메뉴 건너뛰기




Volumn 3, Issue 2, 2015, Pages

Mechanisms of DNA transposition

Author keywords

[No Author keywords available]

Indexed keywords

DNA; TRANSPOSASE; TRANSPOSON;

EID: 84959059091     PISSN: None     EISSN: 21650497     Source Type: Journal    
DOI: 10.1128/microbiolspec.MDNA3-0034-2014     Document Type: Article
Times cited : (80)

References (182)
  • 1
    • 0242636324 scopus 로고    scopus 로고
    • The outs and ins of transposition: From Mu to kangaroo
    • Curcio MJ, Derbyshire KM. 2003. The outs and ins of transposition: From Mu to kangaroo. Nature Rev Mol Cell Biol 4:865-877.
    • (2003) Nature Rev Mol Cell Biol , vol.4 , pp. 865-877
    • Curcio, M.J.1    Derbyshire, K.M.2
  • 2
    • 79958040710 scopus 로고    scopus 로고
    • Moving DNA around: DNA transposition and retroviral integration
    • Montaño SP, Rice PA. 2011. Moving DNA around: DNA transposition and retroviral integration. Curr Opin Struct Biol 21:370-378.
    • (2011) Curr Opin Struct Biol , vol.21 , pp. 370-378
    • Montaño, S.P.1    Rice, P.A.2
  • 4
    • 79951678159 scopus 로고    scopus 로고
    • Nucleases: diversity of structure, function and mechanism
    • Yang W. 2011. Nucleases: diversity of structure, function and mechanism. Quart Rev Biophys 44:1-93.
    • (2011) Quart Rev Biophys , vol.44 , pp. 1-93
    • Yang, W.1
  • 5
    • 0028584269 scopus 로고
    • Crystal structure of the catalytic domain of HIV-1 integrase: Similarity to other polynucleotidyl transferases
    • Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR. 1994. Crystal structure of the catalytic domain of HIV-1 integrase: Similarity to other polynucleotidyl transferases. Science 266: 1981-1986.
    • (1994) Science , vol.266 , pp. 1981-1986
    • Dyda, F.1    Hickman, A.B.2    Jenkins, T.M.3    Engelman, A.4    Craigie, R.5    Davies, D.R.6
  • 6
    • 0029129435 scopus 로고
    • Structure of the bacteriophage Mu transposase core: A common structural motif for DNA transposition and retroviral integration
    • Rice P, Mizuuchi K. 1995. Structure of the bacteriophage Mu transposase core: A common structural motif for DNA transposition and retroviral integration. Cell 82:209-220.
    • (1995) Cell , vol.82 , pp. 209-220
    • Rice, P.1    Mizuuchi, K.2
  • 7
    • 79956364806 scopus 로고    scopus 로고
    • The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies
    • Yuan YW, Wessler SR. 2011. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci USA 108: 7884-7889.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 7884-7889
    • Yuan, Y.W.1    Wessler, S.R.2
  • 8
    • 0027205506 scopus 로고
    • Computer-assisted dissection of rolling circle DNA replication
    • Koonin EV, Ilyina TV. 1993. Computer-assisted dissection of rolling circle DNA replication. BioSystems 30:241-268.
    • (1993) BioSystems , vol.30 , pp. 241-268
    • Koonin, E.V.1    Ilyina, T.V.2
  • 9
    • 0036229438 scopus 로고    scopus 로고
    • Diversity in the serine recombinases
    • Smith MCM, Thorpe HM. 2002. Diversity in the serine recombinases. Mol Microbiol 44:299-307.
    • (2002) Mol Microbiol , vol.44 , pp. 299-307
    • Smith, M.C.M.1    Thorpe, H.M.2
  • 10
    • 77953258878 scopus 로고    scopus 로고
    • Sitespecific recombination by FC31 integrase and other large serine recombinases
    • Smith MCM, Brown WRA, McEwan AR, Rowley PA. 2010. Sitespecific recombination by FC31 integrase and other large serine recombinases. Biochem Soc Trans 38:388-394.
    • (2010) Biochem Soc Trans , vol.38 , pp. 388-394
    • Smith, M.C.M.1    Brown, W.R.A.2    McEwan, A.R.3    Rowley, P.A.4
  • 11
    • 66749140560 scopus 로고    scopus 로고
    • Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions
    • Rajeev L, Malanowska K, Gardner JF. 2009. Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev 73:300-309.
    • (2009) Microbiol Mol Biol Rev , vol.73 , pp. 300-309
    • Rajeev, L.1    Malanowska, K.2    Gardner, J.F.3
  • 12
    • 0026019625 scopus 로고
    • Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism
    • Beese LS, Steitz TA. 1991. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J 10:25-33.
    • (1991) EMBO J , vol.10 , pp. 25-33
    • Beese, L.S.1    Steitz, T.A.2
  • 13
    • 21244451435 scopus 로고    scopus 로고
    • Crystal structures of RNase H bound to an RNA/DNA hybrid: Substrate specificity and metal-dependent catalysis
    • Nowotny M, Gaidamakov SA, Crouch RJ, Yang W. 2005. Crystal structures of RNase H bound to an RNA/DNA hybrid: Substrate specificity and metal-dependent catalysis. Cell 121:1005-1016.
    • (2005) Cell , vol.121 , pp. 1005-1016
    • Nowotny, M.1    Gaidamakov, S.A.2    Crouch, R.J.3    Yang, W.4
  • 14
    • 33646004109 scopus 로고    scopus 로고
    • Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release
    • Nowotny M, Yang W. 2006. Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO J 25:1924-1933.
    • (2006) EMBO J , vol.25 , pp. 1924-1933
    • Nowotny, M.1    Yang, W.2
  • 15
    • 67650433782 scopus 로고    scopus 로고
    • Artificial reaction coordinate "tunneling" in free-energy calculations: The catalytic reaction of RNase H
    • Rosta E, Woodcock HL, Brooks BR, Hummer G. 2009. Artificial reaction coordinate "tunneling" in free-energy calculations: The catalytic reaction of RNase H. J Comput Chem 30:1634-1641.
    • (2009) J Comput Chem , vol.30 , pp. 1634-1641
    • Rosta, E.1    Woodcock, H.L.2    Brooks, B.R.3    Hummer, G.4
  • 16
    • 79958776843 scopus 로고    scopus 로고
    • Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations
    • Rosta E, Nowotny M, Yang W, Hummer G. 2011. Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations. J Am Chem Soc 133:8934-8941.
    • (2011) J Am Chem Soc , vol.133 , pp. 8934-8941
    • Rosta, E.1    Nowotny, M.2    Yang, W.3    Hummer, G.4
  • 17
    • 0025899314 scopus 로고
    • Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism
    • Mizuuchi K, Adzuma K. 1991. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism. Cell 66:129-140.
    • (1991) Cell , vol.66 , pp. 129-140
    • Mizuuchi, K.1    Adzuma, K.2
  • 18
    • 0026330796 scopus 로고
    • HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer
    • Engelman A, Mizuuchi K, Craigie R. 1991. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67: 1211-1221.
    • (1991) Cell , vol.67 , pp. 1211-1221
    • Engelman, A.1    Mizuuchi, K.2    Craigie, R.3
  • 19
    • 0034724557 scopus 로고    scopus 로고
    • Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: Insights from phosphorothioate stereoselectivity
    • Kennedy AK, Haniford DB, Mizuuchi K. 2000. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: Insights from phosphorothioate stereoselectivity. Cell 101:295-305.
    • (2000) Cell , vol.101 , pp. 295-305
    • Kennedy, A.K.1    Haniford, D.B.2    Mizuuchi, K.3
  • 20
    • 0028863006 scopus 로고
    • Disassembly of the Mu transposase tetramer by the ClpX chaperone
    • Levchenko I, Luo L, Baker TA. 1995. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev 9:2399-2408.
    • (1995) Genes Dev , vol.9 , pp. 2399-2408
    • Levchenko, I.1    Luo, L.2    Baker, T.A.3
  • 21
    • 0030050236 scopus 로고    scopus 로고
    • The three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site
    • Bolland S, Kleckner N. 1996. The three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site. Cell 84:223-233.
    • (1996) Cell , vol.84 , pp. 223-233
    • Bolland, S.1    Kleckner, N.2
  • 22
    • 84896819934 scopus 로고    scopus 로고
    • Calcium inhibition of Ribonuclease H1 two-metal ion catalysis
    • Rosta E, Yang W, Hummer G. 2014. Calcium inhibition of Ribonuclease H1 two-metal ion catalysis. J Am Chem Soc 136:3137-3144.
    • (2014) J Am Chem Soc , vol.136 , pp. 3137-3144
    • Rosta, E.1    Yang, W.2    Hummer, G.3
  • 23
    • 0029096898 scopus 로고
    • The phage Mu transpososome core: DNA requirements for assembly and function
    • Savilahti H, Rice PA, Mizuuchi K. 1995. The phage Mu transpososome core: DNA requirements for assembly and function. EMBO J 14:4893-4903.
    • (1995) EMBO J , vol.14 , pp. 4893-4903
    • Savilahti, H.1    Rice, P.A.2    Mizuuchi, K.3
  • 24
    • 0027184481 scopus 로고
    • A general two-metal-ion mechanism for catalytic RNA
    • Steitz TA, Steitz JA. 1993. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90:6498-6502.
    • (1993) Proc Natl Acad Sci USA , vol.90 , pp. 6498-6502
    • Steitz, T.A.1    Steitz, J.A.2
  • 25
    • 24644492337 scopus 로고    scopus 로고
    • Structural evidence for a two-metal-ion mechanism of group I intron splicing
    • Stahley MR, Strobel SA. 2005. Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309:1587-1590.
    • (2005) Science , vol.309 , pp. 1587-1590
    • Stahley, M.R.1    Strobel, S.A.2
  • 26
    • 59649101866 scopus 로고    scopus 로고
    • Retroviral integrase superfamily: the structural perspective
    • Nowotny M. 2009. Retroviral integrase superfamily: the structural perspective. EMBO Reports 10:144-151.
    • (2009) EMBO Reports , vol.10 , pp. 144-151
    • Nowotny, M.1
  • 27
    • 84863676249 scopus 로고    scopus 로고
    • Watching DNA polymerase η make a phosphodiester bond
    • Nakamura T, Zhao Y, Yamagata Y, Hua YJ, Yang W. 2012. Watching DNA polymerase η make a phosphodiester bond. Nature 487:196-201.
    • (2012) Nature , vol.487 , pp. 196-201
    • Nakamura, T.1    Zhao, Y.2    Yamagata, Y.3    Hua, Y.J.4    Yang, W.5
  • 28
    • 84863823336 scopus 로고    scopus 로고
    • 3'-processing and strand transfer catalysed by retroviral integrase in crystallo
    • Hare S, Maertens GN, Cherepanov P. 3'-processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J 31:3020-3028.
    • EMBO J , vol.31 , pp. 3020-3028
    • Hare, S.1    Maertens, G.N.2    Cherepanov, P.3
  • 29
    • 25144496154 scopus 로고    scopus 로고
    • Transposition of ISHp608, member of an unusual family of bacterial insertion sequences
    • Ton-Hoang B, Guynet C, Ronning DR, Cointin-Marty B, Dyda F, Chandler M. 2005. Transposition of ISHp608, member of an unusual family of bacterial insertion sequences. EMBO J 24:3325-3338.
    • (2005) EMBO J , vol.24 , pp. 3325-3338
    • Ton-Hoang, B.1    Guynet, C.2    Ronning, D.R.3    Cointin-Marty, B.4    Dyda, F.5    Chandler, M.6
  • 31
  • 32
    • 38649116679 scopus 로고    scopus 로고
    • Mechanism of IS200/IS605 family DNA transposases: Activation and transposon-directed target site selection
    • Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, Dyda F. 2008. Mechanism of IS200/IS605 family DNA transposases: Activation and transposon-directed target site selection. Cell 132:208-220.
    • (2008) Cell , vol.132 , pp. 208-220
    • Barabas, O.1    Ronning, D.R.2    Guynet, C.3    Hickman, A.B.4    Ton-Hoang, B.5    Chandler, M.6    Dyda, F.7
  • 34
    • 80455178800 scopus 로고    scopus 로고
    • Reconstitution of a functional IS608 single-strand transpososome: role of non-canonical base pairing
    • He S, Hickman AB, Dyda F, Johnson NP, Chandler M, Ton-Hoang B. 2011. Reconstitution of a functional IS608 single-strand transpososome: role of non-canonical base pairing. Nucl Acids Res 39:8503-8512.
    • (2011) Nucl Acids Res , vol.39 , pp. 8503-8512
    • He, S.1    Hickman, A.B.2    Dyda, F.3    Johnson, N.P.4    Chandler, M.5    Ton-Hoang, B.6
  • 36
    • 0036671409 scopus 로고    scopus 로고
    • Structural unity among viral origin binding proteins: Crystal structure of the nuclease domain of adeno-associated virus Rep
    • Hickman AB, Ronning DR, Kotin RM, Dyda F. 2002. Structural unity among viral origin binding proteins: Crystal structure of the nuclease domain of adeno-associated virus Rep. Mol Cell 10:327-337.
    • (2002) Mol Cell , vol.10 , pp. 327-337
    • Hickman, A.B.1    Ronning, D.R.2    Kotin, R.M.3    Dyda, F.4
  • 38
    • 0242542025 scopus 로고    scopus 로고
    • Structural insights into singlestranded DNA binding and cleavage by F factor TraI
    • Datta S, Larkin C, Schildbach JF. 2003. Structural insights into singlestranded DNA binding and cleavage by F factor TraI. Struct 11:1369-1379.
    • (2003) Struct , vol.11 , pp. 1369-1379
    • Datta, S.1    Larkin, C.2    Schildbach, J.F.3
  • 39
    • 33646850212 scopus 로고    scopus 로고
    • Unveiling the molecular mechanism of a conjugative relaxase: The structure of TrwC complexed with a 27-mer DNA comprising the recognition hairpin and the cleavage site
    • Boer R, Russi S, Guasch A, Lucas M, Blanco AG, Pérez-Luque R, Coll M, de la Cruz F. 2006. Unveiling the molecular mechanism of a conjugative relaxase: The structure of TrwC complexed with a 27-mer DNA comprising the recognition hairpin and the cleavage site. J Mol Biol 358:857-869.
    • (2006) J Mol Biol , vol.358 , pp. 857-869
    • Boer, R.1    Russi, S.2    Guasch, A.3    Lucas, M.4    Blanco, A.G.5    Pérez-Luque, R.6    Coll, M.7    de la Cruz, F.8
  • 40
    • 33745125702 scopus 로고    scopus 로고
    • ISCR elements: Novel gene-capturing systems of the 21st century?
    • Toleman MA, Bennett PM, Walsh TR. 2006. ISCR elements: Novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev 70: 296-316.
    • (2006) Microbiol Mol Biol Rev , vol.70 , pp. 296-316
    • Toleman, M.A.1    Bennett, P.M.2    Walsh, T.R.3
  • 42
    • 84868147781 scopus 로고    scopus 로고
    • The processing of repetitive extragenic palindromes: the structure of a repetitive extragenic palindrome bound to its associated nuclease
    • Messing SAJ, Ton-Hoang B, Hickman AB, McCubbin AJ, Peaslee GF, Ghirlando R, Chandler M, Dyda F. 2012. The processing of repetitive extragenic palindromes: the structure of a repetitive extragenic palindrome bound to its associated nuclease. Nucl Acids Res 40:9964-9979.
    • (2012) Nucl Acids Res , vol.40 , pp. 9964-9979
    • Messing, S.A.J.1    Ton-Hoang, B.2    Hickman, A.B.3    McCubbin, A.J.4    Peaslee, G.F.5    Ghirlando, R.6    Chandler, M.7    Dyda, F.8
  • 43
    • 76749135815 scopus 로고    scopus 로고
    • Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes
    • Nunvar J, Huckova T, Licha I. 2010. Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes. BMC Genomics 11:44.
    • (2010) BMC Genomics , vol.11 , pp. 44
    • Nunvar, J.1    Huckova, T.2    Licha, I.3
  • 44
    • 0035902449 scopus 로고    scopus 로고
    • Rolling-circle transposons in eukaryotes
    • Kapitonov VV, Jurka J. 2001. Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98:8714-8719.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8714-8719
    • Kapitonov, V.V.1    Jurka, J.2
  • 45
    • 0035979218 scopus 로고    scopus 로고
    • Treasures in the attic: Rolling circle transposons discovered in eukaryotic genomes
    • Feschotte C, Wessler SR. 2001. Treasures in the attic: Rolling circle transposons discovered in eukaryotic genomes. Proc Natl Acad Sci USA 98:8923-8924.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8923-8924
    • Feschotte, C.1    Wessler, S.R.2
  • 46
    • 33846931279 scopus 로고    scopus 로고
    • Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus
    • Pritham EJ, Feschotte C. 2007. Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci USA 104:1895-1900.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 1895-1900
    • Pritham, E.J.1    Feschotte, C.2
  • 47
    • 0033806018 scopus 로고    scopus 로고
    • Functional organization and insertion specificity of IS607, a chimeric element of Helicobacter pylori
    • Kersulyte D, Mukhopadhyay AK, Shirai M, Nakazawa T, Berg DE. 2000. Functional organization and insertion specificity of IS607, a chimeric element of Helicobacter pylori. J Bacteriol 182:5300-5308.
    • (2000) J Bacteriol , vol.182 , pp. 5300-5308
    • Kersulyte, D.1    Mukhopadhyay, A.K.2    Shirai, M.3    Nakazawa, T.4    Berg, D.E.5
  • 48
    • 84887046121 scopus 로고    scopus 로고
    • A proposed mechanism for IS607-family serine transposases
    • Boocock MR, Rice PA. 2013. A proposed mechanism for IS607-family serine transposases. Mobile DNA 4:24.
    • (2013) Mobile DNA , vol.4 , pp. 24
    • Boocock, M.R.1    Rice, P.A.2
  • 49
    • 0028998170 scopus 로고
    • Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule
    • Bannam TL, Crellin PK, Rood JI. 1995. Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule. Mol Microbiol 16:535-551.
    • (1995) Mol Microbiol , vol.16 , pp. 535-551
    • Bannam, T.L.1    Crellin, P.K.2    Rood, J.I.3
  • 50
    • 0033710355 scopus 로고    scopus 로고
    • Transposition of Tn4451 and Tn4453 involves a circular intermediate that forms a promoter for the large resolvase, TnpX
    • Lyras D, Rood JI. 2000. Transposition of Tn4451 and Tn4453 involves a circular intermediate that forms a promoter for the large resolvase, TnpX. Mol Microbiol 38:588-601.
    • (2000) Mol Microbiol , vol.38 , pp. 588-601
    • Lyras, D.1    Rood, J.I.2
  • 52
    • 33745447767 scopus 로고    scopus 로고
    • The conjugative transposon Tn5397 has a strong preference for integration into its Clostridium difficile target site
    • Wang H, Smith MCM, Mullany P. 2006. The conjugative transposon Tn5397 has a strong preference for integration into its Clostridium difficile target site. J Bacteriol 188:4871-4878.
    • (2006) J Bacteriol , vol.188 , pp. 4871-4878
    • Wang, H.1    Smith, M.C.M.2    Mullany, P.3
  • 54
    • 0025678617 scopus 로고
    • The crystal structure of the catalytic domain of the site-specific recombination enzyme γδ resolvase at 2.7 Å resolution
    • Sanderson MR, Freemont PS, Rice PA, Goldman A, Hatfull GF, Grindley NDF, Steitz TA. 1990. The crystal structure of the catalytic domain of the site-specific recombination enzyme γδ resolvase at 2.7 Å resolution. Cell 63:1323-1329.
    • (1990) Cell , vol.63 , pp. 1323-1329
    • Sanderson, M.R.1    Freemont, P.S.2    Rice, P.A.3    Goldman, A.4    Hatfull, G.F.5    Grindley, N.D.F.6    Steitz, T.A.7
  • 55
    • 23844514076 scopus 로고    scopus 로고
    • Structure of a synaptic γδ resolvase tetramer covalently linked to two cleaved DNAs
    • Li W, Kamtekar S, Xiong Y, Sarkis GJ, Grindley NDF, Steitz TA. 2005. Structure of a synaptic γδ resolvase tetramer covalently linked to two cleaved DNAs. Science 309:1210-1215.
    • (2005) Science , vol.309 , pp. 1210-1215
    • Li, W.1    Kamtekar, S.2    Xiong, Y.3    Sarkis, G.J.4    Grindley, N.D.F.5    Steitz, T.A.6
  • 58
    • 0030904786 scopus 로고    scopus 로고
    • Molecular organization in site-specific recombination: The catalytic domain of bacteriophage HP1 integrase at 2.7Å resolution
    • Hickman AB, Waninger S, Scocca JJ, Dyda F. 1997. Molecular organization in site-specific recombination: The catalytic domain of bacteriophage HP1 integrase at 2.7Å resolution. Cell 89:227-237.
    • (1997) Cell , vol.89 , pp. 227-237
    • Hickman, A.B.1    Waninger, S.2    Scocca, J.J.3    Dyda, F.4
  • 59
    • 0001656001 scopus 로고    scopus 로고
    • Flexibility in DNA recombination: Structure of the lambda integrase catalytic core
    • Kwon HJ, Tirumalai R, Landy A, Ellenberger T. 1997. Flexibility in DNA recombination: Structure of the lambda integrase catalytic core. Science 276:126-131.
    • (1997) Science , vol.276 , pp. 126-131
    • Kwon, H.J.1    Tirumalai, R.2    Landy, A.3    Ellenberger, T.4
  • 60
    • 0041375463 scopus 로고    scopus 로고
    • New insight into site-specific recombination from Flp recombinase-DNA structures
    • Chen Y, Rice PA. 2003. New insight into site-specific recombination from Flp recombinase-DNA structures. Annu Rev Biophys Biomol Struct 32:135-159.
    • (2003) Annu Rev Biophys Biomol Struct , vol.32 , pp. 135-159
    • Chen, Y.1    Rice, P.A.2
  • 61
    • 66249099218 scopus 로고    scopus 로고
    • A modular master on the move: the Tn916 family of mobile genetic elements
    • Roberts AP, Mullany P. 2009. A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol 17:251-258.
    • (2009) Trends Microbiol , vol.17 , pp. 251-258
    • Roberts, A.P.1    Mullany, P.2
  • 62
    • 84891609711 scopus 로고    scopus 로고
    • Regulation of CTnDOT conjugative transfer is a complex and highly coordinated series of events
    • Waters JL, Salyers AA. 2013. Regulation of CTnDOT conjugative transfer is a complex and highly coordinated series of events. mBio 4: e00569-13.
    • (2013) mBio , vol.4
    • Waters, J.L.1    Salyers, A.A.2
  • 63
    • 60349094186 scopus 로고    scopus 로고
    • Atypical association of DDE transposition with conjugation specifies a new family of mobile element
    • Brochet M, Da Cunha V, Couvé E, Rusniok C, Trieu-Cuot P, Glaser P. 2009. Atypical association of DDE transposition with conjugation specifies a new family of mobile element. Mol Microbiol 71:948-959.
    • (2009) Mol Microbiol , vol.71 , pp. 948-959
    • Brochet, M.1    Da Cunha, V.2    Couvé, E.3    Rusniok, C.4    Trieu-Cuot, P.5    Glaser, P.6
  • 64
    • 84902952147 scopus 로고    scopus 로고
    • The diversity of prokaryotic DDE transposases of the Mutator superfamily, insertion specificity, and association with conjugation machineries
    • Guérillot R, Siguier P, Gourbeyre E, Chandler M, Glaser P. 2014. The diversity of prokaryotic DDE transposases of the Mutator superfamily, insertion specificity, and association with conjugation machineries. Genome Biol Evol 6:260-272.
    • (2014) Genome Biol Evol , vol.6 , pp. 260-272
    • Guérillot, R.1    Siguier, P.2    Gourbeyre, E.3    Chandler, M.4    Glaser, P.5
  • 65
    • 84891491965 scopus 로고    scopus 로고
    • The Mu story: how a maverick phage moved the field forward
    • Harshey RM. 2012. The Mu story: how a maverick phage moved the field forward. Mobile DNA 3:21.
    • (2012) Mobile DNA , vol.3 , pp. 21
    • Harshey, R.M.1
  • 66
    • 0026637325 scopus 로고
    • Transpositional recombination: Mechanistic insights from studies of Mu and other elements
    • Mizuuchi K. 1992. Transpositional recombination: Mechanistic insights from studies of Mu and other elements. Annu Rev Biochem 61: 1011-1051.
    • (1992) Annu Rev Biochem , vol.61 , pp. 1011-1051
    • Mizuuchi, K.1
  • 67
    • 36549087125 scopus 로고    scopus 로고
    • Translation factor IF2 at the interface of transposition and replication by the PriA-PriC pathway
    • North SH, Kirtland SE, Nakai H. 2007. Translation factor IF2 at the interface of transposition and replication by the PriA-PriC pathway. Mol Microbiol 66:1566-1578.
    • (2007) Mol Microbiol , vol.66 , pp. 1566-1578
    • North, S.H.1    Kirtland, S.E.2    Nakai, H.3
  • 68
    • 0033546121 scopus 로고    scopus 로고
    • Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate
    • Jones JM, Nakai H. 1999. Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate. J Mol Biol 289:503-515.
    • (1999) J Mol Biol , vol.289 , pp. 503-515
    • Jones, J.M.1    Nakai, H.2
  • 69
    • 6344284218 scopus 로고    scopus 로고
    • Requirement of IS911 replication before integration defines a new bacterial transposition pathway
    • Duval-Valentin G, Marty-Cointin B, Chandler M. 2004. Requirement of IS911 replication before integration defines a new bacterial transposition pathway. EMBO J 23:3897-3906.
    • (2004) EMBO J , vol.23 , pp. 3897-3906
    • Duval-Valentin, G.1    Marty-Cointin, B.2    Chandler, M.3
  • 70
    • 0032481375 scopus 로고    scopus 로고
    • Efficient transposition of IS911 circles in vitro
    • Ton-Hoang B, Polard P, Chandler M. 1998. Efficient transposition of IS911 circles in vitro. EMBO J 17:1169-1181.
    • (1998) EMBO J , vol.17 , pp. 1169-1181
    • Ton-Hoang, B.1    Polard, P.2    Chandler, M.3
  • 71
    • 0028840748 scopus 로고
    • An in vivo transposase-catalyzed singlestranded DNA circularization reaction
    • Polard P, Chandler M. 1995. An in vivo transposase-catalyzed singlestranded DNA circularization reaction. Genes Dev 9:2846-2858.
    • (1995) Genes Dev , vol.9 , pp. 2846-2858
    • Polard, P.1    Chandler, M.2
  • 72
    • 18244413221 scopus 로고    scopus 로고
    • Assembly of a strong promoter following IS911 circularization and the role of circles in transposition
    • Ton-Hoang B, Bétermier M, Polard P, Chandler M. 1997. Assembly of a strong promoter following IS911 circularization and the role of circles in transposition. EMBO J 16:3357-3371.
    • (1997) EMBO J , vol.16 , pp. 3357-3371
    • Ton-Hoang, B.1    Bétermier, M.2    Polard, P.3    Chandler, M.4
  • 73
    • 0034213049 scopus 로고    scopus 로고
    • Playing second fiddle: second-strand processing and liberation of transposable elements from donor DNA
    • Turlan C, Chandler M. 2000. Playing second fiddle: second-strand processing and liberation of transposable elements from donor DNA. Trends Microbiol 8:268-274.
    • (2000) Trends Microbiol , vol.8 , pp. 268-274
    • Turlan, C.1    Chandler, M.2
  • 74
    • 77249135986 scopus 로고    scopus 로고
    • Integrating prokaryotes and eukaryotes: DNA transposases in light of structure
    • Hickman AB, Chandler M, Dyda F. 2010. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol 45:50-69.
    • (2010) Crit Rev Biochem Mol Biol , vol.45 , pp. 50-69
    • Hickman, A.B.1    Chandler, M.2    Dyda, F.3
  • 75
    • 0037248592 scopus 로고    scopus 로고
    • Excision of the Drosophila mariner transposon Mos1: Comparison with bacterial transposition and V(D)J recombination
    • Dawson A, Finnegan DJ. 2003. Excision of the Drosophila mariner transposon Mos1: Comparison with bacterial transposition and V(D)J recombination. Mol Cell 11:225-235.
    • (2003) Mol Cell , vol.11 , pp. 225-235
    • Dawson, A.1    Finnegan, D.J.2
  • 76
    • 75649086128 scopus 로고    scopus 로고
    • Transposition of the human Hsmar1 transposon: rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage
    • Claeys Bouuaert C, Chalmers R. 2010. Transposition of the human Hsmar1 transposon: rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage. Nucl Acids Res 38:190-202.
    • (2010) Nucl Acids Res , vol.38 , pp. 190-202
    • Claeys Bouuaert, C.1    Chalmers, R.2
  • 77
    • 0029818461 scopus 로고    scopus 로고
    • A purified mariner transposase is sufficient to mediate transposition in vitro
    • Lampe DJ, Churchill MEA, Robertson HM. 1996. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J 15: 5470-5479.
    • (1996) EMBO J , vol.15 , pp. 5470-5479
    • Lampe, D.J.1    Churchill, M.E.A.2    Robertson, H.M.3
  • 78
    • 0030847553 scopus 로고    scopus 로고
    • Drosophila P-element transposase is a novel site-specific endonuclease
    • Beall EL, Rio DC. 1997. Drosophila P-element transposase is a novel site-specific endonuclease. Genes Dev 11:2137-2151.
    • (1997) Genes Dev , vol.11 , pp. 2137-2151
    • Beall, E.L.1    Rio, D.C.2
  • 80
    • 41949108098 scopus 로고    scopus 로고
    • piggyBac can bypass DNA synthesis during cut and paste transposition
    • Mitra R, Fain-Thornton J, Craig NL. 2008. piggyBac can bypass DNA synthesis during cut and paste transposition. EMBO J 27:1097-1109.
    • (2008) EMBO J , vol.27 , pp. 1097-1109
    • Mitra, R.1    Fain-Thornton, J.2    Craig, N.L.3
  • 81
    • 11144245992 scopus 로고    scopus 로고
    • Transposition of hAT elements links transposable elements and V(D)J recombination
    • Zhou L, Mitra R, Atkinson PW, Hickman AB, Dyda F, Craig NL. 2004. Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432:995-1001.
    • (2004) Nature , vol.432 , pp. 995-1001
    • Zhou, L.1    Mitra, R.2    Atkinson, P.W.3    Hickman, A.B.4    Dyda, F.5    Craig, N.L.6
  • 82
    • 80355122714 scopus 로고    scopus 로고
    • V(D)J recombination: Mechanisms of initiation
    • Schatz DG, Swanson PC. 2011. V(D)J recombination: Mechanisms of initiation. Annu Rev Genet 45:167-202.
    • (2011) Annu Rev Genet , vol.45 , pp. 167-202
    • Schatz, D.G.1    Swanson, P.C.2
  • 83
    • 22744445703 scopus 로고    scopus 로고
    • RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons
    • Kapitonov VV, Jurka J. 2005. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3: e181.
    • (2005) PLoS Biol , vol.3
    • Kapitonov, V.V.1    Jurka, J.2
  • 84
    • 35348973425 scopus 로고    scopus 로고
    • Analysis of P element transposase protein-DNA interactions during the early stages of transposition
    • Tang M, Cecconi C, Bustamante C, Rio DC. 2007. Analysis of P element transposase protein-DNA interactions during the early stages of transposition. J Biol Chem 282:29002-29012.
    • (2007) J Biol Chem , vol.282 , pp. 29002-29012
    • Tang, M.1    Cecconi, C.2    Bustamante, C.3    Rio, D.C.4
  • 85
    • 0034677674 scopus 로고    scopus 로고
    • A minimal system for Tn7 transposition: The transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species
    • Biery MC, Lopata M, Craig NL. 2000. A minimal system for Tn7 transposition: The transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species. J Mol Biol 297:25-37.
    • (2000) J Mol Biol , vol.297 , pp. 25-37
    • Biery, M.C.1    Lopata, M.2    Craig, N.L.3
  • 86
    • 84878438111 scopus 로고    scopus 로고
    • Direct interaction between the TnsA and TnsB subunits controls the heteromeric Tn7 transposase
    • Choi KY, Li Y, Sarnovsky R, Craig NL. 2013. Direct interaction between the TnsA and TnsB subunits controls the heteromeric Tn7 transposase. Proc Natl Acad Sci USA 110:E2038-E2045.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. E2038-E2045
    • Choi, K.Y.1    Li, Y.2    Sarnovsky, R.3    Craig, N.L.4
  • 87
    • 0033634859 scopus 로고    scopus 로고
    • Unexpected structural diversity in DNA recombination: The restriction endonuclease connection
    • Hickman AB, Li Y, Mathew SV, May EW, Craig NL, Dyda F. 2000. Unexpected structural diversity in DNA recombination: The restriction endonuclease connection. Mol Cell 5:1025-1034.
    • (2000) Mol Cell , vol.5 , pp. 1025-1034
    • Hickman, A.B.1    Li, Y.2    Mathew, S.V.3    May, E.W.4    Craig, N.L.5    Dyda, F.6
  • 88
    • 0029984672 scopus 로고    scopus 로고
    • Switching from cut-and-paste to replicative Tn7 transposition
    • May EW, Craig NL. 1996. Switching from cut-and-paste to replicative Tn7 transposition. Science 272:401-404.
    • (1996) Science , vol.272 , pp. 401-404
    • May, E.W.1    Craig, N.L.2
  • 89
    • 0034616993 scopus 로고    scopus 로고
    • Threedimensional structure of the Tn5 synaptic complex transposition intermediate
    • Davies DR, Goryshin IY, ReznikoffWS, Rayment I. 2000. Threedimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289:77-85.
    • (2000) Science , vol.289 , pp. 77-85
    • Davies, D.R.1    Goryshin, I.Y.2    Reznikoff, W.S.3    Rayment, I.4
  • 90
    • 70149109999 scopus 로고    scopus 로고
    • Molecular architecture of the Mos1 paired-end complex: The structural basis of DNA transposition in a eukaryote
    • Richardson JM, Colloms SD, Finnegan DJ, Walkinshaw MD. 2009. Molecular architecture of the Mos1 paired-end complex: The structural basis of DNA transposition in a eukaryote. Cell 138:1096-1108.
    • (2009) Cell , vol.138 , pp. 1096-1108
    • Richardson, J.M.1    Colloms, S.D.2    Finnegan, D.J.3    Walkinshaw, M.D.4
  • 91
    • 84904538844 scopus 로고    scopus 로고
    • Structural basis of hAT transposon end recognition by Hermes, an octameric DNA transposase from Musca domestica
    • Hickman AB, et al. 2014. Structural basis of hAT transposon end recognition by Hermes, an octameric DNA transposase from Musca domestica. Cell 158:353-367.
    • (2014) Cell , vol.158 , pp. 353-367
    • Hickman, A.B.1
  • 92
    • 84870812689 scopus 로고    scopus 로고
    • The emerging diversity of transpososome architectures
    • Dyda F, Chandler M, Hickman AB. 2012. The emerging diversity of transpososome architectures. Quart Rev Biophys 45:493-521.
    • (2012) Quart Rev Biophys , vol.45 , pp. 493-521
    • Dyda, F.1    Chandler, M.2    Hickman, A.B.3
  • 93
    • 84869090034 scopus 로고    scopus 로고
    • The Mu transpososome structure sheds light on DDE recombinase evolution
    • Montaño SP, Pigli YZ, Rice PA. 2012. The Mu transpososome structure sheds light on DDE recombinase evolution. Nature 491:413-417.
    • (2012) Nature , vol.491 , pp. 413-417
    • Montaño, S.P.1    Pigli, Y.Z.2    Rice, P.A.3
  • 94
    • 77949365510 scopus 로고    scopus 로고
    • Retroviral intasome assembly and inhibition of DNA strand transfer
    • Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. 2010. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464:232-236.
    • (2010) Nature , vol.464 , pp. 232-236
    • Hare, S.1    Gupta, S.S.2    Valkov, E.3    Engelman, A.4    Cherepanov, P.5
  • 95
    • 78149434355 scopus 로고    scopus 로고
    • The mechanism of retroviral integration from X-ray structures of its key intermediates
    • Maertens GN, Hare S, Cherepanov P. 2010. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468:326-329.
    • (2010) Nature , vol.468 , pp. 326-329
    • Maertens, G.N.1    Hare, S.2    Cherepanov, P.3
  • 96
    • 0031464544 scopus 로고    scopus 로고
    • Solution structure of the Mu end DNA-binding Iβ subdomain of phage Mu transposase: modular DNA recognition by two tethered domains
    • Schumacher S, Clubb RT, Cai M, Mizuuchi K, Clore GM, Gronenborn AM. 1997. Solution structure of the Mu end DNA-binding Iβ subdomain of phage Mu transposase: modular DNA recognition by two tethered domains. EMBO J 16:7532-7541.
    • (1997) EMBO J , vol.16 , pp. 7532-7541
    • Schumacher, S.1    Clubb, R.T.2    Cai, M.3    Mizuuchi, K.4    Clore, G.M.5    Gronenborn, A.M.6
  • 97
    • 4043107881 scopus 로고    scopus 로고
    • Structural analysis of the bipartite DNA-binding domain of Tc3 transposase bound to the transposon DNA
    • Watkins S, van Pouderoyen G, Sixma TK. 2004. Structural analysis of the bipartite DNA-binding domain of Tc3 transposase bound to the transposon DNA. Nucl Acids Res 32:4306-4312.
    • (2004) Nucl Acids Res , vol.32 , pp. 4306-4312
    • Watkins, S.1    van Pouderoyen, G.2    Sixma, T.K.3
  • 98
    • 0025831962 scopus 로고
    • Interaction of the Tn7-encoded transposition protein TnsB with the ends of the transposon
    • Arciszewska LK, Craig NL. 1991. Interaction of the Tn7-encoded transposition protein TnsB with the ends of the transposon. Nucl Acids Res 19:5021-5029.
    • (1991) Nucl Acids Res , vol.19 , pp. 5021-5029
    • Arciszewska, L.K.1    Craig, N.L.2
  • 99
    • 0008179472 scopus 로고    scopus 로고
    • Functional characterization of the Tn5 transposase by limited proteolysis
    • Braam LAM, ReznikoffWS. 1998. Functional characterization of the Tn5 transposase by limited proteolysis. J Biol Chem 273:10908-10913.
    • (1998) J Biol Chem , vol.273 , pp. 10908-10913
    • Braam, L.A.M.1    Reznikoff, W.S.2
  • 100
    • 0029144546 scopus 로고
    • Structural domains of IS10 transposase and reconstitution of transposition activity from proteolytic fragments lacking an interdomain linker
    • Kwon D, Chalmers RM, Kleckner N. 1995. Structural domains of IS10 transposase and reconstitution of transposition activity from proteolytic fragments lacking an interdomain linker. Proc Natl Acad Sci USA 92:8234-8238.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 8234-8238
    • Kwon, D.1    Chalmers, R.M.2    Kleckner, N.3
  • 101
    • 0030595337 scopus 로고    scopus 로고
    • Structural classification of HTH DNA-binding domains and protein-DNA interaction modes
    • Wintjens R, Rooman M. 1996. Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. J Mol Biol 262:294-313.
    • (1996) J Mol Biol , vol.262 , pp. 294-313
    • Wintjens, R.1    Rooman, M.2
  • 102
    • 15944379232 scopus 로고    scopus 로고
    • The many faces of the helix-turn-helix domain:Transcription regulation and beyond
    • Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM. 2005. The many faces of the helix-turn-helix domain:Transcription regulation and beyond. FEMS Microbiol Rev 29:231-262.
    • (2005) FEMS Microbiol Rev , vol.29 , pp. 231-262
    • Aravind, L.1    Anantharaman, V.2    Balaji, S.3    Babu, M.M.4    Iyer, L.M.5
  • 103
    • 2542625925 scopus 로고    scopus 로고
    • The helix-turn-helix motif of bacterial insertion sequence IS911 transposase is required for DNA binding
    • Rousseau P, Gueguen E, Duval-Valentin G, Chandler M. 2004. The helix-turn-helix motif of bacterial insertion sequence IS911 transposase is required for DNA binding. Nucl Acids Res 32:1335-1344.
    • (2004) Nucl Acids Res , vol.32 , pp. 1335-1344
    • Rousseau, P.1    Gueguen, E.2    Duval-Valentin, G.3    Chandler, M.4
  • 104
    • 6344269558 scopus 로고    scopus 로고
    • Analysis of the N-terminal DNA binding domain of the IS30 transposase
    • Nagy Z, Szabó M, Chandler M, Olasz F. 2004. Analysis of the N-terminal DNA binding domain of the IS30 transposase. Mol Microbiol 54:478-488.
    • (2004) Mol Microbiol , vol.54 , pp. 478-488
    • Nagy, Z.1    Szabó, M.2    Chandler, M.3    Olasz, F.4
  • 105
    • 37549029474 scopus 로고    scopus 로고
    • DNA transposons and the evolution of eukaryotic genomes
    • Feschotte C, Pritham EJ. 2007. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331-368.
    • (2007) Annu Rev Genet , vol.41 , pp. 331-368
    • Feschotte, C.1    Pritham, E.J.2
  • 106
    • 0032055477 scopus 로고    scopus 로고
    • Transposase makes critical contacts with, and is stimulated by, single-stranded DNA at the P element termini in vitro
    • Beall EL, Rio DC. 1998. Transposase makes critical contacts with, and is stimulated by, single-stranded DNA at the P element termini in vitro. EMBO J 17:2122-2136.
    • (1998) EMBO J , vol.17 , pp. 2122-2136
    • Beall, E.L.1    Rio, D.C.2
  • 107
    • 0034284435 scopus 로고    scopus 로고
    • The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases
    • Aravind L. 2000. The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem Sci 25:421-423.
    • (2000) Trends Biochem Sci , vol.25 , pp. 421-423
    • Aravind, L.1
  • 108
    • 0032946089 scopus 로고    scopus 로고
    • A mechanism for Tn5 inhibition: Carboxyl-terminal dimerization
    • Braam LAM, Goryshin IY, ReznikoffWS. 1999. A mechanism for Tn5 inhibition: Carboxyl-terminal dimerization. J Biol Chem 274:86-92.
    • (1999) J Biol Chem , vol.274 , pp. 86-92
    • Braam, L.A.M.1    Goryshin, I.Y.2    Reznikoff, W.S.3
  • 111
    • 0035091724 scopus 로고    scopus 로고
    • The wild-type conformation of the Mos-1 inverted terminal repeats is suboptimal for transposition in bacteria
    • Augé-Gouillou C, Hamelin MH, Demattei MV, Periquet M, Bigot Y. 2001. The wild-type conformation of the Mos-1 inverted terminal repeats is suboptimal for transposition in bacteria. Mol Genet Genomics 265: 51-57.
    • (2001) Mol Genet Genomics , vol.265 , pp. 51-57
    • Augé-Gouillou, C.1    Hamelin, M.H.2    Demattei, M.V.3    Periquet, M.4    Bigot, Y.5
  • 112
    • 0035444278 scopus 로고    scopus 로고
    • DNA-binding activity and subunit interaction of the mariner transposase
    • Zhang L, Dawson A, Finnegan DJ. 2001. DNA-binding activity and subunit interaction of the mariner transposase. Nucl Acids Res 29: 3566-3575.
    • (2001) Nucl Acids Res , vol.29 , pp. 3566-3575
    • Zhang, L.1    Dawson, A.2    Finnegan, D.J.3
  • 113
    • 0027416674 scopus 로고
    • Tn7 transposition: Target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system
    • Bainton RJ, Kubo KM, Feng JN, Craig NL. 1993. Tn7 transposition: Target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72:931-943.
    • (1993) Cell , vol.72 , pp. 931-943
    • Bainton, R.J.1    Kubo, K.M.2    Feng, J.N.3    Craig, N.L.4
  • 114
    • 0036646490 scopus 로고    scopus 로고
    • Formation of a nucleoprotein complex containing Tn7 and its target DNA regulates transposition initiation
    • Skelding Z, Sarnovsky R, Craig NL. 2002. Formation of a nucleoprotein complex containing Tn7 and its target DNA regulates transposition initiation. EMBO J 21:3494-3504.
    • (2002) EMBO J , vol.21 , pp. 3494-3504
    • Skelding, Z.1    Sarnovsky, R.2    Craig, N.L.3
  • 115
    • 77955087046 scopus 로고    scopus 로고
    • Architecture of the Tn7 posttransposition complex: an elaborate nucleoprotein structure
    • Holder JW, Craig NL. 2010. Architecture of the Tn7 posttransposition complex: an elaborate nucleoprotein structure. J Mol Biol 401: 167-181.
    • (2010) J Mol Biol , vol.401 , pp. 167-181
    • Holder, J.W.1    Craig, N.L.2
  • 116
    • 80053337719 scopus 로고    scopus 로고
    • DNA sequence requirements for hobo transposable element transposition in Drosophila melanogaster
    • Kim YJ, Hice RH, O'Brochta DA, Atkinson PW. 2011. DNA sequence requirements for hobo transposable element transposition in Drosophila melanogaster. Genetica 139:985-997.
    • (2011) Genetica , vol.139 , pp. 985-997
    • Kim, Y.J.1    Hice, R.H.2    O'Brochta, D.A.3    Atkinson, P.W.4
  • 117
    • 0030662074 scopus 로고    scopus 로고
    • Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells
    • Ivics Z, Hackett PB, Plasterk RH, Izsvák Z. 1997. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501-510.
    • (1997) Cell , vol.91 , pp. 501-510
    • Ivics, Z.1    Hackett, P.B.2    Plasterk, R.H.3    Izsvák, Z.4
  • 118
    • 0037072818 scopus 로고    scopus 로고
    • Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleepy Beauty transposition
    • Izsvák Z, Khare D, Behlke J, Heinemann U, Plasterk RH, Ivics Z. 2002. Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleepy Beauty transposition. J Biol Chem 277:34581-34588.
    • (2002) J Biol Chem , vol.277 , pp. 34581-34588
    • Izsvák, Z.1    Khare, D.2    Behlke, J.3    Heinemann, U.4    Plasterk, R.H.5    Ivics, Z.6
  • 119
    • 0030007828 scopus 로고    scopus 로고
    • Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation
    • Lohe AR, Hartl DL. 1996. Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol Biol Evol 13:549-555.
    • (1996) Mol Biol Evol , vol.13 , pp. 549-555
    • Lohe, A.R.1    Hartl, D.L.2
  • 120
    • 0342803313 scopus 로고
    • Tn7 transposition: Recognition of the attTn7 target sequence
    • Waddell CS, Craig NL. 1989. Tn7 transposition: Recognition of the attTn7 target sequence. Proc Natl Acad Sci USA 86:3958-3962.
    • (1989) Proc Natl Acad Sci USA , vol.86 , pp. 3958-3962
    • Waddell, C.S.1    Craig, N.L.2
  • 121
    • 1542357646 scopus 로고    scopus 로고
    • Transposon Tn7 protein TnsD binding to Escherichia coli attTn7 DNA and its eukaryotic orthologs
    • Chakrabarti A, Desai P, Wickstrom E. 2004. Transposon Tn7 protein TnsD binding to Escherichia coli attTn7 DNA and its eukaryotic orthologs. Biochem 43:2941-2946.
    • (2004) Biochem , vol.43 , pp. 2941-2946
    • Chakrabarti, A.1    Desai, P.2    Wickstrom, E.3
  • 123
    • 0033634865 scopus 로고    scopus 로고
    • Tn7 transposes proximal to DNA doublestrand breaks and into regions where chromosomal DNA replication terminates
    • Peters JE, Craig NL. 2000. Tn7 transposes proximal to DNA doublestrand breaks and into regions where chromosomal DNA replication terminates. Mol Cell 6:573-582.
    • (2000) Mol Cell , vol.6 , pp. 573-582
    • Peters, J.E.1    Craig, N.L.2
  • 124
    • 68849118539 scopus 로고    scopus 로고
    • Transposition into replicating DNA occurs through interaction with the processivity factor
    • Parks AR, Li Z, Shi Q, Owens RM, Jin MM, Peters JE. 2009. Transposition into replicating DNA occurs through interaction with the processivity factor. Cell 138:685-695.
    • (2009) Cell , vol.138 , pp. 685-695
    • Parks, A.R.1    Li, Z.2    Shi, Q.3    Owens, R.M.4    Jin, M.M.5    Peters, J.E.6
  • 125
    • 0033179759 scopus 로고    scopus 로고
    • Resident aliens: the Tc1/mariner superfamily of transposable elements
    • Plasterk RHA, Izsvák Z, Ivics Z. 1999. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15:326-332.
    • (1999) Trends Genet , vol.15 , pp. 326-332
    • Plasterk, R.H.A.1    Izsvák, Z.2    Ivics, Z.3
  • 126
    • 0029151025 scopus 로고
    • Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA
    • Fraser MJ, Cary L, Boonvisudhi K, Wang HH. 1995. Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virol 211:397-407.
    • (1995) Virol , vol.211 , pp. 397-407
    • Fraser, M.J.1    Cary, L.2    Boonvisudhi, K.3    Wang, H.H.4
  • 127
    • 56049121432 scopus 로고    scopus 로고
    • Testing the palindromic target site model for DNA transposon insertion using the Drosophila melanogaster P-element
    • Linheiro RS, Bergman CM. 2008. Testing the palindromic target site model for DNA transposon insertion using the Drosophila melanogaster P-element. Nucl Acids Res 36:6199-6208.
    • (2008) Nucl Acids Res , vol.36 , pp. 6199-6208
    • Linheiro, R.S.1    Bergman, C.M.2
  • 128
    • 0020062697 scopus 로고
    • A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity
    • Halling SM, Kleckner N. 1982. A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity. Cell 28:155-163.
    • (1982) Cell , vol.28 , pp. 155-163
    • Halling, S.M.1    Kleckner, N.2
  • 129
    • 0028901904 scopus 로고
    • Insertion site specificity of the transposon Tn3
    • Davies CJ, Hutchison III CA. 1995. Insertion site specificity of the transposon Tn3. Nucl Acids Res 23:507-514.
    • (1995) Nucl Acids Res , vol.23 , pp. 507-514
    • Davies, C.J.1    Hutchison, C.A.2
  • 130
    • 0034724393 scopus 로고    scopus 로고
    • Insertion site preferences of the P transposable element in Drosophila melanogaster
    • Liao GC, Rehm EJ, Rubin GM. 2000. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci USA 97:3347-3351.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 3347-3351
    • Liao, G.C.1    Rehm, E.J.2    Rubin, G.M.3
  • 132
    • 0036404918 scopus 로고    scopus 로고
    • Common physical properties of DNA affecting target site selection of Sleeping Beauty and other Tc1/mariner transposable elements
    • Vigdal TJ, Kaufman CD, Izsvák Z, Voytas DF, Ivics Z. 2002. Common physical properties of DNA affecting target site selection of Sleeping Beauty and other Tc1/mariner transposable elements. J Mol Biol 323:441-452.
    • (2002) J Mol Biol , vol.323 , pp. 441-452
    • Vigdal, T.J.1    Kaufman, C.D.2    Izsvák, Z.3    Voytas, D.F.4    Ivics, Z.5
  • 133
    • 18244409347 scopus 로고    scopus 로고
    • Bacteriophage Mu targets the trinucleotide sequence CGG
    • Manna D, Deng S, Breier AM, Higgins NP. 2005. Bacteriophage Mu targets the trinucleotide sequence CGG. J Bacteriol 187:3586-3588.
    • (2005) J Bacteriol , vol.187 , pp. 3586-3588
    • Manna, D.1    Deng, S.2    Breier, A.M.3    Higgins, N.P.4
  • 134
    • 73649095856 scopus 로고    scopus 로고
    • Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome
    • Liu S, Yeh CT, Ji T, Ying K, Wu H, Tang HM, Fu Y, Nettleton D, Schnable PS. 2009. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5:e1000733.
    • (2009) PLoS Genet , vol.5
    • Liu, S.1    Yeh, C.T.2    Ji, T.3    Ying, K.4    Wu, H.5    Tang, H.M.6    Fu, Y.7    Nettleton, D.8    Schnable, P.S.9
  • 136
    • 84856800851 scopus 로고    scopus 로고
    • Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster
    • Linheiro RS, Bergman CM. 2012. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster. PLoS ONE 7:e30008.
    • (2012) PLoS ONE , vol.7
    • Linheiro, R.S.1    Bergman, C.M.2
  • 138
    • 0035865136 scopus 로고    scopus 로고
    • Target DNA structure plays a critical role in Tn7 transposition
    • Kuduvalli PN, Rao JE, Craig NL. 2001. Target DNA structure plays a critical role in Tn7 transposition. EMBO J 20:924-932.
    • (2001) EMBO J , vol.20 , pp. 924-932
    • Kuduvalli, P.N.1    Rao, J.E.2    Craig, N.L.3
  • 139
    • 0038122833 scopus 로고    scopus 로고
    • Target DNA bending is an important specificity determinant in target site selection in Tn10 transposition
    • Pribil PA, Haniford DB. 2003. Target DNA bending is an important specificity determinant in target site selection in Tn10 transposition. J Mol Biol 330:247-259.
    • (2003) J Mol Biol , vol.330 , pp. 247-259
    • Pribil, P.A.1    Haniford, D.B.2
  • 141
    • 79953124784 scopus 로고    scopus 로고
    • Structural insights into the retroviral DNA integration apparatus
    • Cherepanov P, Maertens GN, Hare S. 2011. Structural insights into the retroviral DNA integration apparatus. Curr Opin Struct Biol 21:249-256.
    • (2011) Curr Opin Struct Biol , vol.21 , pp. 249-256
    • Cherepanov, P.1    Maertens, G.N.2    Hare, S.3
  • 142
    • 0030967281 scopus 로고    scopus 로고
    • The Tn10 synaptic complex can capture a target DNA only after transposon excision
    • Sakai J, Kleckner N. 1997. The Tn10 synaptic complex can capture a target DNA only after transposon excision. Cell 89:205-214.
    • (1997) Cell , vol.89 , pp. 205-214
    • Sakai, J.1    Kleckner, N.2
  • 145
    • 77951977096 scopus 로고    scopus 로고
    • Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons
    • Claeys Bouuaert C, Chalmers RM. 2010. Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons. Genetica 138:473-484.
    • (2010) Genetica , vol.138 , pp. 473-484
    • Claeys Bouuaert, C.1    Chalmers, R.M.2
  • 146
    • 70349356638 scopus 로고    scopus 로고
    • Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells
    • VandenDriessche T, Ivics Z, Izsvák Z, Chuah MKL. 2009. Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 114:1461-1468.
    • (2009) Blood , vol.114 , pp. 1461-1468
    • VandenDriessche, T.1    Ivics, Z.2    Izsvák, Z.3    Chuah, M.K.L.4
  • 147
    • 77957132245 scopus 로고    scopus 로고
    • Harnessing transposons for cancer gene discovery
    • Copeland NG, Jenkins NA. 2010. Harnessing transposons for cancer gene discovery. Nature Rev Cancer 10:696-706.
    • (2010) Nature Rev Cancer , vol.10 , pp. 696-706
    • Copeland, N.G.1    Jenkins, N.A.2
  • 148
    • 0024294381 scopus 로고
    • Target immunity of Mu transposition reflects a differential distribution of Mu B protein
    • Adzuma K, Mizuuchi K. 1988. Target immunity of Mu transposition reflects a differential distribution of Mu B protein. Cell 53:257-266.
    • (1988) Cell , vol.53 , pp. 257-266
    • Adzuma, K.1    Mizuuchi, K.2
  • 149
    • 0036923696 scopus 로고    scopus 로고
    • Target immunity during Mu DNA transposition: Transpososome assembly and DNA looping enhance MuAmediated disassembly of the MuB target complex
    • Greene EC, Mizuuchi K. 2002. Target immunity during Mu DNA transposition: Transpososome assembly and DNA looping enhance MuAmediated disassembly of the MuB target complex. Mol Cell 10:1367-1378.
    • (2002) Mol Cell , vol.10 , pp. 1367-1378
    • Greene, E.C.1    Mizuuchi, K.2
  • 150
    • 0030859543 scopus 로고    scopus 로고
    • Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition
    • Stellwagen AE, Craig NL. 1997. Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition. EMBOJ 16:6823-6834.
    • (1997) EMBOJ , vol.16 , pp. 6823-6834
    • Stellwagen, A.E.1    Craig, N.L.2
  • 151
    • 84856565103 scopus 로고    scopus 로고
    • Separate structural and functional domains of Tn4430 transposase contribute to target immunity
    • Lambin M, Nicolas E, Oger CA, Nguyen N, Prozzi D, Hallet B. 2012. Separate structural and functional domains of Tn4430 transposase contribute to target immunity. Mol Microbiol 83:805-820.
    • (2012) Mol Microbiol , vol.83 , pp. 805-820
    • Lambin, M.1    Nicolas, E.2    Oger, C.A.3    Nguyen, N.4    Prozzi, D.5    Hallet, B.6
  • 152
    • 0027729660 scopus 로고
    • Site-specific HU binding in the Mu transpososome: conversion of sequence-independent DNA-binding protein into a chemical nuclease
    • Lavoie BD, Chaconas G. 1993. Site-specific HU binding in the Mu transpososome: conversion of sequence-independent DNA-binding protein into a chemical nuclease. Genes Dev 7:2510-2519.
    • (1993) Genes Dev , vol.7 , pp. 2510-2519
    • Lavoie, B.D.1    Chaconas, G.2
  • 153
    • 0032577448 scopus 로고    scopus 로고
    • IHF modulation of Tn10 transposition: Sensory transduction of supercoiling status via a proposed protein/DNA molecular spring
    • Chalmers R, Guhathakurta A, Benjamin H, Kleckner N. 1998. IHF modulation of Tn10 transposition: Sensory transduction of supercoiling status via a proposed protein/DNA molecular spring. Cell 93:897-908.
    • (1998) Cell , vol.93 , pp. 897-908
    • Chalmers, R.1    Guhathakurta, A.2    Benjamin, H.3    Kleckner, N.4
  • 154
    • 33750848802 scopus 로고    scopus 로고
    • Transpososome dynamics and regulation in Tn10 transposition
    • Haniford DB. 2006. Transpososome dynamics and regulation in Tn10 transposition. Crit Rev Biochem Mol Biol 41:407-424.
    • (2006) Crit Rev Biochem Mol Biol , vol.41 , pp. 407-424
    • Haniford, D.B.1
  • 155
    • 59649104717 scopus 로고    scopus 로고
    • The global bacterial regulator H-NS promotes transpososome formation and transposition in the Tn5 system
    • Whitfield CR, Wardle SJ, Haniford DB. 2009. The global bacterial regulator H-NS promotes transpososome formation and transposition in the Tn5 system. Nucl Acids Res 37:309-321.
    • (2009) Nucl Acids Res , vol.37 , pp. 309-321
    • Whitfield, C.R.1    Wardle, S.J.2    Haniford, D.B.3
  • 156
    • 80055097284 scopus 로고    scopus 로고
    • H-NS mediates the dissociation of a refractory protein-DNA complex during Tn10/IS10 transposition
    • Liu D, Haniford DB, Chalmers RM. 2011. H-NS mediates the dissociation of a refractory protein-DNA complex during Tn10/IS10 transposition. Nucl Acids Res 39:6660-6668.
    • (2011) Nucl Acids Res , vol.39 , pp. 6660-6668
    • Liu, D.1    Haniford, D.B.2    Chalmers, R.M.3
  • 157
    • 0038412815 scopus 로고    scopus 로고
    • The DNA-bending protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition
    • Zayed H, Izsvák Z, Khare D, Heinemann U, Ivics Z. 2003. The DNA-bending protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition. Nucl Acids Res 31:2313-2322.
    • (2003) Nucl Acids Res , vol.31 , pp. 2313-2322
    • Zayed, H.1    Izsvák, Z.2    Khare, D.3    Heinemann, U.4    Ivics, Z.5
  • 158
    • 0030994385 scopus 로고    scopus 로고
    • Stimulation of V(D)J cleavage by high mobility group proteins
    • van Gent DC, Hiom K, Paull TT, Gellert M. 1997. Stimulation of V(D)J cleavage by high mobility group proteins. EMBO J 16:2665-2670.
    • (1997) EMBO J , vol.16 , pp. 2665-2670
    • van Gent, D.C.1    Hiom, K.2    Paull, T.T.3    Gellert, M.4
  • 159
    • 84876381777 scopus 로고    scopus 로고
    • Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA
    • Little AJ, Corbett E, Ortega F, Schatz DG. 2013. Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA. Nucl Acids Res 41:3289-3301.
    • (2013) Nucl Acids Res , vol.41 , pp. 3289-3301
    • Little, A.J.1    Corbett, E.2    Ortega, F.3    Schatz, D.G.4
  • 162
    • 0028199682 scopus 로고
    • Differential roles of the transposon termini in IS91 transposition
    • Mendiola MV, Bernales I, de la Cruz F. 1994. Differential roles of the transposon termini in IS91 transposition. Proc Natl Acad Sci USA 91:1922-1926.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 1922-1926
    • Mendiola, M.V.1    Bernales, I.2    de la Cruz, F.3
  • 164
    • 0032569979 scopus 로고    scopus 로고
    • Novel sequence organization and insertion specficity of IS605 and IS606: chimaeric transposable elements of Helicobacter pylori
    • Kersulyte D, Akopyants NS, Clifton SW, Roe BA, Berg DE. 1998. Novel sequence organization and insertion specficity of IS605 and IS606: chimaeric transposable elements of Helicobacter pylori. Gene 223:175-186.
    • (1998) Gene , vol.223 , pp. 175-186
    • Kersulyte, D.1    Akopyants, N.S.2    Clifton, S.W.3    Roe, B.A.4    Berg, D.E.5
  • 166
    • 84882787078 scopus 로고    scopus 로고
    • The CRISPR craze
    • Pennisi E. 2013. The CRISPR craze. Science 341:833-836.
    • (2013) Science , vol.341 , pp. 833-836
    • Pennisi, E.1
  • 167
    • 0036848622 scopus 로고    scopus 로고
    • Distribution of IS91 family insertion sequences in bacterial genomes: evolutionary implications
    • Garcillán-Barcia MP, de la Cruz F. 2002. Distribution of IS91 family insertion sequences in bacterial genomes: evolutionary implications. FEMS Microbiol Ecol 42:303-313.
    • (2002) FEMS Microbiol Ecol , vol.42 , pp. 303-313
    • Garcillán-Barcia, M.P.1    de la Cruz, F.2
  • 170
    • 72849134447 scopus 로고    scopus 로고
    • Distribution, diversity, evolution, and survival of Helitrons in the maize genome
    • Yang L, Bennetzen JL. 2009. Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci USA 106:19922-19927.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 19922-19927
    • Yang, L.1    Bennetzen, J.L.2
  • 171
    • 0027452696 scopus 로고
    • Tn7 transposition creates a hotspot for homologous recombination at the transposon donor site
    • Hagemann AT, Craig NL. 1993. Tn7 transposition creates a hotspot for homologous recombination at the transposon donor site. Genetics 133:9-16.
    • (1993) Genetics , vol.133 , pp. 9-16
    • Hagemann, A.T.1    Craig, N.L.2
  • 172
    • 84860572774 scopus 로고    scopus 로고
    • Mu insertions are repaired by the double-strand break repair pathway of Escherichia coli
    • Jang S, Sandler SJ, Harshey RM. 2012. Mu insertions are repaired by the double-strand break repair pathway of Escherichia coli. PLoS Genet 8: e1002642.
    • (2012) PLoS Genet , vol.8
    • Jang, S.1    Sandler, S.J.2    Harshey, R.M.3
  • 173
  • 174
    • 0037155703 scopus 로고    scopus 로고
    • Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination
    • Ma Y, Pannicke U, Schwarz K, Lieber MR. 2002. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781-794.
    • (2002) Cell , vol.108 , pp. 781-794
    • Ma, Y.1    Pannicke, U.2    Schwarz, K.3    Lieber, M.R.4
  • 175
    • 84867847788 scopus 로고    scopus 로고
    • Role of nonhomologous end joining in V(D)J recombination
    • Malu S, Malshetty V, Francis D, Cortes P. 2012. Role of nonhomologous end joining in V(D)J recombination. Immunol Res 54:233-246.
    • (2012) Immunol Res , vol.54 , pp. 233-246
    • Malu, S.1    Malshetty, V.2    Francis, D.3    Cortes, P.4
  • 176
    • 0029913226 scopus 로고    scopus 로고
    • Drosophila IRBP/Ku p70 corresponds to the mutagen-sensitive mus309 gene and is involved in P-element excision in vivo
    • Beall EL, Rio DC. 1996. Drosophila IRBP/Ku p70 corresponds to the mutagen-sensitive mus309 gene and is involved in P-element excision in vivo. Genes Dev 10:921-933.
    • (1996) Genes Dev , vol.10 , pp. 921-933
    • Beall, E.L.1    Rio, D.C.2
  • 177
    • 0028359550 scopus 로고
    • A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein
    • Mhammedi-Alaoui A, Pato M, Gama MJ, Toussaint A. 1994. A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein. Mol Microbiol 11:1109-1116.
    • (1994) Mol Microbiol , vol.11 , pp. 1109-1116
    • Mhammedi-Alaoui, A.1    Pato, M.2    Gama, M.J.3    Toussaint, A.4
  • 178
    • 77249117211 scopus 로고    scopus 로고
    • The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome
    • Abdelhakim AH, Sauer RT, Baker TA. 2010. The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome. Proc Natl Acad Sci USA 107:2437-2442.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 2437-2442
    • Abdelhakim, A.H.1    Sauer, R.T.2    Baker, T.A.3
  • 179
    • 0030020897 scopus 로고    scopus 로고
    • ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis
    • Kruklitis R, Welty DJ, Nakai H. 1996. ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis. EMBO J 15:935-944.
    • (1996) EMBO J , vol.15 , pp. 935-944
    • Kruklitis, R.1    Welty, D.J.2    Nakai, H.3
  • 180
    • 0037688128 scopus 로고    scopus 로고
    • Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex
    • Burton BM, Baker TA. 2003. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex. Chem Biol 10:463-472.
    • (2003) Chem Biol , vol.10 , pp. 463-472
    • Burton, B.M.1    Baker, T.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.