-
1
-
-
0015918822
-
Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation
-
COI: 1:CAS:528:DyaE3sXpsVegug%3D%3D
-
Carlson, C. A., & Kim, K. H. (1973). Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. Journal of Biological Chemistry, 248, 378–80.
-
(1973)
Journal of Biological Chemistry
, vol.248
, pp. 378-380
-
-
Carlson, C.A.1
Kim, K.H.2
-
2
-
-
0015864346
-
Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP
-
COI: 1:CAS:528:DyaE3sXlsVers7s%3D
-
Beg, Z. H., Allmann, D. W., & Gibson, D. M. (1973). Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP. Biochemical and Biophysical Research Communications, 54, 1362–1369.
-
(1973)
Biochemical and Biophysical Research Communications
, vol.54
, pp. 1362-1369
-
-
Beg, Z.H.1
Allmann, D.W.2
Gibson, D.M.3
-
3
-
-
0347318052
-
The AMP-activated protein kinase cascade—a unifying system for energy control
-
COI: 1:CAS:528:DC%2BD2cXjtFeisg%3D%3D
-
Carling, D. (2004). The AMP-activated protein kinase cascade—a unifying system for energy control. Trends in Biochemical Sciences, 29, 18–24.
-
(2004)
Trends in Biochemical Sciences
, vol.29
, pp. 18-24
-
-
Carling, D.1
-
4
-
-
0031007065
-
The AMP-activated protein kinase—fuel gauge of the mammalian cell?
-
COI: 1:CAS:528:DyaK2sXjvVGrsbs%3D
-
Hardie, D. G., & Carling, D. (1997). The AMP-activated protein kinase—fuel gauge of the mammalian cell? European Journal of Biochemistry, 246, 259–273.
-
(1997)
European Journal of Biochemistry
, vol.246
, pp. 259-273
-
-
Hardie, D.G.1
Carling, D.2
-
5
-
-
84858057079
-
Synthesis and biological evaluation of 1,4-diaryl-2-azetidinones as specific anticancer agents: activation of adenosine monophosphate activated protein kinase and induction of apoptosis
-
COI: 1:CAS:528:DC%2BC38XitFCjsb8%3D
-
Tripodi, F., Pagliarin, R., Fumagalli, G., Bigi, A., Fusi, P., Orsini, F., Frattini, M., & Coccetti, P. (2012). Synthesis and biological evaluation of 1,4-diaryl-2-azetidinones as specific anticancer agents: activation of adenosine monophosphate activated protein kinase and induction of apoptosis. Journal of Medicinal Chemistry, 55, 2112–2124.
-
(2012)
Journal of Medicinal Chemistry
, vol.55
, pp. 2112-2124
-
-
Tripodi, F.1
Pagliarin, R.2
Fumagalli, G.3
Bigi, A.4
Fusi, P.5
Orsini, F.6
Frattini, M.7
Coccetti, P.8
-
6
-
-
84870286570
-
Thiazolidinediones improve hepatic fibrosis in rats with non-alcoholic steatohepatitis by activating the adenosine monophosphate-activated protein kinase signalling pathway
-
COI: 1:CAS:528:DC%2BC38XhslelurjK
-
Zhang, W., Wu, R., Zhang, F., Xu, Y., Liu, B., Yang, Y., Zhou, H., Wang, L., Wan, K., Xiao, X., & Zhang, X. (2012). Thiazolidinediones improve hepatic fibrosis in rats with non-alcoholic steatohepatitis by activating the adenosine monophosphate-activated protein kinase signalling pathway. Clinical and Experimental Pharmacology and Physiology, 39, 1026–1033.
-
(2012)
Clinical and Experimental Pharmacology and Physiology
, vol.39
, pp. 1026-1033
-
-
Zhang, W.1
Wu, R.2
Zhang, F.3
Xu, Y.4
Liu, B.5
Yang, Y.6
Zhou, H.7
Wang, L.8
Wan, K.9
Xiao, X.10
Zhang, X.11
-
7
-
-
84877578749
-
A dihydrochalcone and several homoisoflavonoids from Polygonatum odoratum are activators of adenosine monophosphate-activated protein kinase
-
COI: 1:CAS:528:DC%2BC3sXmvV2nu7w%3D
-
Guo, H., Zhao, H., Kanno, Y., Li, W., Mu, Y., Kuang, X., Inouye, Y., Koike, K., Jiang, H., & Bai, H. (2013). A dihydrochalcone and several homoisoflavonoids from Polygonatum odoratum are activators of adenosine monophosphate-activated protein kinase. Bioorganic and Medicinal Chemistry Letters, 23, 3137–3139.
-
(2013)
Bioorganic and Medicinal Chemistry Letters
, vol.23
, pp. 3137-3139
-
-
Guo, H.1
Zhao, H.2
Kanno, Y.3
Li, W.4
Mu, Y.5
Kuang, X.6
Inouye, Y.7
Koike, K.8
Jiang, H.9
Bai, H.10
-
8
-
-
77949834465
-
Development of novel adenosine monophosphate-activated protein kinase activators
-
COI: 1:CAS:528:DC%2BC3cXitFyhsb0%3D
-
Guh, J. H., Chang, W. L., Yang, J., Lee, S. L., Wei, S., Wang, D., Kulp, S. K., & Chen, C. S. (2010). Development of novel adenosine monophosphate-activated protein kinase activators. Journal of Medicinal Chemistry, 53, 2552–2561.
-
(2010)
Journal of Medicinal Chemistry
, vol.53
, pp. 2552-2561
-
-
Guh, J.H.1
Chang, W.L.2
Yang, J.3
Lee, S.L.4
Wei, S.5
Wang, D.6
Kulp, S.K.7
Chen, C.S.8
-
9
-
-
34548757301
-
Identification of a novel class of dithiolethiones that prevent hepatic insulin resistance via the adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway
-
COI: 1:CAS:528:DC%2BD2sXhtFWhsr3L
-
Bae, E. J., Yang, Y. M., Kim, J. W., & Kim, S. G. (2007). Identification of a novel class of dithiolethiones that prevent hepatic insulin resistance via the adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway. Hepatology, 46, 730–739.
-
(2007)
Hepatology
, vol.46
, pp. 730-739
-
-
Bae, E.J.1
Yang, Y.M.2
Kim, J.W.3
Kim, S.G.4
-
10
-
-
67649220834
-
Adenosine monophosphate-activated protein kinase (AMPK) as a new target for antidiabetic drugs: a review on metabolic, pharmacological and chemical considerations
-
Gruzman, A., Babai, G., & Sasson, S. (2009). Adenosine monophosphate-activated protein kinase (AMPK) as a new target for antidiabetic drugs: a review on metabolic, pharmacological and chemical considerations. The Review of Diabetic Studies, 6, 13–36.
-
(2009)
The Review of Diabetic Studies
, vol.6
, pp. 13-36
-
-
Gruzman, A.1
Babai, G.2
Sasson, S.3
-
11
-
-
84920982798
-
Small molecule adenosine 5′-monophosphate activated protein kinase (AMPK) modulators and human diseases
-
COI: 1:CAS:528:DC%2BC2cXhtlKlu7jM
-
Rana, S., Blowers, E. C., & Natarajan, A. (2015). Small molecule adenosine 5′-monophosphate activated protein kinase (AMPK) modulators and human diseases. Journal of Medicinal Chemistry, 58, 2–29.
-
(2015)
Journal of Medicinal Chemistry
, vol.58
, pp. 2-29
-
-
Rana, S.1
Blowers, E.C.2
Natarajan, A.3
-
12
-
-
84861222690
-
The ancient drug salicylate directly activates AMP-activated protein kinase
-
COI: 1:CAS:528:DC%2BC38XmvFensLc%3D
-
Hawley, S. A., Fullerton, M. D., Ross, F. A., Schertzer, J. D., Chevtzoff, C., Walker, K. J., Peggie, M. W., Zibrova, D., Green, K. A., Mustard, K. J., Kemp, B. E., Sakamoto, K., Steinberg, G. R., & Hardie, D. G. (2012). The ancient drug salicylate directly activates AMP-activated protein kinase. Science, 336, 918–922.
-
(2012)
Science
, vol.336
, pp. 918-922
-
-
Hawley, S.A.1
Fullerton, M.D.2
Ross, F.A.3
Schertzer, J.D.4
Chevtzoff, C.5
Walker, K.J.6
Peggie, M.W.7
Zibrova, D.8
Green, K.A.9
Mustard, K.J.10
Kemp, B.E.11
Sakamoto, K.12
Steinberg, G.R.13
Hardie, D.G.14
-
13
-
-
84881571045
-
Antitumor mechanism of metformin via adenosine monophosphate-activated protein kinase (AMPK) activation
-
COI: 1:CAS:528:DC%2BC2cXhtFSiu77L
-
Chen, Z., Wang, L., & Chen, Y. (2013). Antitumor mechanism of metformin via adenosine monophosphate-activated protein kinase (AMPK) activation. Zhongguo Fei Ai Za Zhi, 16, 427–432.
-
(2013)
Zhongguo Fei Ai Za Zhi
, vol.16
, pp. 427-432
-
-
Chen, Z.1
Wang, L.2
Chen, Y.3
-
14
-
-
69249216358
-
Resveratrol prevents hyperglycemia-induced endothelial dysfunction via activation of adenosine monophosphate-activated protein kinase
-
COI: 1:CAS:528:DC%2BD1MXhtVOisrnN
-
Xu, Q., Hao, X., Yang, Q., & Si, L. (2009). Resveratrol prevents hyperglycemia-induced endothelial dysfunction via activation of adenosine monophosphate-activated protein kinase. Biochemical and Biophysical Research Communications, 388, 389–394.
-
(2009)
Biochemical and Biophysical Research Communications
, vol.388
, pp. 389-394
-
-
Xu, Q.1
Hao, X.2
Yang, Q.3
Si, L.4
-
15
-
-
84880572450
-
Berberine improves insulin resistance in cardiomyocytes via activation of 5′-adenosine monophosphate-activated protein kinase
-
COI: 1:CAS:528:DC%2BC3sXksFOnsb0%3D
-
Chang, W., Zhang, M., Li, J., Meng, Z., Wei, S., Du, H., Chen, L., & Hatch, G. M. (2013). Berberine improves insulin resistance in cardiomyocytes via activation of 5′-adenosine monophosphate-activated protein kinase. Metabolism, 62, 1159–1167.
-
(2013)
Metabolism
, vol.62
, pp. 1159-1167
-
-
Chang, W.1
Zhang, M.2
Li, J.3
Meng, Z.4
Wei, S.5
Du, H.6
Chen, L.7
Hatch, G.M.8
-
16
-
-
77952833239
-
Alpha-lipoic acid increases energy expenditure by enhancing adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling in the skeletal muscle of aged mice
-
COI: 1:CAS:528:DC%2BC3cXntVOmtr4%3D
-
Wang, Y., Li, X., Guo, Y., Chan, L., & Guan, X. (2010). Alpha-lipoic acid increases energy expenditure by enhancing adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling in the skeletal muscle of aged mice. Metabolism, 59, 967–976.
-
(2010)
Metabolism
, vol.59
, pp. 967-976
-
-
Wang, Y.1
Li, X.2
Guo, Y.3
Chan, L.4
Guan, X.5
-
17
-
-
84921368293
-
Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway
-
Tseng, S. Y., Chao, T. H., Li, Y. H., Liu, P. Y., Lee, C. H., Cho, C. L., Wu, H. L., & Chen, J. H. (2015). Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway. Journal of Vascular Surgery. doi:10.1016/j.jvs.2014.10.103.
-
(2015)
Journal of Vascular Surgery
-
-
Tseng, S.Y.1
Chao, T.H.2
Li, Y.H.3
Liu, P.Y.4
Lee, C.H.5
Cho, C.L.6
Wu, H.L.7
Chen, J.H.8
-
18
-
-
84923186329
-
Estrogen regulates energy metabolic pathway and upstream adenosine 5′-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia
-
COI: 1:CAS:528:DC%2BC2cXitV2gu7fK
-
Tamrakar, P., Ibrahim, B. A., Gujar, A. D., & Briski, K. P. (2015). Estrogen regulates energy metabolic pathway and upstream adenosine 5′-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia. Journal of Neuroscience Research, 93, 321–932.
-
(2015)
Journal of Neuroscience Research
, vol.93
, pp. 321-932
-
-
Tamrakar, P.1
Ibrahim, B.A.2
Gujar, A.D.3
Briski, K.P.4
-
19
-
-
84897875780
-
Genistein suppresses tumor necrosis factor alpha-induced inflammation via modulating reactive oxygen species/Akt/nuclear factor kappaB and adenosine monophosphate-activated protein kinase signal pathways in human synoviocyte MH7A cells
-
COI: 1:CAS:528:DC%2BC2MXjt1Wqtb0%3D
-
Li, J., Li, J., Yue, Y., Hu, Y., Cheng, W., Liu, R., Pan, X., & Zhang, P. (2014). Genistein suppresses tumor necrosis factor alpha-induced inflammation via modulating reactive oxygen species/Akt/nuclear factor kappaB and adenosine monophosphate-activated protein kinase signal pathways in human synoviocyte MH7A cells. Drug Design, Development and Therapy, 8, 315–323.
-
(2014)
Drug Design, Development and Therapy
, vol.8
, pp. 315-323
-
-
Li, J.1
Li, J.2
Yue, Y.3
Hu, Y.4
Cheng, W.5
Liu, R.6
Pan, X.7
Zhang, P.8
-
20
-
-
84885111327
-
Antineuroinflammatory effects of lycopene via activation of adenosine monophosphate-activated protein kinase-alpha1/heme oxygenase-1 pathways
-
COI: 1:CAS:528:DC%2BC3sXht1WrtbbJ
-
Lin, H. Y., Huang, B. R., Yeh, W. L., Lee, C. H., Huang, S. S., Lai, C. H., Lin, H., & Lu, D. Y. (2014). Antineuroinflammatory effects of lycopene via activation of adenosine monophosphate-activated protein kinase-alpha1/heme oxygenase-1 pathways. Neurobiology of Aging, 35, 191–202.
-
(2014)
Neurobiology of Aging
, vol.35
, pp. 191-202
-
-
Lin, H.Y.1
Huang, B.R.2
Yeh, W.L.3
Lee, C.H.4
Huang, S.S.5
Lai, C.H.6
Lin, H.7
Lu, D.Y.8
-
21
-
-
84866742878
-
Atorvastatin and pitavastatin enhance lipoprotein lipase production in L6 skeletal muscle cells through activation of adenosine monophosphate-activated protein kinase
-
COI: 1:CAS:528:DC%2BC38XlvVSgsrs%3D
-
Ohira, M., Endo, K., Saiki, A., Miyashita, Y., Terai, K., Murano, T., Watanabe, F., Tatsuno, I., & Shirai, K. (2012). Atorvastatin and pitavastatin enhance lipoprotein lipase production in L6 skeletal muscle cells through activation of adenosine monophosphate-activated protein kinase. Metabolism, 61, 1452–1460.
-
(2012)
Metabolism
, vol.61
, pp. 1452-1460
-
-
Ohira, M.1
Endo, K.2
Saiki, A.3
Miyashita, Y.4
Terai, K.5
Murano, T.6
Watanabe, F.7
Tatsuno, I.8
Shirai, K.9
-
22
-
-
84872224969
-
3,3′-Diindolylmethane protects against cardiac hypertrophy via 5′-adenosine monophosphate-activated protein kinase-α2
-
COI: 1:CAS:528:DC%2BC3sXht1SltrY%3D
-
Zong, J., Deng, W., Zhou, H., Bian, Z. Y., Dai, J., Yuan, Y., Zhang, J. Y., Zhang, R., Zhang, Y., Wu, Q. Q., Guo, H. P., Li, H. L., & Tang, Q. Z. (2013). 3,3′-Diindolylmethane protects against cardiac hypertrophy via 5′-adenosine monophosphate-activated protein kinase-α2. PLoS One, 8, e53427.
-
(2013)
PLoS One
, vol.8
, pp. e53427
-
-
Zong, J.1
Deng, W.2
Zhou, H.3
Bian, Z.Y.4
Dai, J.5
Yuan, Y.6
Zhang, J.Y.7
Zhang, R.8
Zhang, Y.9
Wu, Q.Q.10
Guo, H.P.11
Li, H.L.12
Tang, Q.Z.13
-
23
-
-
84882752632
-
The activation of adenosine monophosphate-activated protein kinase in rat hippocampus contributes to the rapid antidepressant effect of ketamine
-
COI: 1:CAS:528:DC%2BC3sXhtlyrsLbE
-
Xu, S. X., Zhou, Z. Q., Li, X. M., Ji, M. H., Zhang, G. F., & Yang, J. J. (2013). The activation of adenosine monophosphate-activated protein kinase in rat hippocampus contributes to the rapid antidepressant effect of ketamine. Behavioural Brain Research, 253, 305–359.
-
(2013)
Behavioural Brain Research
, vol.253
, pp. 305-359
-
-
Xu, S.X.1
Zhou, Z.Q.2
Li, X.M.3
Ji, M.H.4
Zhang, G.F.5
Yang, J.J.6
-
24
-
-
84887156474
-
Olanzapine increases hepatic glucose production through the activation of hypothalamic adenosine 5′-monophosphate-activated protein kinase
-
COI: 1:CAS:528:DC%2BC3sXhslCrs7%2FN
-
Ikegami, M., Ikeda, H., Ohashi, T., Ohsawa, M., Ishikawa, Y., Kai, M., Kamei, A., & Kamei, J. (2013). Olanzapine increases hepatic glucose production through the activation of hypothalamic adenosine 5′-monophosphate-activated protein kinase. Diabetes, Obesity & Metabolism, 15, 1128–1135.
-
(2013)
Diabetes, Obesity & Metabolism
, vol.15
, pp. 1128-1135
-
-
Ikegami, M.1
Ikeda, H.2
Ohashi, T.3
Ohsawa, M.4
Ishikawa, Y.5
Kai, M.6
Kamei, A.7
Kamei, J.8
-
25
-
-
84901783593
-
In silico design for adenosine monophosphate-activated protein kinase agonist from traditional chinese medicine for treatment of metabolic syndromes
-
Tang, H. C., & Chen, C. Y. (2014). In silico design for adenosine monophosphate-activated protein kinase agonist from traditional chinese medicine for treatment of metabolic syndromes. Evidence-based Complementary and Alternative Medicine. doi:10.1155/2014/928589.
-
(2014)
Evidence-based Complementary and Alternative Medicine
-
-
Tang, H.C.1
Chen, C.Y.2
-
26
-
-
84903697522
-
AMPK as a potential anticancer target—friend or foe?
-
Chuang, H. C., Chou, C. C., SK., K., & Chen, C. S. (2014). AMPK as a potential anticancer target—friend or foe? Current Pharmaceutical Design, 2020, 2607–2618.
-
(2014)
Current Pharmaceutical Design
, vol.2020
, pp. 2607-2618
-
-
Chuang, H.C.1
Chou, C.C.2
SK, K.3
Chen, C.S.4
-
27
-
-
84922270865
-
Effects of diet on adenosine monophosphate-activated protein kinase activity and disease progression in an amyotrophic lateral sclerosis model
-
COI: 1:CAS:528:DC%2BC28Xisl2qtbc%3D
-
Zhao, Z., Sui, Y., Gao, W., Cai, B., & Fan, D. (2015). Effects of diet on adenosine monophosphate-activated protein kinase activity and disease progression in an amyotrophic lateral sclerosis model. Journal of International Medical Research, 43, 67–79.
-
(2015)
Journal of International Medical Research
, vol.43
, pp. 67-79
-
-
Zhao, Z.1
Sui, Y.2
Gao, W.3
Cai, B.4
Fan, D.5
-
28
-
-
0029910018
-
Characterization of the AMP-activated protein kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase
-
COI: 1:CAS:528:DyaK28XmvVWrurc%3D
-
Hawley, S. A., Davison, M., Woods, A., Davies, S. P., Beri, R. K., Carling, D., & Hardie, D. G. (1996). Characterization of the AMP-activated protein kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. Journal of Biological Chemistry, 271, 27879–27887.
-
(1996)
Journal of Biological Chemistry
, vol.271
, pp. 27879-27887
-
-
Hawley, S.A.1
Davison, M.2
Woods, A.3
Davies, S.P.4
Beri, R.K.5
Carling, D.6
Hardie, D.G.7
-
29
-
-
0041305909
-
Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases
-
COI: 1:CAS:528:DC%2BD3sXlvVyitLw%3D
-
Hong, S. P., Leiper, F. C., Woods, A., Carling, D., & Carlson, M. (2003). Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proceedings of the National Academy of Sciences of the United States of America, 100, 8839–8843.
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, pp. 8839-8843
-
-
Hong, S.P.1
Leiper, F.C.2
Woods, A.3
Carling, D.4
Carlson, M.5
-
30
-
-
23044432463
-
Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase
-
COI: 1:CAS:528:DC%2BD2MXntlCruro%3D
-
Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., Frenguelli, B. G., & Hardie, D. G. (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metabolism, 2, 9–19.
-
(2005)
Cell Metabolism
, vol.2
, pp. 9-19
-
-
Hawley, S.A.1
Pan, D.A.2
Mustard, K.J.3
Ross, L.4
Bain, J.5
Edelman, A.M.6
Frenguelli, B.G.7
Hardie, D.G.8
-
31
-
-
10944247187
-
The AMP-activated protein kinase pathway—new players upstream and downstream
-
COI: 1:CAS:528:DC%2BD2cXhtFagur7N
-
Hardie, D. G. (2004). The AMP-activated protein kinase pathway—new players upstream and downstream. Journal of Cell Science, 117, 5479–5487.
-
(2004)
Journal of Cell Science
, vol.117
, pp. 5479-5487
-
-
Hardie, D.G.1
-
32
-
-
85019274025
-
Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate
-
Scott, J. W., Norman, D. G., Hawley, S. A., Kontogiannis, L., & Hardie, D. G. (2002). Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. Journal of Molecular Biology, 2317, 2309–2323.
-
(2002)
Journal of Molecular Biology
, vol.2317
, pp. 2309-2323
-
-
Scott, J.W.1
Norman, D.G.2
Hawley, S.A.3
Kontogiannis, L.4
Hardie, D.G.5
-
33
-
-
0029561919
-
5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC
-
COI: 1:CAS:528:DyaK28Xnt1Ok
-
Davies, S. P., Helps, N. R., Cohen, P. T., & Hardie, D. G. (1995). 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Letters, 377, 421–425.
-
(1995)
FEBS Letters
, vol.377
, pp. 421-425
-
-
Davies, S.P.1
Helps, N.R.2
Cohen, P.T.3
Hardie, D.G.4
-
34
-
-
0034654362
-
Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding
-
COI: 1:CAS:528:DC%2BD3cXit1Krsr0%3D
-
Cheung, P. C., Salt, I. P., Davies, S. P., Hardie, D. G., & Carling, D. (2000). Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochemical Journal, 346, 659–669.
-
(2000)
Biochemical Journal
, vol.346
, pp. 659-669
-
-
Cheung, P.C.1
Salt, I.P.2
Davies, S.P.3
Hardie, D.G.4
Carling, D.5
-
35
-
-
34147152841
-
Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade
-
COI: 1:CAS:528:DC%2BD2sXksFCiur0%3D
-
Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A., & Carling, D. (2007). Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochemical Journal, 403, 139–148.
-
(2007)
Biochemical Journal
, vol.403
, pp. 139-148
-
-
Sanders, M.J.1
Grondin, P.O.2
Hegarty, B.D.3
Snowden, M.A.4
Carling, D.5
-
36
-
-
80052385397
-
AMP-activated protein kinase: also regulated by ADP?
-
COI: 1:CAS:528:DC%2BC3MXhtFaqsrbN
-
Hardie, D. G., Carling, D., & Gamblin, S. J. (2011). AMP-activated protein kinase: also regulated by ADP? Trends in Biochemical Sciences, 36, 470–477.
-
(2011)
Trends in Biochemical Sciences
, vol.36
, pp. 470-477
-
-
Hardie, D.G.1
Carling, D.2
Gamblin, S.J.3
-
37
-
-
79954517977
-
Structure of mammalian AMPK and its regulation by ADP
-
COI: 1:CAS:528:DC%2BC3MXjtVGms78%3D
-
Xiao, B., Sanders, M. J., Underwood, E., Heath, R., Mayer, F. V., Carmena, D., Jing, C., Walker, P. A., Eccleston, J. F., Haire, L. F., Saiu, P., Howell, S. A., Aasland, R., Martin, S. R., Carling, D., & Gamblin, S. J. (2011). Structure of mammalian AMPK and its regulation by ADP. Nature, 472, 230–233.
-
(2011)
Nature
, vol.472
, pp. 230-233
-
-
Xiao, B.1
Sanders, M.J.2
Underwood, E.3
Heath, R.4
Mayer, F.V.5
Carmena, D.6
Jing, C.7
Walker, P.A.8
Eccleston, J.F.9
Haire, L.F.10
Saiu, P.11
Howell, S.A.12
Aasland, R.13
Martin, S.R.14
Carling, D.15
Gamblin, S.J.16
-
38
-
-
84863719838
-
AMP-activated protein kinase undergoes nucleotide-dependent conformational changes
-
COI: 1:CAS:528:DC%2BC38XnvVyls7o%3D
-
Chen, L., Wang, J., Zhang, Y. Y., Yan, S. F., Neumann, D., Schlattner, U., Wang, Z. X., & Wu, J. W. (2012). AMP-activated protein kinase undergoes nucleotide-dependent conformational changes. Nature Structural and Molecular Biology, 19, 716–718.
-
(2012)
Nature Structural and Molecular Biology
, vol.19
, pp. 716-718
-
-
Chen, L.1
Wang, J.2
Zhang, Y.Y.3
Yan, S.F.4
Neumann, D.5
Schlattner, U.6
Wang, Z.X.7
Wu, J.W.8
-
39
-
-
0028126820
-
Mammalian 5′-AMP-activated protein kinase non-catalytic subunits are homologs of proteins that interact with yeast Snf1 protein kinase
-
COI: 1:CAS:528:DyaK2cXmslGhsL0%3D
-
Stapleton, D., Gao, G., Michell, B. J., Widmer, J., Mitchelhill, K., Teh, T., House, C. M., Witters, L. A., & Kemp, B. E. (1994). Mammalian 5′-AMP-activated protein kinase non-catalytic subunits are homologs of proteins that interact with yeast Snf1 protein kinase. Journal of Biological Chemistry, 269, 29343–29346.
-
(1994)
Journal of Biological Chemistry
, vol.269
, pp. 29343-29346
-
-
Stapleton, D.1
Gao, G.2
Michell, B.J.3
Widmer, J.4
Mitchelhill, K.5
Teh, T.6
House, C.M.7
Witters, L.A.8
Kemp, B.E.9
-
40
-
-
0029925785
-
Characterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in vitro
-
COI: 1:CAS:528:DyaK28XisFKjsLw%3D
-
Woods, A., Cheung, P. C., Smith, F. C., Davison, M. D., Scott, J., Beri, R. K., & Carling, D. (1996). Characterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in vitro. Journal of Biological Chemistry, 271, 10282–10290.
-
(1996)
Journal of Biological Chemistry
, vol.271
, pp. 10282-10290
-
-
Woods, A.1
Cheung, P.C.2
Smith, F.C.3
Davison, M.D.4
Scott, J.5
Beri, R.K.6
Carling, D.7
-
41
-
-
0043071497
-
Mammalian AMP-activated protein kinase: functional, heterotrimeric complexes by co-expression of subunits in Escherichia coli
-
COI: 1:CAS:528:DC%2BD3sXls1equ7s%3D
-
Neumann, D., Woods, A., Carling, D., Wallimann, T., & Schlattner, U. (2003). Mammalian AMP-activated protein kinase: functional, heterotrimeric complexes by co-expression of subunits in Escherichia coli. Protein Expression and Purification, 30, 230–237.
-
(2003)
Protein Expression and Purification
, vol.30
, pp. 230-237
-
-
Neumann, D.1
Woods, A.2
Carling, D.3
Wallimann, T.4
Schlattner, U.5
-
42
-
-
0038814313
-
A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias
-
COI: 1:CAS:528:DC%2BD3sXjvFamtr0%3D
-
Hudson, E. R. (2003). A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Current Biology, 13, 861–866.
-
(2003)
Current Biology
, vol.13
, pp. 861-866
-
-
Hudson, E.R.1
-
43
-
-
0037799908
-
AMPK beta subunit targets metabolic stress sensing to glycogen
-
COI: 1:CAS:528:DC%2BD3sXjvFamtro%3D
-
Polekhina, G., Gupta, A., Michell, B. J., van Denderen, B., Murthy, S., Feil, S. C., Jennings, I. G., Campbell, D. J., Witters, L. A., Parker, M. W., Kemp, B. E., & Stapleton, D. (2003). AMPK beta subunit targets metabolic stress sensing to glycogen. Current Biology, 13, 867–871.
-
(2003)
Current Biology
, vol.13
, pp. 867-871
-
-
Polekhina, G.1
Gupta, A.2
Michell, B.J.3
van Denderen, B.4
Murthy, S.5
Feil, S.C.6
Jennings, I.G.7
Campbell, D.J.8
Witters, L.A.9
Parker, M.W.10
Kemp, B.E.11
Stapleton, D.12
-
44
-
-
78650606464
-
β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK)
-
COI: 1:CAS:528:DC%2BC3cXhsVGru7vJ
-
Oakhill, J. S., Chen, Z. P., Scott, J. W., Steel, R., Castelli, L. A., Ling, N., Macaulay, S. L., & Kemp, B. E. (2010). β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proceedings of the National Academy of Sciences of the United States of America, 107, 19237–19241.
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, pp. 19237-19241
-
-
Oakhill, J.S.1
Chen, Z.P.2
Scott, J.W.3
Steel, R.4
Castelli, L.A.5
Ling, N.6
Macaulay, S.L.7
Kemp, B.E.8
-
45
-
-
84890963021
-
Structural basis of AMPK regulation by small molecule activators
-
Xiao, B., Sanders, M. J., Carmena, D., Bright, N. J., Haire, L. F., Underwood, E., Patel, B. R., Heath, R. B., Walker, P. A., Hallen, S., Giordanetto, F., Martin, S. R., Carling, D., & Gamblin, S. J. (2013). Structural basis of AMPK regulation by small molecule activators. Nature Communications, 4, 3017.
-
(2013)
Nature Communications
, vol.4
, pp. 3017
-
-
Xiao, B.1
Sanders, M.J.2
Carmena, D.3
Bright, N.J.4
Haire, L.F.5
Underwood, E.6
Patel, B.R.7
Heath, R.B.8
Walker, P.A.9
Hallen, S.10
Giordanetto, F.11
Martin, S.R.12
Carling, D.13
Gamblin, S.J.14
-
46
-
-
26444608572
-
Structural basis for glycogen recognition by AMP-activated protein kinase
-
COI: 1:CAS:528:DC%2BD2MXhtFWhtrzJ
-
Polekhina, G., Gupta, A., van Denderen, B. J., Feil, S. C., Kemp, B. E., Stapleton, D., & Parker, M. W. (2005). Structural basis for glycogen recognition by AMP-activated protein kinase. Structure, 13, 1453–1462.
-
(2005)
Structure
, vol.13
, pp. 1453-1462
-
-
Polekhina, G.1
Gupta, A.2
van Denderen, B.J.3
Feil, S.C.4
Kemp, B.E.5
Stapleton, D.6
Parker, M.W.7
-
47
-
-
84959528317
-
-
Walker, J. R., Wybenga-Groot, L., Finerty, P. J., Newman, E., MacKenzie, F. M., Weigelt, J., Sundstrom, M., Arrowsmith, C., Edwards, A., Bochkarev, A., Dhe-Paganon, S. Structure of the glycogen-binding domain of the AMP-activated protein kinase beta2 subunit. Protein data bank
-
Walker, J. R., Wybenga-Groot, L., Finerty, P. J., Newman, E., MacKenzie, F. M., Weigelt, J., Sundstrom, M., Arrowsmith, C., Edwards, A., Bochkarev, A., Dhe-Paganon, S. Structure of the glycogen-binding domain of the AMP-activated protein kinase beta2 subunit. Protein data bank. 10.2210/pdb2f15/pdb.
-
-
-
-
48
-
-
33644833886
-
Structure and dimerization of the kinase domain from yeast Snf1, a member of the Snf1/AMPK protein family
-
COI: 1:CAS:528:DC%2BD28Xit1ylsLk%3D
-
Nayak, V., Zhao, K., Wyce, A., Schwartz, M. F., Lo, W. S., Berger, S. L., & Marmorstein, R. (2006). Structure and dimerization of the kinase domain from yeast Snf1, a member of the Snf1/AMPK protein family. Structure, 14, 477–485.
-
(2006)
Structure
, vol.14
, pp. 477-485
-
-
Nayak, V.1
Zhao, K.2
Wyce, A.3
Schwartz, M.F.4
Lo, W.S.5
Berger, S.L.6
Marmorstein, R.7
-
49
-
-
76349093842
-
A conserved mechanism of autoinhibition for the AMPK kinase domain: ATP-binding site and catalytic loop refolding as a means of regulation
-
COI: 1:CAS:528:DC%2BC3cXhs1Sitrg%3D
-
Littler, D. R., Walker, J. R., Davis, T., Wybenga-Groot, L. E., Finerty, P. J., Newman, E., Mackenzie, F., & Dhe-Paganon, S. (2010). A conserved mechanism of autoinhibition for the AMPK kinase domain: ATP-binding site and catalytic loop refolding as a means of regulation. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 66, 143–151.
-
(2010)
Acta Crystallographica Section F: Structural Biology and Crystallization Communications
, vol.66
, pp. 143-151
-
-
Littler, D.R.1
Walker, J.R.2
Davis, T.3
Wybenga-Groot, L.E.4
Finerty, P.J.5
Newman, E.6
Mackenzie, F.7
Dhe-Paganon, S.8
-
50
-
-
84959567885
-
-
Xia, B., Hu, J. Solution structure of autoinhibitory domain of human AMP-activated protein kinase catalytic subunit. Protein data bank
-
Xia, B., Hu, J. Solution structure of autoinhibitory domain of human AMP-activated protein kinase catalytic subunit. Protein data bank. 10.2210/pdb2ltu/pdb.
-
-
-
-
51
-
-
84959507305
-
-
Koay, A., Petrie, E., Gorman, M., di Paolo, A., Mobbs, J., Parker, M., Stapleton, D., Gooley, P. Solution NMR structure of the apo-form of the beta2 carbohydrate module of AMP-activated protein kinase
-
Koay, A., Petrie, E., Gorman, M., di Paolo, A., Mobbs, J., Parker, M., Stapleton, D., Gooley, P. Solution NMR structure of the apo-form of the beta2 carbohydrate module of AMP-activated protein kinase. doi:10.2210/pdb2lu3/pdb.
-
-
-
-
52
-
-
34047161436
-
Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase
-
COI: 1:CAS:528:DC%2BD2sXjtlWnur8%3D
-
Townley, R., & Shapiro, L. (2007). Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase. Science, 315, 1726–1729.
-
(2007)
Science
, vol.315
, pp. 1726-1729
-
-
Townley, R.1
Shapiro, L.2
-
53
-
-
34848843526
-
Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1
-
COI: 1:CAS:528:DC%2BD2sXhtV2is7zP
-
Amodeo, G. A., Rudolph, M. J., & Tong, L. (2007). Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature, 449, 492–495.
-
(2007)
Nature
, vol.449
, pp. 492-495
-
-
Amodeo, G.A.1
Rudolph, M.J.2
Tong, L.3
-
54
-
-
35148850705
-
Structural insight into AMPK regulation: ADP comes into play
-
COI: 1:CAS:528:DC%2BD2sXhtFKhsLzK
-
Jin, X., Townley, R., & Shapiro, L. (2007). Structural insight into AMPK regulation: ADP comes into play. Structure, 15, 1285–1295.
-
(2007)
Structure
, vol.15
, pp. 1285-1295
-
-
Jin, X.1
Townley, R.2
Shapiro, L.3
-
55
-
-
34247520659
-
Structure of a CBS-domain pair from the regulatory 1 subunit of human AMPK in complex with AMP and ZMP
-
COI: 1:CAS:528:DC%2BD2sXksFShtr4%3D
-
Day, P., Sharff, A., Parra, L., Cleasby, A., Williams, M., Horer, S., Nar, H., Redemann, N., Tickle, I., & Yon, J. (2007). Structure of a CBS-domain pair from the regulatory 1 subunit of human AMPK in complex with AMP and ZMP. Acta Crystallographica Section D: Biological Crystallography, 63, 587–596.
-
(2007)
Acta Crystallographica Section D: Biological Crystallography
, vol.63
, pp. 587-596
-
-
Day, P.1
Sharff, A.2
Parra, L.3
Cleasby, A.4
Williams, M.5
Horer, S.6
Nar, H.7
Redemann, N.8
Tickle, I.9
Yon, J.10
-
56
-
-
34848840368
-
Structural basis for AMP binding to mammalian AMP-activated protein kinase
-
COI: 1:CAS:528:DC%2BD2sXhtV2is7%2FE
-
Xiao, B., Heath, R., Saiu, P., Leiper, F. C., Leone, P., Jing, C., Walker, P. A., Haire, L., Eccleston, J. F., Davis, C. T., Martin, S. R., Carling, D., & Gamblin, S. J. (2007). Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature, 449, 496–500.
-
(2007)
Nature
, vol.449
, pp. 496-500
-
-
Xiao, B.1
Heath, R.2
Saiu, P.3
Leiper, F.C.4
Leone, P.5
Jing, C.6
Walker, P.A.7
Haire, L.8
Eccleston, J.F.9
Davis, C.T.10
Martin, S.R.11
Carling, D.12
Gamblin, S.J.13
-
57
-
-
79955656064
-
Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain
-
COI: 1:CAS:528:DC%2BC3MXlvFCrsLk%3D
-
Handa, N., Takagi, T., Saijo, S., Kishishita, S., Takaya, D., Toyama, M., Terada, T., Shirouzu, M., Suzuki, A., Lee, S., Yamauchi, T., Okada-Iwabu, M., Iwabu, M., Kadowaki, T., Minokoshi, Y., & Yokoyama, S. (2011). Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain. Acta Crystallographica. Section D, Biological Crystallography, 67, 480–487.
-
(2011)
Acta Crystallographica. Section D, Biological Crystallography
, vol.67
, pp. 480-487
-
-
Handa, N.1
Takagi, T.2
Saijo, S.3
Kishishita, S.4
Takaya, D.5
Toyama, M.6
Terada, T.7
Shirouzu, M.8
Suzuki, A.9
Lee, S.10
Yamauchi, T.11
Okada-Iwabu, M.12
Iwabu, M.13
Kadowaki, T.14
Minokoshi, Y.15
Yokoyama, S.16
-
58
-
-
67649484365
-
Structural insight into the autoinhibition mechanism of AMP-activated protein kinase
-
COI: 1:CAS:528:DC%2BD1MXmsVGhsbw%3D
-
Chen, L., Jiao, Z. H., Zheng, L. S., Zhang, Y. Y., Xie, S. T., Wang, Z. X., & Wu, J. W. (2009). Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature, 459, 1146–1149.
-
(2009)
Nature
, vol.459
, pp. 1146-1149
-
-
Chen, L.1
Jiao, Z.H.2
Zheng, L.S.3
Zhang, Y.Y.4
Xie, S.T.5
Wang, Z.X.6
Wu, J.W.7
-
59
-
-
72949114063
-
Molecular mechanism for the regulation of human ACC2 through phosphorylation by AMPK
-
COI: 1:CAS:528:DC%2BC3cXptlOn
-
Cho, Y. S., Lee, J. I., Shin, D., Kim, H. T., Jung, H. Y., Lee, T. G., Kang, L. W., Ahn, Y. J., Cho, H. S., & Heo, Y. S. (2010). Molecular mechanism for the regulation of human ACC2 through phosphorylation by AMPK. Biochemical and Biophysical Research Communications, 391, 187–92.
-
(2010)
Biochemical and Biophysical Research Communications
, vol.391
, pp. 187-192
-
-
Cho, Y.S.1
Lee, J.I.2
Shin, D.3
Kim, H.T.4
Jung, H.Y.5
Lee, T.G.6
Kang, L.W.7
Ahn, Y.J.8
Cho, H.S.9
Heo, Y.S.10
-
60
-
-
77953066910
-
The crystal structure of protein MJ1225 from Methanocaldococcus jannaschii shows strong conservation of key structural features seen in the eukaryal gamma-AMPK
-
COI: 1:CAS:528:DC%2BC3cXmsVSkurw%3D
-
Gomez-Garcia, I., Oyenarte, I., & Martinez-Cruz, L. A. (2010). The crystal structure of protein MJ1225 from Methanocaldococcus jannaschii shows strong conservation of key structural features seen in the eukaryal gamma-AMPK. Journal of Molecular Biology, 399, 53–70.
-
(2010)
Journal of Molecular Biology
, vol.399
, pp. 53-70
-
-
Gomez-Garcia, I.1
Oyenarte, I.2
Martinez-Cruz, L.A.3
-
61
-
-
77956502807
-
An inhibited conformation for the protein kinase domain of the Saccharomyces cerevisiae AMPK homolog Snf1
-
COI: 1:CAS:528:DC%2BC3cXhtFamt7rO
-
Rudolph, M. J., Amodeo, G. A., & Tong, L. (2010). An inhibited conformation for the protein kinase domain of the Saccharomyces cerevisiae AMPK homolog Snf1. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 66, 999–1002.
-
(2010)
Acta Crystallographica Section F: Structural Biology and Crystallization Communications
, vol.66
, pp. 999-1002
-
-
Rudolph, M.J.1
Amodeo, G.A.2
Tong, L.3
-
62
-
-
80455160062
-
ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase
-
COI: 1:CAS:528:DC%2BC3MXhsVaqtb7L
-
Mayer, F. V., Heath, R., Underwood, E., Sanders, M. J., Carmena, D., McCartney, R. R., Leiper, F. C., Xiao, B., Jing, C., Walker, P. A., Haire, L. F., Ogrodowicz, R., Martin, S. R., Schmidt, M. C., Gamblin, S. J., & Carling, D. (2011). ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metabolism, 14, 707–714.
-
(2011)
Cell Metabolism
, vol.14
, pp. 707-714
-
-
Mayer, F.V.1
Heath, R.2
Underwood, E.3
Sanders, M.J.4
Carmena, D.5
McCartney, R.R.6
Leiper, F.C.7
Xiao, B.8
Jing, C.9
Walker, P.A.10
Haire, L.F.11
Ogrodowicz, R.12
Martin, S.R.13
Schmidt, M.C.14
Gamblin, S.J.15
Carling, D.16
-
63
-
-
84867665597
-
Crystal structure of human nur77 ligand-binding domain in complex with ethyl 2-[2,3,4 trimethoxy-6(1-octanoyl)phenyl]acetate
-
COI: 1:CAS:528:DC%2BC38XhtlCqu7jF
-
Zhan, Y., Chen, Y., Zhang, Q., Zhuang, J., Tian, M., Chen, H., Zhang, L., Zhang, H., He, J., Wang, W., Wu, R., Wang, Y., Shi, C., Yang, K., Li, A., Xin, Y., Li, T. Y., Yang, J. Y., Zheng, Z., Yu, C., Lin, S., Chang, C., Huang, P., Lin, T., & Wu, Q. (2012). Crystal structure of human nur77 ligand-binding domain in complex with ethyl 2-[2,3,4 trimethoxy-6(1-octanoyl)phenyl]acetate. Nature Chemical Biology, 8, 897–904.
-
(2012)
Nature Chemical Biology
, vol.8
, pp. 897-904
-
-
Zhan, Y.1
Chen, Y.2
Zhang, Q.3
Zhuang, J.4
Tian, M.5
Chen, H.6
Zhang, L.7
Zhang, H.8
He, J.9
Wang, W.10
Wu, R.11
Wang, Y.12
Shi, C.13
Yang, K.14
Li, A.15
Xin, Y.16
Li, T.Y.17
Yang, J.Y.18
Zheng, Z.19
Yu, C.20
Lin, S.21
Chang, C.22
Huang, P.23
Lin, T.24
Wu, Q.25
more..
-
64
-
-
84878971103
-
Conserved regulatory elements in AMPK
-
COI: 1:CAS:528:DC%2BC3sXptlGkurc%3D
-
Chen, L., Xin, F. J., Wang, J., Hu, J., Zhang, Y. Y., Wan, S., Cao, L. S., Lu, C., Li, P., Yan, S. F., Neumann, D., Schlattner, U., Xia, B., Wang, Z. X., & Wu, J. W. (2013). Conserved regulatory elements in AMPK. Nature, 498, E8–10.
-
(2013)
Nature
, vol.498
, pp. E8-E10
-
-
Chen, L.1
Xin, F.J.2
Wang, J.3
Hu, J.4
Zhang, Y.Y.5
Wan, S.6
Cao, L.S.7
Lu, C.8
Li, P.9
Yan, S.F.10
Neumann, D.11
Schlattner, U.12
Xia, B.13
Wang, Z.X.14
Wu, J.W.15
-
65
-
-
84905719900
-
Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms
-
COI: 1:CAS:528:DC%2BC2cXht1ags7bM
-
Calabrese, M. F., Rajamohan, F., Harris, M. S., Caspers, N. L., Magyar, R., Withka, J. M., Wang, H., Borzilleri, K. A., Sahasrabudhe, P. V., Hoth, L. R., Geoghegan, K. F., Han, S., Brown, J., Subashi, T. A., Reyes, A. R., Frisbie, R. K., Ward, J., Miller, R. A., Landro, J. A., Londregan, A. T., Carpino, P. A., Cabral, S., Smith, A. C., Conn, E. L., Cameron, K. O., Qiu, X., & Kurumbail, R. G. (2014). Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure, 22, 1161–1172.
-
(2014)
Structure
, vol.22
, pp. 1161-1172
-
-
Calabrese, M.F.1
Rajamohan, F.2
Harris, M.S.3
Caspers, N.L.4
Magyar, R.5
Withka, J.M.6
Wang, H.7
Borzilleri, K.A.8
Sahasrabudhe, P.V.9
Hoth, L.R.10
Geoghegan, K.F.11
Han, S.12
Brown, J.13
Subashi, T.A.14
Reyes, A.R.15
Frisbie, R.K.16
Ward, J.17
Miller, R.A.18
Landro, J.A.19
Londregan, A.T.20
Carpino, P.A.21
Cabral, S.22
Smith, A.C.23
Conn, E.L.24
Cameron, K.O.25
Qiu, X.26
Kurumbail, R.G.27
more..
-
66
-
-
84920276724
-
Structural basis of AMPK regulation by adenine nucleotides and glycogen
-
Li, X., Wang, L., Zhou, X. E., Ke, J., de Waal, P. W., Gu, X., Tan, M. H., Wang, D., Wu, D., Xu, H. E., & Melcher, K. (2015). Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Research, 25, 50–66.
-
(2015)
Cell Research
, vol.25
, pp. 50-66
-
-
Li, X.1
Wang, L.2
Zhou, X.E.3
Ke, J.4
de Waal, P.W.5
Gu, X.6
Tan, M.H.7
Wang, D.8
Wu, D.9
Xu, H.E.10
Melcher, K.11
-
67
-
-
0024786438
-
Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities
-
COI: 1:CAS:528:DyaK3cXpsVensA%3D%3D
-
Carling, D., Clarke, P. R., Zammit, V. A., & Hardie, D. G. (1989). Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. European Journal of Biochemistry, 186, 129–136.
-
(1989)
European Journal of Biochemistry
, vol.186
, pp. 129-136
-
-
Carling, D.1
Clarke, P.R.2
Zammit, V.A.3
Hardie, D.G.4
-
68
-
-
79953843867
-
Structural insights into the architecture and allostery of full-length AMP-activated protein kinase
-
COI: 1:CAS:528:DC%2BC3MXksFyit7k%3D
-
Zhu, L., Chen, L., Zhou, X. M., Zhang, Y. Y., Zhang, Y. J., Zhao, J., Ji, S. R., Wu, J. W., & Wu, Y. (2011). Structural insights into the architecture and allostery of full-length AMP-activated protein kinase. Structure, 19, 515–522.
-
(2011)
Structure
, vol.19
, pp. 515-522
-
-
Zhu, L.1
Chen, L.2
Zhou, X.M.3
Zhang, Y.Y.4
Zhang, Y.J.5
Zhao, J.6
Ji, S.R.7
Wu, J.W.8
Wu, Y.9
-
69
-
-
20844453735
-
Role of adenosine monophosphate-activated protein kinase in the control of energy homeostasis
-
COI: 1:CAS:528:DC%2BD2MXotFSlsLw%3D
-
Foufelle, F., & Ferre, P. (2005). Role of adenosine monophosphate-activated protein kinase in the control of energy homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 8, 355–360.
-
(2005)
Current Opinion in Clinical Nutrition and Metabolic Care
, vol.8
, pp. 355-360
-
-
Foufelle, F.1
Ferre, P.2
-
70
-
-
78650964142
-
Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans
-
COI: 1:CAS:528:DC%2BC3MXksFymtQ%3D%3D
-
Gauthier, M. S., O’Brien, E. L., Bigornia, S., Mott, M., Cacicedo, J. M., Xu, X. J., Gokce, N., Apovian, C., & Ruderman, N. (2011). Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochemical and Biophysical Research Communications, 404, 382–387.
-
(2011)
Biochemical and Biophysical Research Communications
, vol.404
, pp. 382-387
-
-
Gauthier, M.S.1
O’Brien, E.L.2
Bigornia, S.3
Mott, M.4
Cacicedo, J.M.5
Xu, X.J.6
Gokce, N.7
Apovian, C.8
Ruderman, N.9
-
71
-
-
66149088886
-
Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells
-
COI: 1:CAS:528:DC%2BD1MXnslWisbg%3D
-
Peairs, A., Radjavi, A., Davis, S., Li, L., Ahmed, A., Giri, S., & Reilly, C. M. (2009). Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells. Clinical and Experimental Immunology, 156, 542–551.
-
(2009)
Clinical and Experimental Immunology
, vol.156
, pp. 542-551
-
-
Peairs, A.1
Radjavi, A.2
Davis, S.3
Li, L.4
Ahmed, A.5
Giri, S.6
Reilly, C.M.7
-
72
-
-
84959550902
-
AMPK: a potent target for treating obesity
-
COI: 1:CAS:528:DC%2BC2cXntV2ntrg%3D
-
Gul, T., Balkhi, H. M., & Haq, E. (2013). AMPK: a potent target for treating obesity. International Journal of Pharmaceutics Chemestry Biological Science, 3, 801–813.
-
(2013)
International Journal of Pharmaceutics Chemestry Biological Science
, vol.3
, pp. 801-813
-
-
Gul, T.1
Balkhi, H.M.2
Haq, E.3
-
73
-
-
58149156184
-
Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model
-
COI: 1:CAS:528:DC%2BD1cXhsFWrs7bJ
-
Phoenix, K. N., Vumbaca, F., & Claffey, K. P. (2009). Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model. Breast Cancer Research and Treatment, 113, 101–111.
-
(2009)
Breast Cancer Research and Treatment
, vol.113
, pp. 101-111
-
-
Phoenix, K.N.1
Vumbaca, F.2
Claffey, K.P.3
-
74
-
-
59449093294
-
Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model
-
Hadad, S. M., Appleyard, V., & Thompson, A. M. (2009). Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERalpha negative MDA-MB-435 breast cancer model. Breast Cancer Research and Treatment, 114, 391.
-
(2009)
Breast Cancer Research and Treatment
, vol.114
, pp. 391
-
-
Hadad, S.M.1
Appleyard, V.2
Thompson, A.M.3
-
75
-
-
27144457438
-
Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms
-
COI: 1:CAS:528:DC%2BD2MXhtVOiurfK
-
Shibata, R., Sato, K., Pimentel, D. R., Takemura, Y., Kihara, S., Ohashi, K., Funahashi, T., Ouchi, N., & Walsh, K. (2005). Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nature Medicine, 11, 1096–1103.
-
(2005)
Nature Medicine
, vol.11
, pp. 1096-1103
-
-
Shibata, R.1
Sato, K.2
Pimentel, D.R.3
Takemura, Y.4
Kihara, S.5
Ohashi, K.6
Funahashi, T.7
Ouchi, N.8
Walsh, K.9
-
76
-
-
38749137749
-
Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart
-
COI: 1:CAS:528:DC%2BD1cXhs1Sit74%3D
-
Miller, E. J., Li, J., Leng, L., McDonald, C., Atsumi, T., Bucala, R., & Young, L. H. (2008). Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart. Nature, 451, 578–582.
-
(2008)
Nature
, vol.451
, pp. 578-582
-
-
Miller, E.J.1
Li, J.2
Leng, L.3
McDonald, C.4
Atsumi, T.5
Bucala, R.6
Young, L.H.7
-
77
-
-
77956267203
-
Involvement of AMP-activated-protein-kinase (AMPK) in neuronal amyloido- genesis
-
COI: 1:CAS:528:DC%2BC3cXhtFamsLjI
-
Won, J. S., Im, Y. B., Kim, J., Singh, A. K., & Singh, I. (2010). Involvement of AMP-activated-protein-kinase (AMPK) in neuronal amyloido- genesis. Biochemical and Biophysical Research Communications, 399, 487–491.
-
(2010)
Biochemical and Biophysical Research Communications
, vol.399
, pp. 487-491
-
-
Won, J.S.1
Im, Y.B.2
Kim, J.3
Singh, A.K.4
Singh, I.5
-
78
-
-
73149110119
-
Development of hepatic fibrosis occurs normally in AMPK-deficient mice
-
Morais, A. S., Abarca-Quinones, J., Guigas, B., Viollet, B., Starkel, P., Horsmans, Y., & Leclercq, I. A. (2010). Development of hepatic fibrosis occurs normally in AMPK-deficient mice. Clinical Science, 118, 411–420.
-
(2010)
Clinical Science
, vol.118
, pp. 411-420
-
-
Morais, A.S.1
Abarca-Quinones, J.2
Guigas, B.3
Viollet, B.4
Starkel, P.5
Horsmans, Y.6
Leclercq, I.A.7
-
79
-
-
79960490935
-
AMP-activated protein kinase: nature’s energy sensor
-
COI: 1:CAS:528:DC%2BC3MXovFyhsr0%3D
-
Carling, D., Mayer, F. V., Sanders, M. J., & Gamblin, S. J. (2011). AMP-activated protein kinase: nature’s energy sensor. Nature Chemical Biology, 7, 512–518.
-
(2011)
Nature Chemical Biology
, vol.7
, pp. 512-518
-
-
Carling, D.1
Mayer, F.V.2
Sanders, M.J.3
Gamblin, S.J.4
-
80
-
-
79961064109
-
5′-adenosine monophosphate-activated protein kinase and the metabolic syndrome
-
COI: 1:CAS:528:DC%2BC3MXhtVOksLnI
-
Mor, V., & Unnikrishnan, M. K. (2011). 5′-adenosine monophosphate-activated protein kinase and the metabolic syndrome. Endocrine, Metabolic & Immune Disorders Drug Targets, 11, 206–216.
-
(2011)
Endocrine, Metabolic & Immune Disorders Drug Targets
, vol.11
, pp. 206-216
-
-
Mor, V.1
Unnikrishnan, M.K.2
-
81
-
-
34247559795
-
Inhibition of adenosine monophosphate-activated protein kinase induces apoptosis in multiple myeloma cells
-
COI: 1:CAS:528:DC%2BD2sXis1anurw%3D
-
Baumann, P., Mandl-Weber, S., Emmerich, B., Straka, C., & Schmidmaier, R. (2007). Inhibition of adenosine monophosphate-activated protein kinase induces apoptosis in multiple myeloma cells. Anti-Cancer Drugs, 18, 405–410.
-
(2007)
Anti-Cancer Drugs
, vol.18
, pp. 405-410
-
-
Baumann, P.1
Mandl-Weber, S.2
Emmerich, B.3
Straka, C.4
Schmidmaier, R.5
-
82
-
-
79954580281
-
Role of 5′-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons
-
COI: 1:CAS:528:DC%2BC3MXkvVSqsLo%3D
-
Weisova, P., Davila, D., Tuffy, L. P., Ward, M. W., Concannon, C. G., & Prehn, J. H. (2011). Role of 5′-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxidants and Redox Signaling, 14, 1863–1876.
-
(2011)
Antioxidants and Redox Signaling
, vol.14
, pp. 1863-1876
-
-
Weisova, P.1
Davila, D.2
Tuffy, L.P.3
Ward, M.W.4
Concannon, C.G.5
Prehn, J.H.6
-
83
-
-
84904207540
-
LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase
-
COI: 1:CAS:528:DC%2BC2cXhtFaks7fN
-
Filippov, S., Pinkosky, S. L., & Newton, R. S. (2014). LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase. Current Opinion in Lipidology, 25, 309–315.
-
(2014)
Current Opinion in Lipidology
, vol.25
, pp. 309-315
-
-
Filippov, S.1
Pinkosky, S.L.2
Newton, R.S.3
-
84
-
-
40849092782
-
Adenosine 5′-monophosphate-activated protein kinase regulation of fatty acid oxidation in skeletal muscle
-
COI: 1:CAS:528:DC%2BD1cXisVaqsLk%3D
-
Osler, M. E., & Zierath, J. R. (2008). Adenosine 5′-monophosphate-activated protein kinase regulation of fatty acid oxidation in skeletal muscle. Endocrinology, 149, 935–941.
-
(2008)
Endocrinology
, vol.149
, pp. 935-941
-
-
Osler, M.E.1
Zierath, J.R.2
-
85
-
-
35548968099
-
A central role for neuronal adenosine 5′-monophosphate-activated protein kinase in cancer-induced anorexia
-
COI: 1:CAS:528:DC%2BD2sXht1aju7jK
-
Ropelle, E. R., Pauli, J. R., Zecchin, K. G., Ueno, M., de Souza, C. T., Morari, J., Faria, M. C., Velloso, L. A., Saad, M. J., & Carvalheira, J. B. (2007). A central role for neuronal adenosine 5′-monophosphate-activated protein kinase in cancer-induced anorexia. Endocrinology, 148, 5220–5229.
-
(2007)
Endocrinology
, vol.148
, pp. 5220-5229
-
-
Ropelle, E.R.1
Pauli, J.R.2
Zecchin, K.G.3
Ueno, M.4
de Souza, C.T.5
Morari, J.6
Faria, M.C.7
Velloso, L.A.8
Saad, M.J.9
Carvalheira, J.B.10
-
86
-
-
77951621306
-
Computational screening and QSAR analysis for design of AMP-activated protein kinase agonist
-
COI: 1:CAS:528:DC%2BC3cXmvVertbw%3D
-
Huang, H., Chen, C. Y., Chen, H. Y., Tsai, F. J., & Chen, C. Y. C. (2010). Computational screening and QSAR analysis for design of AMP-activated protein kinase agonist. Journal of the Taiwan Institute of Chemical Engineers, 41, 352–359.
-
(2010)
Journal of the Taiwan Institute of Chemical Engineers
, vol.41
, pp. 352-359
-
-
Huang, H.1
Chen, C.Y.2
Chen, H.Y.3
Tsai, F.J.4
Chen, C.Y.C.5
-
87
-
-
84856298335
-
Structural models of CFTR–AMPK and CFTR–PKA interactions: R-domain flexibility is a key factor in CFTR regulation
-
COI: 1:CAS:528:DC%2BC38XksVahsQ%3D%3D
-
Siwiak, M., Edelman, A., & Zielenkiewicz, P. (2012). Structural models of CFTR–AMPK and CFTR–PKA interactions: R-domain flexibility is a key factor in CFTR regulation. Journal of Molecular Modelling, 18, 83–90.
-
(2012)
Journal of Molecular Modelling
, vol.18
, pp. 83-90
-
-
Siwiak, M.1
Edelman, A.2
Zielenkiewicz, P.3
-
88
-
-
84905020680
-
Consensus scoring approach to identify the inhibitors of AMP-activated protein kinase α2 with virtual screening
-
COI: 1:CAS:528:DC%2BC2cXpsVKlurc%3D
-
Park, H., Eom, J. W., & Kim, Y. H. (2014). Consensus scoring approach to identify the inhibitors of AMP-activated protein kinase α2 with virtual screening. Journal of Chemical Information and Modeling, 54, 2139–2146.
-
(2014)
Journal of Chemical Information and Modeling
, vol.54
, pp. 2139-2146
-
-
Park, H.1
Eom, J.W.2
Kim, Y.H.3
-
89
-
-
84864369594
-
Metformin interacts with AMPK through binding to γ subunit
-
COI: 1:CAS:528:DC%2BC38XhtFSisrfP
-
Zhang, Y., Wang, Y., Bao, C., Xu, Y., Shen, H., Chen, J., Yan, J., & Chen, Y. (2012). Metformin interacts with AMPK through binding to γ subunit. Molecular and Cellular Biochemistry, 368, 69–76.
-
(2012)
Molecular and Cellular Biochemistry
, vol.368
, pp. 69-76
-
-
Zhang, Y.1
Wang, Y.2
Bao, C.3
Xu, Y.4
Shen, H.5
Chen, J.6
Yan, J.7
Chen, Y.8
-
90
-
-
84879688358
-
In vivo antidiabetic activity and in silico studies on adenosine monophosphate-activated protein kinase (AMPK) of (2E,5E)-2,5-bis(4-hydroxy-3-methoxybenzylidene) cyclopentanone
-
COI: 1:CAS:528:DC%2BC38XhsVKgsrjE
-
Raj, C. G. D., Sarojini, B. K., Khan, M. T. H., & Raghavendra, R. (2013). In vivo antidiabetic activity and in silico studies on adenosine monophosphate-activated protein kinase (AMPK) of (2E,5E)-2,5-bis(4-hydroxy-3-methoxybenzylidene) cyclopentanone. Medicinal Chemistry Research, 22, 2430–2436.
-
(2013)
Medicinal Chemistry Research
, vol.22
, pp. 2430-2436
-
-
Raj, C.G.D.1
Sarojini, B.K.2
Khan, M.T.H.3
Raghavendra, R.4
-
91
-
-
47049103144
-
Small molecule antagonizes autoinhibition and activates AMP-activated protein kinase in cells
-
COI: 1:CAS:528:DC%2BD1cXmsFerurw%3D
-
Pang, T., Zhang, Z. S., Gu, M., Qiu, B. Y., Yu, L. F., Cao, P. R., Shao, W., Su, M. B., Li, J. Y., Nan, F. J., & Li, J. (2008). Small molecule antagonizes autoinhibition and activates AMP-activated protein kinase in cells. Journal of Biological Chemistry, 283, 16051–16060.
-
(2008)
Journal of Biological Chemistry
, vol.283
, pp. 16051-16060
-
-
Pang, T.1
Zhang, Z.S.2
Gu, M.3
Qiu, B.Y.4
Yu, L.F.5
Cao, P.R.6
Shao, W.7
Su, M.B.8
Li, J.Y.9
Nan, F.J.10
Li, J.11
-
92
-
-
79960949523
-
The dynamical mechanism of auto-inhibition of AMP activated protein kinase
-
COI: 1:CAS:528:DC%2BC3MXhtVGqs7jL
-
Peng, C., & Head-Gordon, T. (2011). The dynamical mechanism of auto-inhibition of AMP activated protein kinase. PLoS Computational Biology, 7, e1002082.
-
(2011)
PLoS Computational Biology
, vol.7
, pp. e1002082
-
-
Peng, C.1
Head-Gordon, T.2
-
93
-
-
84897871640
-
AMPK-derived peptides reduce blood glucose levels but lead to fat retention in the liver of obese mice
-
COI: 1:CAS:528:DC%2BC2cXmslGmsbw%3D
-
Chapnik, N., Genzer, Y., Ben-Shimon, A., Niv, M. Y., & Froy, O. (2014). AMPK-derived peptides reduce blood glucose levels but lead to fat retention in the liver of obese mice. Journal of Endocrinology, 221, 89–99.
-
(2014)
Journal of Endocrinology
, vol.221
, pp. 89-99
-
-
Chapnik, N.1
Genzer, Y.2
Ben-Shimon, A.3
Niv, M.Y.4
Froy, O.5
-
94
-
-
74049160838
-
Study of AMP-activated protein kinase agonists by structure-based drug designing
-
Chang, Y. H., Ho, T. Y., Wu, C. H., Chen, C. Y., Huang, H. J., Tsai, F. J., Tsai, C. H., & Chen, C. Y. C. (2009). Study of AMP-activated protein kinase agonists by structure-based drug designing. Advances in Materials Research, 79–82, 2187–2190.
-
(2009)
Advances in Materials Research
, vol.79-82
, pp. 2187-2190
-
-
Chang, Y.H.1
Ho, T.Y.2
Wu, C.H.3
Chen, C.Y.4
Huang, H.J.5
Tsai, F.J.6
Tsai, C.H.7
Chen, C.Y.C.8
-
95
-
-
58149095366
-
Novel d-xylose derivatives stimulate muscle glucose uptake by activating AMP-activated protein kinase alpha
-
COI: 1:CAS:528:DC%2BD1cXhsVKlu7nP
-
Gruzman, A., Shamni, O., Ben Yakir, M., Sandovski, D., Elgart, A., Alpert, E., Cohen, G., Hoffman, A., Katzhendler, Y., Cerasi, E., & Sasson, S. (2008). Novel d-xylose derivatives stimulate muscle glucose uptake by activating AMP-activated protein kinase alpha. Journal of Medicinal Chemistry, 51, 8096–8108.
-
(2008)
Journal of Medicinal Chemistry
, vol.51
, pp. 8096-8108
-
-
Gruzman, A.1
Shamni, O.2
Ben Yakir, M.3
Sandovski, D.4
Elgart, A.5
Alpert, E.6
Cohen, G.7
Hoffman, A.8
Katzhendler, Y.9
Cerasi, E.10
Sasson, S.11
-
96
-
-
84867876478
-
Synthesis and structure–activity relationship of berberine analogues in LDLR up-regulation and AMPK activation
-
COI: 1:CAS:528:DC%2BC38XhsVyhsbvL
-
Wang, Y., Kong, W., Li, Y., Tang, S., Li, Z., Li, Y., Shan, Y., Bi, C., Jiang, J., & Song, D. (2012). Synthesis and structure–activity relationship of berberine analogues in LDLR up-regulation and AMPK activation. Bioorganic and Medicinal Chemistry, 20, 6552–6558.
-
(2012)
Bioorganic and Medicinal Chemistry
, vol.20
, pp. 6552-6558
-
-
Wang, Y.1
Kong, W.2
Li, Y.3
Tang, S.4
Li, Z.5
Li, Y.6
Shan, Y.7
Bi, C.8
Jiang, J.9
Song, D.10
-
97
-
-
84896317901
-
Molecular docking and molecular dynamics study on the effect of ERCC1 deleterious polymorphisms in ERCC1-XPF heterodimer
-
Doss, C. G. P., & Nagasundaram, N. (2014). Molecular docking and molecular dynamics study on the effect of ERCC1 deleterious polymorphisms in ERCC1-XPF heterodimer. Applied Biochemistry and Biotechnology, 172, 1265–1281.
-
(2014)
Applied Biochemistry and Biotechnology
, vol.172
, pp. 1265-1281
-
-
Doss, C.G.P.1
Nagasundaram, N.2
-
98
-
-
84894442813
-
Probing the binding of syzygium-derived α-glucosidase inhibitors with N- and C-terminal human maltase glucoamylase by docking and molecular dynamics simulation
-
COI: 1:CAS:528:DC%2BC3sXhsVKnsr%2FN
-
Roy, D., Kumar, V., Acharya, K. K., & Thirumurugan, K. (2014). Probing the binding of syzygium-derived α-glucosidase inhibitors with N- and C-terminal human maltase glucoamylase by docking and molecular dynamics simulation. Applied Biochemistry and Biotechnology, 172, 102–114.
-
(2014)
Applied Biochemistry and Biotechnology
, vol.172
, pp. 102-114
-
-
Roy, D.1
Kumar, V.2
Acharya, K.K.3
Thirumurugan, K.4
-
99
-
-
84879884187
-
Activation of nucleotide-binding oligomerization domain 1 (NOD1) receptor signaling in labeo rohita by iE-DAP and identification of ligand-binding key motifs in NOD1 by molecular modeling and docking
-
COI: 1:CAS:528:DC%2BC3sXhtVCrtbrK
-
Sahoo, B. R., Swain, B., Dikhit, M. R., Basu, M., Bej, A., Jayasankar, P., & Samanta, M. (2013). Activation of nucleotide-binding oligomerization domain 1 (NOD1) receptor signaling in labeo rohita by iE-DAP and identification of ligand-binding key motifs in NOD1 by molecular modeling and docking. Applied Biochemistry and Biotechnology, 170, 1282–1309.
-
(2013)
Applied Biochemistry and Biotechnology
, vol.170
, pp. 1282-1309
-
-
Sahoo, B.R.1
Swain, B.2
Dikhit, M.R.3
Basu, M.4
Bej, A.5
Jayasankar, P.6
Samanta, M.7
-
100
-
-
84896317007
-
Molecular modeling and docking studies of O-succinylbenzoate synthase of M. tuberculosis—a potential target for antituberculosis drug design
-
COI: 1:CAS:528:DC%2BC3sXhslClt7rI
-
Pulaganti, M., Banaganapalli, B., Mulakayala, C., Chitta, S. K., & Anuradha, C. M. (2014). Molecular modeling and docking studies of O-succinylbenzoate synthase of M. tuberculosis—a potential target for antituberculosis drug design. Applied Biochemistry and Biotechnology, 172, 1407–1432.
-
(2014)
Applied Biochemistry and Biotechnology
, vol.172
, pp. 1407-1432
-
-
Pulaganti, M.1
Banaganapalli, B.2
Mulakayala, C.3
Chitta, S.K.4
Anuradha, C.M.5
-
101
-
-
84937976449
-
Virtual screening and molecular dynamics simulations from a bank of molecules of the amazon region against functional NS3-4A protease-helicase enzyme of hepatitis C virus
-
COI: 1:CAS:528:DC%2BC2MXovFOgsLw%3D
-
Pinheiro, A. S., Duarte, J. B. C., Alves, C. N., & Alberto de Molfetta, F. (2015). Virtual screening and molecular dynamics simulations from a bank of molecules of the amazon region against functional NS3-4A protease-helicase enzyme of hepatitis C virus. Applied Biochemistry and Biotechnology, 176, 1709–1721.
-
(2015)
Applied Biochemistry and Biotechnology
, vol.176
, pp. 1709-1721
-
-
Pinheiro, A.S.1
Duarte, J.B.C.2
Alves, C.N.3
Alberto de Molfetta, F.4
-
102
-
-
84892167193
-
Integrated approach to structure-based enzymatic drug design: molecular modeling, spectroscopy, and experimental bioactivity
-
COI: 1:CAS:528:DC%2BC3sXhsVaru7jE
-
Honarparvar, B., Govender, T., Maguire, G. E., Soliman, M. E., & Kruger, H. G. (2014). Integrated approach to structure-based enzymatic drug design: molecular modeling, spectroscopy, and experimental bioactivity. Chemical Reviews, 114, 493–537.
-
(2014)
Chemical Reviews
, vol.114
, pp. 493-537
-
-
Honarparvar, B.1
Govender, T.2
Maguire, G.E.3
Soliman, M.E.4
Kruger, H.G.5
-
103
-
-
0013815214
-
Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units
-
COI: 1:CAS:528:DyaF28XmvFWksA%3D%3D
-
Ramakrishnan, C., & Ramachandran, G. N. (1965). Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units. Biophysical Journal, 5, 909–933.
-
(1965)
Biophysical Journal
, vol.5
, pp. 909-933
-
-
Ramakrishnan, C.1
Ramachandran, G.N.2
-
104
-
-
77953513118
-
Improved side-chain torsion potentials for the Amber ff99SB protein force field
-
COI: 1:CAS:528:DC%2BC3cXkvFegtLo%3D
-
Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 78, 1950–1958.
-
(2010)
Proteins: Structure, Function, and Bioinformatics
, vol.78
, pp. 1950-1958
-
-
Lindorff-Larsen, K.1
Piana, S.2
Palmo, K.3
Maragakis, P.4
Klepeis, J.L.5
Dror, R.O.6
Shaw, D.E.7
-
105
-
-
85019291207
-
Tripos Inc
-
SYBYL (2007) Tripos Inc, St Louis.
-
(2007)
St Louis
-
-
-
106
-
-
84959504780
-
Sherbooke St. West
-
Montreal, QC: Canada
-
Molecular Operating Environment (MOE), Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada.
-
Suite #910
-
-
-
107
-
-
0036680148
-
Lead discovery using molecular docking
-
COI: 1:CAS:528:DC%2BD38XlsVyjtbs%3D
-
Shoichet, B. K., McGovern, S. L., Wei, B., & Irwin, J. J. (2002). Lead discovery using molecular docking. Current Opinion in Chemical Biology, 6, 439–446.
-
(2002)
Current Opinion in Chemical Biology
, vol.6
, pp. 439-446
-
-
Shoichet, B.K.1
McGovern, S.L.2
Wei, B.3
Irwin, J.J.4
-
108
-
-
13244266921
-
Lead- and drug-like compounds: the rule-of-five revolution
-
COI: 1:CAS:528:DC%2BD2MXhtlSqsrg%3D
-
Lipinski, C. A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 1, 337–341.
-
(2004)
Drug Discovery Today: Technologies
, vol.1
, pp. 337-341
-
-
Lipinski, C.A.1
-
109
-
-
70349932423
-
AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
-
COI: 1:CAS:528:DC%2BD1MXht1GitrnK
-
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791.
-
(2009)
Journal of Computational Chemistry
, vol.30
, pp. 2785-2791
-
-
Morris, G.M.1
Huey, R.2
Lindstrom, W.3
Sanner, M.F.4
Belew, R.K.5
Goodsell, D.S.6
Olson, A.J.7
-
110
-
-
80054911951
-
LigPlot+: multiple ligand-protein interaction diagrams for drug discovery
-
COI: 1:CAS:528:DC%2BC3MXht1KjtrzP
-
Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.
-
(2011)
Journal of Chemical Information and Modeling
, vol.51
, pp. 2778-2786
-
-
Laskowski, R.A.1
Swindells, M.B.2
-
111
-
-
36849126204
-
Studies in molecular dynamics. I. General method
-
COI: 1:CAS:528:DyaF3cXitVygsA%3D%3D
-
Alder, B. J., & Wainwright, T. (1959). Studies in molecular dynamics. I. General method. Journal of Chemical Physics, 31, 459–466.
-
(1959)
Journal of Chemical Physics
, vol.31
, pp. 459-466
-
-
Alder, B.J.1
Wainwright, T.2
-
112
-
-
30444448249
-
The GROMOS software for biomolecular simulation: GROMOS05
-
COI: 1:CAS:528:DC%2BD2MXht1SlsbbP
-
Christen, M., Hunenberger, P. H., Bakowies, D., Baron, R., Burgi, R., Geerke, D. P., Heinz, T. N., Kastenholz, M. A., Krautler, V., Oostenbrink, C., Peter, C., Trzesniak, D., & van Gunsteren, W. F. (2005). The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry, 26, 1719–1751.
-
(2005)
Journal of Computational Chemistry
, vol.26
, pp. 1719-1751
-
-
Christen, M.1
Hunenberger, P.H.2
Bakowies, D.3
Baron, R.4
Burgi, R.5
Geerke, D.P.6
Heinz, T.N.7
Kastenholz, M.A.8
Krautler, V.9
Oostenbrink, C.10
Peter, C.11
Trzesniak, D.12
van Gunsteren, W.F.13
-
113
-
-
33749138226
-
Mining frequent patterns for AMP-activated protein kinase regulation on skeletal muscle
-
Chen, Q., & Chen, Y. P. (2006). Mining frequent patterns for AMP-activated protein kinase regulation on skeletal muscle. BMC Bioinformatics, 7, 394.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 394
-
-
Chen, Q.1
Chen, Y.P.2
|