros, R.A., DeSimone, J.M., Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9:8 (2010), 615–627.
-
(2010)
Nat. Rev. Drug Discov.
, vol.9
, Issue.8
, pp. 615-627
-
-
Petros, R.A.1
DeSimone, J.M.2
-
109
-
-
55849099605
-
Active targeting schemes for nanoparticle systems in cancer therapeutics
-
[109] Byrne, J.D., Betancourt, T., Brannon-Peppas, L., Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 60:15 (2008), 1615–1626.
-
(2008)
Adv. Drug Deliv. Rev.
, vol.60
, Issue.15
, pp. 1615-1626
-
-
Byrne, J.D.1
Betancourt, T.2
Brannon-Peppas, L.3
-
110
-
-
84886292840
-
Stimuli-responsive nanocarriers for drug delivery
-
[110] Mura, S., Nicolas, J., Couvreur, P., Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12:11 (2013), 991–1003.
-
(2013)
Nat. Mater.
, vol.12
, Issue.11
, pp. 991-1003
-
-
Mura, S.1
Nicolas, J.2
Couvreur, P.3
-
111
-
-
84864258079
-
The effect of nanoparticle size, shape, and surface chemistry on biological systems
-
[111] Albanese, A., Tang, P.S., Chan, W.C., The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14 (2012), 1–16.
-
(2012)
Annu. Rev. Biomed. Eng.
, vol.14
, pp. 1-16
-
-
Albanese, A.1
Tang, P.S.2
Chan, W.C.3
-
112
-
-
84960304693
-
Non-affinity factors modulating vascular targeting of nano-and microcarriers
-
[112] Myerson, J.W., et al. Non-affinity factors modulating vascular targeting of nano-and microcarriers. Adv. Drug Deliv. Rev. 99 (2016), 97–112.
-
(2016)
Adv. Drug Deliv. Rev.
, vol.99
, pp. 97-112
-
-
Myerson, J.W.1
-
113
-
-
84863012606
-
Influence of red blood cells on nanoparticle targeted delivery in microcirculation
-
[113] Tan, J., Thomas, A., Liu, Y., Influence of red blood cells on nanoparticle targeted delivery in microcirculation. Soft Matter 8:6 (2012), 1934–1946.
-
(2012)
Soft Matter
, vol.8
, Issue.6
, pp. 1934-1946
-
-
Tan, J.1
Thomas, A.2
Liu, Y.3
-
114
-
-
84865791204
-
Mechanism of margination in confined flows of blood and other multicomponent suspensions
-
[114] Kumar, A., Graham, M.D., Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys. Rev. Lett., 109(10), 2012, 108102.
-
(2012)
Phys. Rev. Lett.
, vol.109
, Issue.10
, pp. 108102
-
-
Kumar, A.1
Graham, M.D.2
-
115
-
-
53549112490
-
The margination propensity of spherical particles for vascular targeting in the microcirculation
-
[115] Gentile, F., et al. The margination propensity of spherical particles for vascular targeting in the microcirculation. J. Nanobiotechnol., 6(1), 2008, 9.
-
(2008)
J. Nanobiotechnol.
, vol.6
, Issue.1
, pp. 9
-
-
Gentile, F.1
-
116
-
-
0021125590
-
Effect of flow rate and blood cellular elements on the efficiency of red blood cell targeting to collagen-coated surfaces
-
[116] Samokhin, G., et al. Effect of flow rate and blood cellular elements on the efficiency of red blood cell targeting to collagen-coated surfaces. J. Appl. Biochem. 6:1–2 (1983), 70–75.
-
(1983)
J. Appl. Biochem.
, vol.6
, Issue.1-2
, pp. 70-75
-
-
Samokhin, G.1
-
117
-
-
64049087988
-
Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows
-
[117] Zhang, J., Johnson, P.C., Popel, A.S., Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc. Res. 77:3 (2009), 265–272.
-
(2009)
Microvasc. Res.
, vol.77
, Issue.3
, pp. 265-272
-
-
Zhang, J.1
Johnson, P.C.2
Popel, A.S.3
-
118
-
-
79951820750
-
The effects of particle size, density and shape on margination of nanoparticles in microcirculation
-
[118] Toy, R., et al. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology, 22(11), 2011, 115101.
-
(2011)
Nanotechnology
, vol.22
, Issue.11
, pp. 115101
-
-
Toy, R.1
-
119
-
-
84878595723
-
The influence of size, shape and vessel geometry on nanoparticle distribution
-
[119] Tan, J., et al. The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid. Nanofluid. 14:1–2 (2013), 77–87.
-
(2013)
Microfluid. Nanofluid.
, vol.14
, Issue.1-2
, pp. 77-87
-
-
Tan, J.1
-
120
-
-
84899862179
-
Margination of micro- and nano-particles in blood flow and its effect on drug delivery
-
[120] Muller, K., Fedosov, D.A., Gompper, G., Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci. Rep., 4, 2014, 4871.
-
(2014)
Sci. Rep.
, vol.4
, pp. 4871
-
-
Muller, K.1
Fedosov, D.A.2
Gompper, G.3
-
121
-
-
84924250366
-
Microparticle shape effects on margination, near-wall dynamics and adhesion in a three-dimensional simulation of red blood cell suspension
-
[121] Vahidkhah, K., Bagchi, P., Microparticle shape effects on margination, near-wall dynamics and adhesion in a three-dimensional simulation of red blood cell suspension. Soft Matter 11:11 (2015), 2097–2109.
-
(2015)
Soft Matter
, vol.11
, Issue.11
, pp. 2097-2109
-
-
Vahidkhah, K.1
Bagchi, P.2
-
122
-
-
84877834099
-
The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow
-
[122] Thompson, A.J., Mastria, E.M., Eniola-Adefeso, O., The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow. Biomaterials 34:23 (2013), 5863–5871.
-
(2013)
Biomaterials
, vol.34
, Issue.23
, pp. 5863-5871
-
-
Thompson, A.J.1
Mastria, E.M.2
Eniola-Adefeso, O.3
-
123
-
-
84942872040
-
Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape
-
[123] D'Apolito, R., et al. Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape. J. Control. Release 217 (2015), 263–272.
-
(2015)
J. Control. Release
, vol.217
, pp. 263-272
-
-
D'Apolito, R.1
-
124
-
-
84912571814
-
Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries
-
[124] Anselmo, A.C., et al. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 8:11 (2014), 11243–11253.
-
(2014)
ACS Nano
, vol.8
, Issue.11
, pp. 11243-11253
-
-
Anselmo, A.C.1
-
125
-
-
84891668691
-
On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better
-
[125] Lee, T.-R., et al. On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better. Sci. Rep., 3, 2013.
-
(2013)
Sci. Rep.
, vol.3
-
-
Lee, T.-R.1
-
126
-
-
84904617889
-
Characterization of nanoparticle delivery in microcirculation using a microfluidic device
-
[126] Thomas, A., Tan, J., Liu, Y., Characterization of nanoparticle delivery in microcirculation using a microfluidic device. Microvasc. Res. 94 (2014), 17–27.
-
(2014)
Microvasc. Res.
, vol.94
, pp. 17-27
-
-
Thomas, A.1
Tan, J.2
Liu, Y.3
-
127
-
-
72149100143
-
Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers
-
[127] Charoenphol, P., Huang, R.B., Eniola-Adefeso, O., Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers. Biomaterials 31:6 (2010), 1392–1402.
-
(2010)
Biomaterials
, vol.31
, Issue.6
, pp. 1392-1402
-
-
Charoenphol, P.1
Huang, R.B.2
Eniola-Adefeso, O.3
-
128
-
-
84874404293
-
Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels
-
[128] Namdee, K., et al. Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels. Langmuir 29:8 (2013), 2530–2535.
-
(2013)
Langmuir
, vol.29
, Issue.8
, pp. 2530-2535
-
-
Namdee, K.1
-
129
-
-
79951944577
-
Optimizing endothelial targeting by modulating the antibody density and particle concentration of anti-ICAM coated carriers
-
[129] Calderon, A.J., et al. Optimizing endothelial targeting by modulating the antibody density and particle concentration of anti-ICAM coated carriers. J. Control. Release 150:1 (2011), 37–44.
-
(2011)
J. Control. Release
, vol.150
, Issue.1
, pp. 37-44
-
-
Calderon, A.J.1
-
130
-
-
70349085343
-
Flow dynamics, binding and detachment of spherical carriers targeted to ICAM-1 on endothelial cells
-
[130] Calderon, A.J., et al. Flow dynamics, binding and detachment of spherical carriers targeted to ICAM-1 on endothelial cells. Biorheology 46:4 (2009), 323–341.
-
(2009)
Biorheology
, vol.46
, Issue.4
, pp. 323-341
-
-
Calderon, A.J.1
-
131
-
-
85013865723
-
Effect of glycocalyx on drug delivery carriers targeted to endothelial cells
-
[131] Calderon, A.J., et al. Effect of glycocalyx on drug delivery carriers targeted to endothelial cells. Int. J. Transp. Phenom., 12(1–2), 2011, 63.
-
(2011)
Int. J. Transp. Phenom.
, vol.12
, Issue.1-2
, pp. 63
-
-
Calderon, A.J.1
-
132
-
-
35348904935
-
The structure and function of the endothelial glycocalyx layer
-
[132] Weinbaum, S., Tarbell, J.M., Damiano, E.R., The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9 (2007), 121–167.
-
(2007)
Annu. Rev. Biomed. Eng.
, vol.9
, pp. 121-167
-
-
Weinbaum, S.1
Tarbell, J.M.2
Damiano, E.R.3
-
133
-
-
0036783567
-
Role of glycocalyx in leukocyte-endothelial cell adhesion
-
[133] Mulivor, A.W., Lipowsky, H.H., Role of glycocalyx in leukocyte-endothelial cell adhesion. Am. J. Physiol. Heart Circ. Physiol. 283:4 (2002), H1282–H1291.
-
(2002)
Am. J. Physiol. Heart Circ. Physiol.
, vol.283
, Issue.4
, pp. H1282-H1291
-
-
Mulivor, A.W.1
Lipowsky, H.H.2
-
134
-
-
84895558727
-
Glycosaminoglycans in the cellular uptake of drug delivery vectors—bystanders or active players?
-
[134] Favretto, M.E., et al. Glycosaminoglycans in the cellular uptake of drug delivery vectors—bystanders or active players?. J. Control. Release 180 (2014), 81–90.
-
(2014)
J. Control. Release
, vol.180
, pp. 81-90
-
-
Favretto, M.E.1
-
135
-
-
85013869510
-
Vascular Immunotargeting to Endothelial Determinant ICAM-1 Enables Optimal Partnering of Recombinant scFv-Thrombomodulin Fusion with Endogenous Cofactor
-
[135] Greineder, C.F., et al. Vascular Immunotargeting to Endothelial Determinant ICAM-1 Enables Optimal Partnering of Recombinant scFv-Thrombomodulin Fusion with Endogenous Cofactor. 2013.
-
(2013)
-
-
Greineder, C.F.1
-
136
-
-
0023690204
-
Immunospecific targeting of immunoliposomes, F(ab’)2 and IgG to red blood cells in vivo
-
[136] Peeters, P.A., et al. Immunospecific targeting of immunoliposomes, F(ab’)2 and IgG to red blood cells in vivo. Biochim. Biophys. Acta 943:2 (1988), 137–147.
-
(1988)
Biochim. Biophys. Acta
, vol.943
, Issue.2
, pp. 137-147
-
-
Peeters, P.A.1
-
137
-
-
84930660625
-
Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy
-
[137] Moles, E., et al. Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy. J. Control. Release 210 (2015), 217–229.
-
(2015)
J. Control. Release
, vol.210
, pp. 217-229
-
-
Moles, E.1
-
138
-
-
84908599826
-
Application of heparin as a dual agent with antimalarial and liposome targeting activities toward plasmodium-infected red blood cells
-
[138] Marques, J., et al. Application of heparin as a dual agent with antimalarial and liposome targeting activities toward plasmodium-infected red blood cells. Nanomedicine 10:8 (2014), 1719–1728.
-
(2014)
Nanomedicine
, vol.10
, Issue.8
, pp. 1719-1728
-
-
Marques, J.1
-
139
-
-
79952212446
-
Encapsulation of valproate-loaded hydrogel nanoparticles in intact human erythrocytes: a novel nano-cell composite for drug delivery
-
[139] Hamidi, M., et al. Encapsulation of valproate-loaded hydrogel nanoparticles in intact human erythrocytes: a novel nano-cell composite for drug delivery. J. Pharm. Sci. 100:5 (2011), 1702–1711.
-
(2011)
J. Pharm. Sci.
, vol.100
, Issue.5
, pp. 1702-1711
-
-
Hamidi, M.1
-
140
-
-
73949146977
-
In vitro inhibition of fungal activity by macrophage-mediated sequestration and release of encapsulated amphotericin B nanosupension in red blood cells
-
[140] Staedtke, V., et al. In vitro inhibition of fungal activity by macrophage-mediated sequestration and release of encapsulated amphotericin B nanosupension in red blood cells. Small 6:1 (2010), 96–103.
-
(2010)
Small
, vol.6
, Issue.1
, pp. 96-103
-
-
Staedtke, V.1
-
141
-
-
84864684064
-
Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells
-
[141] Delcea, M., et al. Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells. ACS Nano 6:5 (2012), 4169–4180.
-
(2012)
ACS Nano
, vol.6
, Issue.5
, pp. 4169-4180
-
-
Delcea, M.1
-
142
-
-
84919742975
-
Turning erythrocytes into functional micromotors
-
[142] Wu, Z., et al. Turning erythrocytes into functional micromotors. ACS Nano 8:12 (2014), 12041–12048.
-
(2014)
ACS Nano
, vol.8
, Issue.12
, pp. 12041-12048
-
-
Wu, Z.1
-
143
-
-
84904878720
-
Red blood cells as carriers of iron oxide-based contrast agents for diagnostic applications
-
[143] Antonelli, A., Magnani, M., Red blood cells as carriers of iron oxide-based contrast agents for diagnostic applications. J. Biomed. Nanotechnol. 10:9 (2014), 1732–1750.
-
(2014)
J. Biomed. Nanotechnol.
, vol.10
, Issue.9
, pp. 1732-1750
-
-
Antonelli, A.1
Magnani, M.2
-
144
-
-
84855882041
-
Surface-modified loaded human red blood cells for targeting and delivery of drugs
-
[144] Sternberg, N., et al. Surface-modified loaded human red blood cells for targeting and delivery of drugs. J. Microencapsul. 29:1 (2012), 9–20.
-
(2012)
J. Microencapsul.
, vol.29
, Issue.1
, pp. 9-20
-
-
Sternberg, N.1
-
145
-
-
84906787396
-
Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles
-
[145] Anselmo, A.C., Mitragotri, S., Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J. Control. Release 190 (2014), 531–541.
-
(2014)
J. Control. Release
, vol.190
, pp. 531-541
-
-
Anselmo, A.C.1
Mitragotri, S.2
-
146
-
-
79952916450
-
Cell-mediated drug delivery
-
[146] Batrakova, E.V., Gendelman, H.E., Kabanov, A.V., Cell-mediated drug delivery. Expert Opin. Drug Deliv. 8:4 (2011), 415–433.
-
(2011)
Expert Opin. Drug Deliv.
, vol.8
, Issue.4
, pp. 415-433
-
-
Batrakova, E.V.1
Gendelman, H.E.2
Kabanov, A.V.3
-
147
-
-
34347400391
-
Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation
-
[147] Chambers, E., Mitragotri, S., Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Exp. Biol. Med. (Maywood) 232:7 (2007), 958–966.
-
(2007)
Exp. Biol. Med. (Maywood)
, vol.232
, Issue.7
, pp. 958-966
-
-
Chambers, E.1
Mitragotri, S.2
-
148
-
-
84878092158
-
Red blood cells decorated with functionalized core-shell magnetic nanoparticles: elucidation of the adsorption mechanism
-
[148] Mai, T.D., et al. Red blood cells decorated with functionalized core-shell magnetic nanoparticles: elucidation of the adsorption mechanism. Chem. Commun. (Camb.) 49:47 (2013), 5393–5395.
-
(2013)
Chem. Commun. (Camb.)
, vol.49
, Issue.47
, pp. 5393-5395
-
-
Mai, T.D.1
-
149
-
-
79951890716
-
Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects
-
[149] Zhao, Y., et al. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5:2 (2011), 1366–1375.
-
(2011)
ACS Nano
, vol.5
, Issue.2
, pp. 1366-1375
-
-
Zhao, Y.1
-
150
-
-
79958831612
-
Enhancing cell therapies from the outside in: cell surface engineering using synthetic nanomaterials
-
[150] Stephan, M.T., Irvine, D.J., Enhancing cell therapies from the outside in: cell surface engineering using synthetic nanomaterials. Nano Today 6:3 (2011), 309–325.
-
(2011)
Nano Today
, vol.6
, Issue.3
, pp. 309-325
-
-
Stephan, M.T.1
Irvine, D.J.2
-
151
-
-
84904642054
-
Multifunctional theranostic red blood cells for magnetic-field-enhanced in vivo combination therapy of cancer
-
[151] Wang, C., et al. Multifunctional theranostic red blood cells for magnetic-field-enhanced in vivo combination therapy of cancer. Adv. Mater. 26:28 (2014), 4794–4802.
-
(2014)
Adv. Mater.
, vol.26
, Issue.28
, pp. 4794-4802
-
-
Wang, C.1
-
152
-
-
0030272519
-
Regulation of the complement-mediated elimination of red blood cells modified with biotin and streptavidin
-
[152] Muzykantov, V.R., et al. Regulation of the complement-mediated elimination of red blood cells modified with biotin and streptavidin. Anal. Biochem. 241:1 (1996), 109–119.
-
(1996)
Anal. Biochem.
, vol.241
, Issue.1
, pp. 109-119
-
-
Muzykantov, V.R.1
-
153
-
-
0029026224
-
Enhanced complement susceptibility of avidin-biotin-treated human erythrocytes is a consequence of neutralization of the complement regulators CD59 and decay accelerating factor
-
[153] Zaltzman, A.B., et al. Enhanced complement susceptibility of avidin-biotin-treated human erythrocytes is a consequence of neutralization of the complement regulators CD59 and decay accelerating factor. Biochem. J. 307:Pt 3 (1995), 651–656.
-
(1995)
Biochem. J.
, vol.307
, pp. 651-656
-
-
Zaltzman, A.B.1
-
154
-
-
0027942688
-
Attachment of biotinylated antibody to red blood cells: antigen-binding capacity of immunoerythrocytes and their susceptibility to lysis by complement
-
[154] Muzykantov, V.R., Taylor, R.P., Attachment of biotinylated antibody to red blood cells: antigen-binding capacity of immunoerythrocytes and their susceptibility to lysis by complement. Anal. Biochem. 223:1 (1994), 142–148.
-
(1994)
Anal. Biochem.
, vol.223
, Issue.1
, pp. 142-148
-
-
Muzykantov, V.R.1
Taylor, R.P.2
-
155
-
-
79952592613
-
Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents
-
[155] Antonelli, A., et al. Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine 6:2 (2011), 211–223.
-
(2011)
Nanomedicine
, vol.6
, Issue.2
, pp. 211-223
-
-
Antonelli, A.1
-
156
-
-
79960844164
-
Gold nanoparticle-incorporated human red blood cells (RBCs) for X-ray dynamic imaging
-
[156] Ahn, S., et al. Gold nanoparticle-incorporated human red blood cells (RBCs) for X-ray dynamic imaging. Biomaterials 32:29 (2011), 7191–7199.
-
(2011)
Biomaterials
, vol.32
, Issue.29
, pp. 7191-7199
-
-
Ahn, S.1
-
157
-
-
7544224443
-
Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes
-
[157] Chambers, E., Mitragotri, S., Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J. Control. Release 100:1 (2004), 111–119.
-
(2004)
J. Control. Release
, vol.100
, Issue.1
, pp. 111-119
-
-
Chambers, E.1
Mitragotri, S.2
-
158
-
-
84891358668
-
Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells
-
[158] Anselmo, A.C., et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7:12 (2013), 11129–11137.
-
(2013)
ACS Nano
, vol.7
, Issue.12
, pp. 11129-11137
-
-
Anselmo, A.C.1
-
159
-
-
84939628491
-
Exploiting shape, cellular-hitchhiking and antibodies to target nanoparticles to lung endothelium: synergy between physical, chemical and biological approaches
-
[159] Anselmo, A.C., et al. Exploiting shape, cellular-hitchhiking and antibodies to target nanoparticles to lung endothelium: synergy between physical, chemical and biological approaches. Biomaterials 68 (2015), 1–8.
-
(2015)
Biomaterials
, vol.68
, pp. 1-8
-
-
Anselmo, A.C.1
-
160
-
-
84879536016
-
Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium
-
[160] Kolhar, P., et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. 110:26 (2013), 10753–10758.
-
(2013)
Proc. Natl. Acad. Sci.
, vol.110
, Issue.26
, pp. 10753-10758
-
-
Kolhar, P.1
-
161
-
-
84881099841
-
Human erythrocytes covered with magnetic core-shell nanoparticles for multimodal imaging
-
[161] Laurencin, M., et al. Human erythrocytes covered with magnetic core-shell nanoparticles for multimodal imaging. Adv. Healthcare Mater. 2:9 (2013), 1209–1212.
-
(2013)
Adv. Healthcare Mater.
, vol.2
, Issue.9
, pp. 1209-1212
-
-
Laurencin, M.1
-
162
-
-
45849151742
-
New biomimetic constructs for improved in vivo circulation of superparamagnetic nanoparticles
-
[162] Antonelli, A., et al. New biomimetic constructs for improved in vivo circulation of superparamagnetic nanoparticles. J. Nanosci. Nanotechnol. 8:5 (2008), 2270–2278.
-
(2008)
J. Nanosci. Nanotechnol.
, vol.8
, Issue.5
, pp. 2270-2278
-
-
Antonelli, A.1
-
163
-
-
0025193797
-
Local prevention of trombosis in animal arteries by means of magnetic targeting of aspirin-loaded red cells
-
[163] Orekhova, N., et al. Local prevention of trombosis in animal arteries by means of magnetic targeting of aspirin-loaded red cells. Thromb. Res. 57:4 (1990), 611–616.
-
(1990)
Thromb. Res.
, vol.57
, Issue.4
, pp. 611-616
-
-
Orekhova, N.1
-
164
-
-
84939575307
-
A review of clinical translation of inorganic nanoparticles
-
[164] Anselmo, A.C., Mitragotri, S., A review of clinical translation of inorganic nanoparticles. AAPS J. 17:5 (2015), 1041–1054.
-
(2015)
AAPS J.
, vol.17
, Issue.5
, pp. 1041-1054
-
-
Anselmo, A.C.1
Mitragotri, S.2
-
165
-
-
77955607302
-
Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects
-
[165] Yoo, J.-W., Chambers, E., Mitragotri, S., Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr. Pharm. Des. 16:21 (2010), 2298–2307.
-
(2010)
Curr. Pharm. Des.
, vol.16
, Issue.21
, pp. 2298-2307
-
-
Yoo, J.-W.1
Chambers, E.2
Mitragotri, S.3
-
166
-
-
79959967622
-
Bio-inspired, bioengineered and biomimetic drug delivery carriers
-
[166] Yoo, J.W., et al. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 10:7 (2011), 521–535.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, Issue.7
, pp. 521-535
-
-
Yoo, J.W.1
-
167
-
-
76049111633
-
Red blood cell-mimicking synthetic biomaterial particles
-
[167] Doshi, N., et al. Red blood cell-mimicking synthetic biomaterial particles. Proc. Natl. Acad. Sci. 106:51 (2009), 21495–21499.
-
(2009)
Proc. Natl. Acad. Sci.
, vol.106
, Issue.51
, pp. 21495-21499
-
-
Doshi, N.1
-
168
-
-
79551679772
-
Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles
-
[168] Merkel, T.J., et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl. Acad. Sci. 108:2 (2011), 586–591.
-
(2011)
Proc. Natl. Acad. Sci.
, vol.108
, Issue.2
, pp. 586-591
-
-
Merkel, T.J.1
-
169
-
-
84874169973
-
Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles
-
[169] Rodriguez, P.L., et al. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339:6122 (2013), 971–975.
-
(2013)
Science
, vol.339
, Issue.6122
, pp. 971-975
-
-
Rodriguez, P.L.1
-
170
-
-
79960583505
-
Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform
-
[170] Hu, C.-M.J., et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. 108:27 (2011), 10980–10985.
-
(2011)
Proc. Natl. Acad. Sci.
, vol.108
, Issue.27
, pp. 10980-10985
-
-
Hu, C.-M.J.1
-
171
-
-
84875985735
-
Synthetic approaches to RBC mimicry and oxygen carrier systems
-
[171] Modery-Pawlowski, C.L., et al. Synthetic approaches to RBC mimicry and oxygen carrier systems. Biomacromolecules 14:4 (2013), 939–948.
-
(2013)
Biomacromolecules
, vol.14
, Issue.4
, pp. 939-948
-
-
Modery-Pawlowski, C.L.1
-
172
-
-
0025313868
-
The first recorded blood transfusions: 1656 to 1668
-
[172] Myhre, B.A., The first recorded blood transfusions: 1656 to 1668. Transfusion 30:4 (1990), 358–362.
-
(1990)
Transfusion
, vol.30
, Issue.4
, pp. 358-362
-
-
Myhre, B.A.1
-
173
-
-
0034237683
-
Risk of acquiring Creutzfeldt–Jakob disease from blood transfusions: systematic review of case–control studies
-
[173] Wilson, K., Code, C., Ricketts, M.N., Risk of acquiring Creutzfeldt–Jakob disease from blood transfusions: systematic review of case–control studies. BMJ 321:7252 (2000), 17–19.
-
(2000)
BMJ
, vol.321
, Issue.7252
, pp. 17-19
-
-
Wilson, K.1
Code, C.2
Ricketts, M.N.3
-
174
-
-
84864678204
-
The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles
-
[174] Merkel, T.J., et al. The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles. J. Control. Release 162:1 (2012), 37–44.
-
(2012)
J. Control. Release
, vol.162
, Issue.1
, pp. 37-44
-
-
Merkel, T.J.1
-
175
-
-
84866126975
-
Low modulus biomimetic microgel particles with high loading of hemoglobin
-
[175] Chen, K., et al. Low modulus biomimetic microgel particles with high loading of hemoglobin. Biomacromolecules 13:9 (2012), 2748–2759.
-
(2012)
Biomacromolecules
, vol.13
, Issue.9
, pp. 2748-2759
-
-
Chen, K.1
-
176
-
-
84904438956
-
Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels
-
[176] Chen, K., et al. Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels. J. Am. Chem. Soc. 136:28 (2014), 9947–9952.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, Issue.28
, pp. 9947-9952
-
-
Chen, K.1
-
177
-
-
84857633697
-
Engineering of erythrocyte-based drug carriers: control of protein release and bioactivity
-
[177] Luo, R., et al. Engineering of erythrocyte-based drug carriers: control of protein release and bioactivity. J. Mater. Sci. Mater. Med. 23:1 (2012), 63–71.
-
(2012)
J. Mater. Sci. Mater. Med.
, vol.23
, Issue.1
, pp. 63-71
-
-
Luo, R.1
-
178
-
-
74349095104
-
Squishy non-spherical hydrogel microparticles
-
[178] Haghgooie, R., Toner, M., Doyle, P.S., Squishy non-spherical hydrogel microparticles. Macromol. Rapid Commun. 31:2 (2010), 128–134.
-
(2010)
Macromol. Rapid Commun.
, vol.31
, Issue.2
, pp. 128-134
-
-
Haghgooie, R.1
Toner, M.2
Doyle, P.S.3
-
179
-
-
0029859068
-
Nanoerythrosomes, a new derivative of erythrocyte ghost II: identification of the mechanism of action
-
[179] Moorjani, M., et al. Nanoerythrosomes, a new derivative of erythrocyte ghost II: identification of the mechanism of action. Anticancer Res. 16:5 A (1996), 2831–2836.
-
(1996)
Anticancer Res.
, vol.16
, Issue.5 A
, pp. 2831-2836
-
-
Moorjani, M.1
-
180
-
-
0027930807
-
Nanoerythrosome, a new derivative of erythrocyte ghost: preparation and antineoplastic potential as drug carrier for daunorubicin
-
[180] Lejeune, A., et al. Nanoerythrosome, a new derivative of erythrocyte ghost: preparation and antineoplastic potential as drug carrier for daunorubicin. Anticancer Res. 14:3 A (1994), 915–919.
-
(1994)
Anticancer Res.
, vol.14
, Issue.3 A
, pp. 915-919
-
-
Lejeune, A.1
-
181
-
-
0034910981
-
Nanoerythrosomes, a new derivative of erythrocyte ghost: IV. Fate of reinjected nanoerythrosomes
-
[181] Desilets, J., et al. Nanoerythrosomes, a new derivative of erythrocyte ghost: IV. Fate of reinjected nanoerythrosomes. Anticancer Res. 21:3B (2001), 1741–1747.
-
(2001)
Anticancer Res.
, vol.21
, Issue.3B
, pp. 1741-1747
-
-
Desilets, J.1
-
182
-
-
84940496265
-
Development and evaluation of anti-malarial bio-conjugates: artesunate-loaded nanoerythrosomes
-
[182] Agnihotri, J., et al. Development and evaluation of anti-malarial bio-conjugates: artesunate-loaded nanoerythrosomes. Drug Deliv. Transl. Res. 5:5 (2015), 489–497.
-
(2015)
Drug Deliv. Transl. Res.
, vol.5
, Issue.5
, pp. 489-497
-
-
Agnihotri, J.1
-
183
-
-
84884267488
-
Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles
-
[183] Fang, R.H., et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 5:19 (2013), 8884–8888.
-
(2013)
Nanoscale
, vol.5
, Issue.19
, pp. 8884-8888
-
-
Fang, R.H.1
-
184
-
-
84888274068
-
Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release
-
[184] Aryal, S., et al. Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine 8:8 (2013), 1271–1280.
-
(2013)
Nanomedicine
, vol.8
, Issue.8
, pp. 1271-1280
-
-
Aryal, S.1
-
185
-
-
84934284321
-
Cell-membrane-coated synthetic nanomotors for effective biodetoxification
-
[185] Wu, Z.G., et al. Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Adv. Funct. Mater. 25:25 (2015), 3881–3887.
-
(2015)
Adv. Funct. Mater.
, vol.25
, Issue.25
, pp. 3881-3887
-
-
Wu, Z.G.1
-
186
-
-
84908406318
-
Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy
-
[186] Piao, J.G., et al. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 8:10 (2014), 10414–10425.
-
(2014)
ACS Nano
, vol.8
, Issue.10
, pp. 10414-10425
-
-
Piao, J.G.1
-
187
-
-
84949538582
-
Cell membrane-camouflaged nanoparticles for drug delivery
-
[187] Luk, B.T., Zhang, L., Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release 220 (2015), 600–607.
-
(2015)
J. Control. Release
, vol.220
, pp. 600-607
-
-
Luk, B.T.1
Zhang, L.2
-
188
-
-
84877583385
-
A biomimetic nanosponge that absorbs pore-forming toxins
-
[188] Hu, C.M.J., et al. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 8:5 (2013), 336–340.
-
(2013)
Nat. Nanotechnol.
, vol.8
, Issue.5
, pp. 336-340
-
-
Hu, C.M.J.1
-
189
-
-
84939576078
-
Engineered nanoparticles mimicking cell membranes for toxin neutralization
-
[189] Fang, R.H., et al. Engineered nanoparticles mimicking cell membranes for toxin neutralization. Adv. Drug Deliv. Rev. 90 (2015), 69–80.
-
(2015)
Adv. Drug Deliv. Rev.
, vol.90
, pp. 69-80
-
-
Fang, R.H.1
-
190
-
-
84883504398
-
The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage
-
[190] Abu Lila, A.S., Kiwada, H., Ishida, T., The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J. Control. Release 172:1 (2013), 38–47.
-
(2013)
J. Control. Release
, vol.172
, Issue.1
, pp. 38-47
-
-
Abu Lila, A.S.1
Kiwada, H.2
Ishida, T.3
-
191
-
-
40849139246
-
Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells
-
[191] Tsai, R.K., Discher, D.E., Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol. 180:5 (2008), 989–1003.
-
(2008)
J. Cell Biol.
, vol.180
, Issue.5
, pp. 989-1003
-
-
Tsai, R.K.1
Discher, D.E.2
-
192
-
-
84922424757
-
Cell rigidity and shape override CD47's ‘self’ signaling in phagocytosis by hyperactivating myosin-II
-
[192] Sosale, N.G., et al. Cell rigidity and shape override CD47's ‘self’ signaling in phagocytosis by hyperactivating myosin-II. Blood 125:3 (2015), 542–552.
-
(2015)
Blood
, vol.125
, Issue.3
, pp. 542-552
-
-
Sosale, N.G.1
-
193
-
-
84906780966
-
An overview of clinical and commercial impact of drug delivery systems
-
[193] Anselmo, A.C., Mitragotri, S., An overview of clinical and commercial impact of drug delivery systems. J. Control. Release 190 (2014), 15–28.
-
(2014)
J. Control. Release
, vol.190
, pp. 15-28
-
-
Anselmo, A.C.1
Mitragotri, S.2
-
194
-
-
84871404093
-
The big picture on nanomedicine: the state of investigational and approved nanomedicine products
-
[194] Etheridge, M.L., et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed. Nanotechnol. Biol. Med. 9:1 (2013), 1–14.
-
(2013)
Nanomed. Nanotechnol. Biol. Med.
, vol.9
, Issue.1
, pp. 1-14
-
-
Etheridge, M.L.1
-
195
-
-
85013961807
-
-
Drug Administration: Vaccines, Blood & Biologics. [Accessed February 14th, 2016]; Available from:.
-
[195] U.S. Food and Drug Administration: Vaccines, Blood & Biologics. [Accessed February 14th, 2016]; Available from: http://www.fda.gov/BiologicsBloodVaccines/default.htm.
-
-
-
Food, U.S.1
-
196
-
-
84961257731
-
Technical Manual
-
American Association of Blood Banks
-
[196] Fung, M.K., et al. Technical Manual. 2014, American Association of Blood Banks.
-
(2014)
-
-
Fung, M.K.1
-
197
-
-
84920747081
-
The translation of cell-based therapies: clinical landscape and manufacturing challenges
-
[197] Heathman, T.R., et al. The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen. Med. 10:1 (2015), 49–64.
-
(2015)
Regen. Med.
, vol.10
, Issue.1
, pp. 49-64
-
-
Heathman, T.R.1
-
198
-
-
84870721525
-
Autologous cell therapies: challenges in US FDA regulation
-
[198] McAllister, T.N., Audley, D., L'Heureux, N., Autologous cell therapies: challenges in US FDA regulation. Regen. Med. 7:6 Suppl. (2012), 94–97.
-
(2012)
Regen. Med.
, vol.7
, Issue.6
, pp. 94-97
-
-
McAllister, T.N.1
Audley, D.2
L'Heureux, N.3
-
199
-
-
84870681717
-
Autologous cell therapies: the importance of regulatory oversight
-
[199] Werner, M., Mayleben, T., Bokkelen, G.V., Autologous cell therapies: the importance of regulatory oversight. Regen. Med. 7:6 Suppl. (2012), 100–103.
-
(2012)
Regen. Med.
, vol.7
, Issue.6
, pp. 100-103
-
-
Werner, M.1
Mayleben, T.2
Bokkelen, G.V.3
-
200
-
-
84908073316
-
Chimeric antigen receptor T cells for sustained remissions in leukemia
-
[200] Maude, S.L., et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371:16 (2014), 1507–1517.
-
(2014)
N. Engl. J. Med.
, vol.371
, Issue.16
, pp. 1507-1517
-
-
Maude, S.L.1
-
201
-
-
84896335556
-
Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia
-
[201] Davila, M.L., et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med., 6(224), 2014, 224ra25.
-
(2014)
Sci. Transl. Med.
, vol.6
, Issue.224
, pp. 224ra25
-
-
Davila, M.L.1
-
202
-
-
84892158748
-
Intra-erythrocyte infusion of dexamethasone reduces neurological symptoms in ataxia teleangiectasia patients: results of a phase 2 trial
-
[202] Chessa, L., et al. Intra-erythrocyte infusion of dexamethasone reduces neurological symptoms in ataxia teleangiectasia patients: results of a phase 2 trial. Orphanet J. Rare Dis., 9, 2014, 5.
-
(2014)
Orphanet J. Rare Dis.
, vol.9
, pp. 5
-
-
Chessa, L.1
-
203
-
-
84949558806
-
Positive effect of erythrocyte-delivered dexamethasone in ataxia-telangiectasia
-
e98
-
[203] Leuzzi, V., et al. Positive effect of erythrocyte-delivered dexamethasone in ataxia-telangiectasia. Neurol. Neuroimmunol. Neuroinflamm., 2(3), 2015, e98.
-
(2015)
Neurol. Neuroimmunol. Neuroinflamm.
, vol.2
, Issue.3
-
-
Leuzzi, V.1
-
204
-
-
84939549863
-
A phase 2 study of L-asparaginase encapsulated in erythrocytes in elderly patients with Philadelphia chromosome negative acute lymphoblastic leukemia: the GRASPALL/GRAALL-SA2-2008 study
-
[204] Hunault-Berger, M., et al. A phase 2 study of L-asparaginase encapsulated in erythrocytes in elderly patients with Philadelphia chromosome negative acute lymphoblastic leukemia: the GRASPALL/GRAALL-SA2-2008 study. Am. J. Hematol. 90:9 (2015), 811–818.
-
(2015)
Am. J. Hematol.
, vol.90
, Issue.9
, pp. 811-818
-
-
Hunault-Berger, M.1
-
205
-
-
84942061159
-
Asparagine synthetase expression and phase I study with L-asparaginase encapsulated in red blood cells in patients with pancreatic adenocarcinoma
-
[205] Bachet, J.B., et al. Asparagine synthetase expression and phase I study with L-asparaginase encapsulated in red blood cells in patients with pancreatic adenocarcinoma. Pancreas 44:7 (2015), 1141–1147.
-
(2015)
Pancreas
, vol.44
, Issue.7
, pp. 1141-1147
-
-
Bachet, J.B.1
-
206
-
-
84872367581
-
Preclinical toxicity evaluation of erythrocyte-encapsulated thymidine phosphorylase in BALB/c mice and beagle dogs: an enzyme-replacement therapy for mitochondrial neurogastrointestinal encephalomyopathy
-
[206] Levene, M., et al. Preclinical toxicity evaluation of erythrocyte-encapsulated thymidine phosphorylase in BALB/c mice and beagle dogs: an enzyme-replacement therapy for mitochondrial neurogastrointestinal encephalomyopathy. Toxicol. Sci. 131:1 (2013), 311–324.
-
(2013)
Toxicol. Sci.
, vol.131
, Issue.1
, pp. 311-324
-
-
Levene, M.1
-
207
-
-
84946135560
-
Memory of tolerance and induction of regulatory T cells by erythrocyte-targeted antigens
-
[207] Grimm, A.J., et al. Memory of tolerance and induction of regulatory T cells by erythrocyte-targeted antigens. Sci. Rep., 5, 2015.
-
(2015)
Sci. Rep.
, vol.5
-
-
Grimm, A.J.1
-
208
-
-
79952172406
-
Polynitroxylated pegylated hemoglobin: a novel neuroprotective hemoglobin for acute volume-limited fluid resuscitation after combined traumatic brain injury and hemorrhagic hypotension in mice
-
[208] Shellington, D.K., et al. Polynitroxylated pegylated hemoglobin: a novel neuroprotective hemoglobin for acute volume-limited fluid resuscitation after combined traumatic brain injury and hemorrhagic hypotension in mice. Crit. Care Med. 39:3 (2011), 494–505.
-
(2011)
Crit. Care Med.
, vol.39
, Issue.3
, pp. 494-505
-
-
Shellington, D.K.1
-
209
-
-
84883739745
-
Polynitroxylated-pegylated hemoglobin attenuates fluid requirements and brain edema in combined traumatic brain injury plus hemorrhagic shock in mice
-
[209] Brockman, E.C., et al. Polynitroxylated-pegylated hemoglobin attenuates fluid requirements and brain edema in combined traumatic brain injury plus hemorrhagic shock in mice. J. Cereb. Blood Flow Metab. 33:9 (2013), 1457–1464.
-
(2013)
J. Cereb. Blood Flow Metab.
, vol.33
, Issue.9
, pp. 1457-1464
-
-
Brockman, E.C.1
-
210
-
-
84890564255
-
Nanoparticle-detained toxins for safe and effective vaccination
-
[210] Hu, C.-M.J., et al. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 8:12 (2013), 933–938.
-
(2013)
Nat. Nanotechnol.
, vol.8
, Issue.12
, pp. 933-938
-
-
Hu, C.-M.J.1
-
211
-
-
85013922310
-
Comparison of pharmacokinetics and hemostatic efficacy of red cell microparticles (RMP) in rabbits using different infusion regimens
-
[211] Jy, W., et al. Comparison of pharmacokinetics and hemostatic efficacy of red cell microparticles (RMP) in rabbits using different infusion regimens. Blood, 124(21), 2014, 2811-2811.
-
(2014)
Blood
, vol.124
, Issue.21
, pp. 2811-2811
-
-
Jy, W.1
-
212
-
-
84884833498
-
Red cell-derived microparticles (RMP) as haemostatic agent
-
[212] Jy, W., et al. Red cell-derived microparticles (RMP) as haemostatic agent. Thromb. Haemost. 110:4 (2013), 751–760.
-
(2013)
Thromb. Haemost.
, vol.110
, Issue.4
, pp. 751-760
-
-
Jy, W.1
-
213
-
-
33646855068
-
Mollison's Blood Transfusion in Clinical Medicine
-
12th ed. John Wiley and Sons, Inc. Chichester, West Sussex, UK
-
[213] Klein, H.G., Anstee, D.J., Mollison's Blood Transfusion in Clinical Medicine. 12th ed., 2014, John Wiley and Sons, Inc., Chichester, West Sussex, UK.
-
(2014)
-
-
Klein, H.G.1
Anstee, D.J.2
|