메뉴 건너뛰기




Volumn 83, Issue , 2016, Pages 363-382

Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration

Author keywords

Angiogenesis; Biofabrication; Bone tissue engineering; Osteogenesis; Skeletal stem cell; Tissue regeneration

Indexed keywords

3D PRINTERS; BONE; CELL ENGINEERING; CELL SIGNALING; INDUSTRIAL RESEARCH; MANUFACTURE; SCAFFOLDS (BIOLOGY); STEM CELLS; TISSUE; TISSUE ENGINEERING;

EID: 84958064047     PISSN: 01429612     EISSN: 18785905     Source Type: Journal    
DOI: 10.1016/j.biomaterials.2016.01.024     Document Type: Review
Times cited : (517)

References (139)
  • 1
    • 3142723994 scopus 로고    scopus 로고
    • Bone engineering by controlled delivery of osteoinductive molecules and cells
    • Leach J.K., Mooney D.J. Bone engineering by controlled delivery of osteoinductive molecules and cells. Exp. Opin. Biol. Ther. 2004, 4:1015-1027.
    • (2004) Exp. Opin. Biol. Ther. , vol.4 , pp. 1015-1027
    • Leach, J.K.1    Mooney, D.J.2
  • 2
    • 84899076559 scopus 로고    scopus 로고
    • Bone regenerative medicine: classic options, novel strategies, and future directions
    • Oryan A., Alidadi S., Moshiri A., Maffuli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J. Ortho Surg. Res. 2014, 9.
    • (2014) J. Ortho Surg. Res. , vol.9
    • Oryan, A.1    Alidadi, S.2    Moshiri, A.3    Maffuli, N.4
  • 3
    • 81255211982 scopus 로고    scopus 로고
    • Targeting osteoclast-osteoblast communication
    • Cao X. Targeting osteoclast-osteoblast communication. Nat. Med. 2011, 17:1344-1346.
    • (2011) Nat. Med. , vol.17 , pp. 1344-1346
    • Cao, X.1
  • 4
    • 84873558051 scopus 로고    scopus 로고
    • WNT signalling in bone homeostasis and disease: from human mutations to treatments
    • Baron R., Kneissel M. WNT signalling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 2013, 19:179-192.
    • (2013) Nat. Med. , vol.19 , pp. 179-192
    • Baron, R.1    Kneissel, M.2
  • 5
    • 79952791984 scopus 로고    scopus 로고
    • Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering
    • Brydone A.S., Meek D., Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc. Inst. Mech. Eng. Part H. J. Eng. Med. 2010, 224:1329-1343.
    • (2010) Proc. Inst. Mech. Eng. Part H. J. Eng. Med. , vol.224 , pp. 1329-1343
    • Brydone, A.S.1    Meek, D.2    Maclaine, S.3
  • 6
    • 84906764023 scopus 로고    scopus 로고
    • Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery?
    • Gibbs D.M., Vaezi M., Yang S., Oreffo R.O.C. Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery?. Regen. Med. 2014, 9:535-549.
    • (2014) Regen. Med. , vol.9 , pp. 535-549
    • Gibbs, D.M.1    Vaezi, M.2    Yang, S.3    Oreffo, R.O.C.4
  • 8
    • 84866415693 scopus 로고    scopus 로고
    • Recent advances in bone tissue engineering scaffolds
    • Bose S., Roy M., Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012, 30:546-554.
    • (2012) Trends Biotechnol. , vol.30 , pp. 546-554
    • Bose, S.1    Roy, M.2    Bandyopadhyay, A.3
  • 9
    • 84869131568 scopus 로고    scopus 로고
    • Printing and prototyping of tissues and scaffolds
    • Derby B. Printing and prototyping of tissues and scaffolds. Science 2012, 338:921-926.
    • (2012) Science , vol.338 , pp. 921-926
    • Derby, B.1
  • 10
    • 34548260849 scopus 로고    scopus 로고
    • Concepts of scaffold-based tissue engineering- the rationale to use solid free-form fabrication techniques
    • Hutmacher D.W., Cool S. Concepts of scaffold-based tissue engineering- the rationale to use solid free-form fabrication techniques. J. Cell Mol. Med. 2007, 11:654-669.
    • (2007) J. Cell Mol. Med. , vol.11 , pp. 654-669
    • Hutmacher, D.W.1    Cool, S.2
  • 12
    • 84958053606 scopus 로고    scopus 로고
    • Chapter II.6.7- bone tissue engineering
    • Academic Press, B.D.R.S.H.J.S.E. LEMONS (Ed.)
    • Brown J.L., Kumbar S.G., Laurencin C.T. Chapter II.6.7- bone tissue engineering. Biomaterials Science 2013, Academic Press. third ed. B.D.R.S.H.J.S.E. LEMONS (Ed.).
    • (2013) Biomaterials Science
    • Brown, J.L.1    Kumbar, S.G.2    Laurencin, C.T.3
  • 13
    • 84877776671 scopus 로고    scopus 로고
    • Biofabrication: an overview of the approaches used for printing of living cells
    • in het Panhuis M.
    • Ferris C.J., Gilmore K.G., Wallace G.G., in het Panhuis M. Biofabrication: an overview of the approaches used for printing of living cells. App. Microbiol. Biotechnol. 2013, 97:4243-4258.
    • (2013) App. Microbiol. Biotechnol. , vol.97 , pp. 4243-4258
    • Ferris, C.J.1    Gilmore, K.G.2    Wallace, G.G.3
  • 14
    • 84871703021 scopus 로고    scopus 로고
    • Bioprinting for stem cell research
    • Tasoglu S., Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013, 31:10-19.
    • (2013) Trends Biotechnol. , vol.31 , pp. 10-19
    • Tasoglu, S.1    Demirci, U.2
  • 16
    • 42449159656 scopus 로고    scopus 로고
    • A review of rapid prototyping techniques for tissue engineering purposes
    • Peltola S.M., Melchels F.P., Grijpma D.W., Kellomaki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 2008, 40:268-280.
    • (2008) Ann. Med. , vol.40 , pp. 268-280
    • Peltola, S.M.1    Melchels, F.P.2    Grijpma, D.W.3    Kellomaki, M.4
  • 19
    • 79952700142 scopus 로고    scopus 로고
    • Cell patterning technologies for organotypic tissue fabrication
    • Guillotin B., Guillemot F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 2011, 29:183-190.
    • (2011) Trends Biotechnol. , vol.29 , pp. 183-190
    • Guillotin, B.1    Guillemot, F.2
  • 21
    • 79960782567 scopus 로고    scopus 로고
    • Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells
    • Fedorovich N.E., Wijnberg H.M., Dhert W.J., Alblas J. Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng. Part A 2011, 17:2113-2121.
    • (2011) Tissue Eng. Part A , vol.17 , pp. 2113-2121
    • Fedorovich, N.E.1    Wijnberg, H.M.2    Dhert, W.J.3    Alblas, J.4
  • 22
    • 84864459017 scopus 로고    scopus 로고
    • Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system
    • Shim J.-H., Lee J.-S., Kim J.Y., Cho D.-W. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J. Micromech. Microeng. 2012, 22:085014.
    • (2012) J. Micromech. Microeng. , vol.22 , pp. 085014
    • Shim, J.-H.1    Lee, J.-S.2    Kim, J.Y.3    Cho, D.-W.4
  • 23
    • 84874163690 scopus 로고    scopus 로고
    • 3D cell bioprinting for regenerative medicine research and therapies
    • Khatiwala C., Law R., Shepherd B., Dorfman S., Csete M. 3D cell bioprinting for regenerative medicine research and therapies. Gene Ther. Reg. 2012, 7:1230004.
    • (2012) Gene Ther. Reg. , vol.7 , pp. 1230004
    • Khatiwala, C.1    Law, R.2    Shepherd, B.3    Dorfman, S.4    Csete, M.5
  • 25
    • 84922739314 scopus 로고    scopus 로고
    • Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration
    • O'Brien C.M., Holmes B., Faucett S., Zhang L.G. Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng. Part B Rev. 2014, 21:103-114.
    • (2014) Tissue Eng. Part B Rev. , vol.21 , pp. 103-114
    • O'Brien, C.M.1    Holmes, B.2    Faucett, S.3    Zhang, L.G.4
  • 27
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotech. 2014, 32:773-785.
    • (2014) Nat. Biotech. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 28
    • 84929603616 scopus 로고    scopus 로고
    • Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting
    • Luo Y., Lode A., Akkineni A.R., Gelinsky M. Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv. 2015, 5:43480-43488.
    • (2015) RSC Adv. , vol.5 , pp. 43480-43488
    • Luo, Y.1    Lode, A.2    Akkineni, A.R.3    Gelinsky, M.4
  • 29
    • 82055190187 scopus 로고    scopus 로고
    • Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology
    • Shim J.-H., Kim J.Y., Park M., Park J., Cho D.-W. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 2011, 3:034102.
    • (2011) Biofabrication , vol.3 , pp. 034102
    • Shim, J.-H.1    Kim, J.Y.2    Park, M.3    Park, J.4    Cho, D.-W.5
  • 30
    • 38349195609 scopus 로고    scopus 로고
    • Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing
    • Fedorovich N.E., De Wijn J.R., Verbout A.J., Alblas J., Dhert W.J. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng. Part A 2008, 14:127-133.
    • (2008) Tissue Eng. Part A , vol.14 , pp. 127-133
    • Fedorovich, N.E.1    De Wijn, J.R.2    Verbout, A.J.3    Alblas, J.4    Dhert, W.J.5
  • 31
    • 77954525028 scopus 로고    scopus 로고
    • The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs
    • Fedorovich N.E., Haverslag R.T., Dhert W.J.A., Alblas J. The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs. Tissue Eng. Part A 2010, 16:2355-2367.
    • (2010) Tissue Eng. Part A , vol.16 , pp. 2355-2367
    • Fedorovich, N.E.1    Haverslag, R.T.2    Dhert, W.J.A.3    Alblas, J.4
  • 32
    • 80053095196 scopus 로고    scopus 로고
    • Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors
    • Fedorovich N.E., Kuipers E., Gawlitta D., Dhert W.J., Alblas J. Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors. Tissue Eng. Part A 2011, 17:2473-2486.
    • (2011) Tissue Eng. Part A , vol.17 , pp. 2473-2486
    • Fedorovich, N.E.1    Kuipers, E.2    Gawlitta, D.3    Dhert, W.J.4    Alblas, J.5
  • 34
    • 17044366500 scopus 로고    scopus 로고
    • Laser printing of single cells: statistical analysis, cell viability, and stress
    • Barron J.A., Krizman D.B., Ringeisen B.R. Laser printing of single cells: statistical analysis, cell viability, and stress. Ann. Biomed. Eng. 2005, 33:121-130.
    • (2005) Ann. Biomed. Eng. , vol.33 , pp. 121-130
    • Barron, J.A.1    Krizman, D.B.2    Ringeisen, B.R.3
  • 37
    • 69649100202 scopus 로고    scopus 로고
    • Human microvasculature fabrication using thermal inkjet printing technology
    • Cui X.F., Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009, 30:6221-6227.
    • (2009) Biomaterials , vol.30 , pp. 6221-6227
    • Cui, X.F.1    Boland, T.2
  • 39
    • 45249084145 scopus 로고    scopus 로고
    • Fibrin: a versatile scaffold for tissue engineering applications
    • Ahmed T.A., Dare E.V., Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev. 2008, 14:199-215.
    • (2008) Tissue Eng. Part B Rev. , vol.14 , pp. 199-215
    • Ahmed, T.A.1    Dare, E.V.2    Hincke, M.3
  • 40
    • 34548086740 scopus 로고    scopus 로고
    • Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing
    • Fedorovich N.E., Alblas J., De Wijn J.R., Hennink W.E., Verbout A.J., Dhert W.J. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng. 2007, 13:1905-1925.
    • (2007) Tissue Eng. , vol.13 , pp. 1905-1925
    • Fedorovich, N.E.1    Alblas, J.2    De Wijn, J.R.3    Hennink, W.E.4    Verbout, A.J.5    Dhert, W.J.6
  • 41
    • 84908496206 scopus 로고    scopus 로고
    • Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
    • Gao G.F., Schilling A.F., Yonezawa T., Wang J., Dai G.H., Cui X.F. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 2014, 9:1304-1311.
    • (2014) Biotechnol. J. , vol.9 , pp. 1304-1311
    • Gao, G.F.1    Schilling, A.F.2    Yonezawa, T.3    Wang, J.4    Dai, G.H.5    Cui, X.F.6
  • 43
    • 84914689347 scopus 로고    scopus 로고
    • Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution
    • Ali M., Pages E., Ducom A., Fontaine A., Guillemot F. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication 2014, 6:045001.
    • (2014) Biofabrication , vol.6 , pp. 045001
    • Ali, M.1    Pages, E.2    Ducom, A.3    Fontaine, A.4    Guillemot, F.5
  • 44
    • 34147114353 scopus 로고    scopus 로고
    • Photo-patterning of porous hydrogels for tissue engineering
    • Bryant S.J., Cuy J.L., Hauch K.D., Ratner B.D. Photo-patterning of porous hydrogels for tissue engineering. Biomaterials 2007, 28:2978-2986.
    • (2007) Biomaterials , vol.28 , pp. 2978-2986
    • Bryant, S.J.1    Cuy, J.L.2    Hauch, K.D.3    Ratner, B.D.4
  • 50
    • 3042778829 scopus 로고    scopus 로고
    • Engineering principles of clinical cell-based tissue engineering
    • Muschler G.F., Nakamoto C., Griffith L.G. Engineering principles of clinical cell-based tissue engineering. J Bone Jt. Surg 2004, 86A:1541-1558.
    • (2004) J Bone Jt. Surg , vol.86A , pp. 1541-1558
    • Muschler, G.F.1    Nakamoto, C.2    Griffith, L.G.3
  • 51
    • 75749108220 scopus 로고    scopus 로고
    • Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges
    • Santos M.I., Reis R.L. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol. Biosci. 2010, 10:12-27.
    • (2010) Macromol. Biosci. , vol.10 , pp. 12-27
    • Santos, M.I.1    Reis, R.L.2
  • 58
    • 33748316443 scopus 로고    scopus 로고
    • Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness
    • Moroni L., Schotel R., Sohier J., De Wijn J.R., van Blitterswijk C.A. Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials 2006, 27:5918-5926.
    • (2006) Biomaterials , vol.27 , pp. 5918-5926
    • Moroni, L.1    Schotel, R.2    Sohier, J.3    De Wijn, J.R.4    van Blitterswijk, C.A.5
  • 59
  • 61
    • 45549085001 scopus 로고    scopus 로고
    • Osteogenesis and angiogenesis: the potential for engineering bone
    • Kanczler J.M., Oreffo R.O. Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cell Mater. 2008, 15:100-114.
    • (2008) Eur. Cell Mater. , vol.15 , pp. 100-114
    • Kanczler, J.M.1    Oreffo, R.O.2
  • 62
    • 70350726213 scopus 로고    scopus 로고
    • Scaffolds with covalently immobilized VEGF and angiopoietin-for vascularization of engineered tissues
    • Chiu L.L.Y., Radisic M. Scaffolds with covalently immobilized VEGF and angiopoietin-for vascularization of engineered tissues. Biomaterials 2010, 31:226-241.
    • (2010) Biomaterials , vol.31 , pp. 226-241
    • Chiu, L.L.Y.1    Radisic, M.2
  • 64
    • 17844400927 scopus 로고    scopus 로고
    • Porosity of 3D biomaterial scaffolds and osteogenesis
    • Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26:5474-5491.
    • (2005) Biomaterials , vol.26 , pp. 5474-5491
    • Karageorgiou, V.1    Kaplan, D.2
  • 65
    • 33846188184 scopus 로고    scopus 로고
    • In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method
    • Oh S.H., Park I.K., Kim J.M., Lee J.H. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 2007, 28:1664-1671.
    • (2007) Biomaterials , vol.28 , pp. 1664-1671
    • Oh, S.H.1    Park, I.K.2    Kim, J.M.3    Lee, J.H.4
  • 66
    • 56349117564 scopus 로고    scopus 로고
    • Effect of pore size and interpore distance on endothelial cell growth on polymers
    • Narayan D., Venkatraman S.S. Effect of pore size and interpore distance on endothelial cell growth on polymers. J. Biomed. Mater. Res. A 2008, 87A:710-718.
    • (2008) J. Biomed. Mater. Res. A , vol.87A , pp. 710-718
    • Narayan, D.1    Venkatraman, S.S.2
  • 67
    • 78650041547 scopus 로고    scopus 로고
    • The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study
    • Bai F., Wang Z., Lu J., Liu J., Chen G., Lv R., Wang J., Lin K., Zhang J., Huang X. The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study. Tissue Eng. Part A 2010, 16:3791-3803.
    • (2010) Tissue Eng. Part A , vol.16 , pp. 3791-3803
    • Bai, F.1    Wang, Z.2    Lu, J.3    Liu, J.4    Chen, G.5    Lv, R.6    Wang, J.7    Lin, K.8    Zhang, J.9    Huang, X.10
  • 70
    • 35148867435 scopus 로고    scopus 로고
    • A fibrinogen based precision microporous scaffold for tissue engineering
    • Linnes M., Ratner B.D., Giachelli C.M. A fibrinogen based precision microporous scaffold for tissue engineering. Biomaterials 2007, 28:5298-5306.
    • (2007) Biomaterials , vol.28 , pp. 5298-5306
    • Linnes, M.1    Ratner, B.D.2    Giachelli, C.M.3
  • 72
    • 84862702111 scopus 로고    scopus 로고
    • Engineering biomaterials to integrate and heal: the biocompatibility paradigm shifts
    • Bryers J.D., Giachelli C.M., Ratner B.D. Engineering biomaterials to integrate and heal: the biocompatibility paradigm shifts. Biotechnol. Bioeng. 2012, 109:1898-1911.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 1898-1911
    • Bryers, J.D.1    Giachelli, C.M.2    Ratner, B.D.3
  • 73
    • 42749096667 scopus 로고    scopus 로고
    • On the mechanisms of biocompatibility
    • Williams D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29:941-953.
    • (2008) Biomaterials , vol.29 , pp. 941-953
    • Williams, D.F.1
  • 75
    • 84898472940 scopus 로고    scopus 로고
    • The biomaterials conundrum in tissue engineering
    • Williams D.F. The biomaterials conundrum in tissue engineering. Tissue Eng. Part A 2014, 20:1129-1131.
    • (2014) Tissue Eng. Part A , vol.20 , pp. 1129-1131
    • Williams, D.F.1
  • 76
    • 84908102077 scopus 로고    scopus 로고
    • There is no such thing as a biocompatible material
    • Williams D.F. There is no such thing as a biocompatible material. Biomaterials 2014, 35:10009-10014.
    • (2014) Biomaterials , vol.35 , pp. 10009-10014
    • Williams, D.F.1
  • 78
    • 44649141451 scopus 로고    scopus 로고
    • Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration
    • Tare R.S., Babister J.C., Kanczler J., Oreffo R.O.C. Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration. Mol. Cell Endocrinol. 2008, 288:11-21.
    • (2008) Mol. Cell Endocrinol. , vol.288 , pp. 11-21
    • Tare, R.S.1    Babister, J.C.2    Kanczler, J.3    Oreffo, R.O.C.4
  • 79
    • 81755166878 scopus 로고    scopus 로고
    • Cell sources for bone regeneration: the good, the bad, and the ugly (but promising)
    • Robey P.G. Cell sources for bone regeneration: the good, the bad, and the ugly (but promising). Tissue Eng. Part B Rev. 2011, 17:423-430.
    • (2011) Tissue Eng. Part B Rev. , vol.17 , pp. 423-430
    • Robey, P.G.1
  • 80
    • 84555187779 scopus 로고    scopus 로고
    • Isolation, differentiation, and characterisation of skeletal stem cells from human bone marrow in vitro and in vivo
    • Tare R.S., Mitchell P.D., Kanczler J., Oreffo R.O.C. Isolation, differentiation, and characterisation of skeletal stem cells from human bone marrow in vitro and in vivo. Methods Mol. Biol. 2012, 816:83-99.
    • (2012) Methods Mol. Biol. , vol.816 , pp. 83-99
    • Tare, R.S.1    Mitchell, P.D.2    Kanczler, J.3    Oreffo, R.O.C.4
  • 81
    • 84891750619 scopus 로고    scopus 로고
    • Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies- where are we now?
    • Dawson J.I., Kanczler J., Tare R., Kassem M., Oreffo R.O.C. Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies- where are we now?. Stem cells 2014, 32:35-44.
    • (2014) Stem cells , vol.32 , pp. 35-44
    • Dawson, J.I.1    Kanczler, J.2    Tare, R.3    Kassem, M.4    Oreffo, R.O.C.5
  • 82
    • 70350673594 scopus 로고    scopus 로고
    • Progenitor and stem cells for bone and cartilage regeneration
    • El Tamer M.K., Reis R.L. Progenitor and stem cells for bone and cartilage regeneration. J. Tissue Eng. Regen. Med. 2009, 3:327-337.
    • (2009) J. Tissue Eng. Regen. Med. , vol.3 , pp. 327-337
    • El Tamer, M.K.1    Reis, R.L.2
  • 83
    • 84864273761 scopus 로고    scopus 로고
    • Bone tissue engineering: current strategies and techniques- part II: cell types
    • Szpalski C., Barbaro M., Sagebin F., Warren S.M. Bone tissue engineering: current strategies and techniques- part II: cell types. Tissue Eng. Part B Rev. 2012, 18:258-269.
    • (2012) Tissue Eng. Part B Rev. , vol.18 , pp. 258-269
    • Szpalski, C.1    Barbaro, M.2    Sagebin, F.3    Warren, S.M.4
  • 84
    • 82455168205 scopus 로고    scopus 로고
    • Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration
    • Wang F., Yu M., Yan X., Wen Y., Zeng Q., Yue W., Yang P., Pei X. Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration. Stem Cells Dev 2011, 2011(20):2093-2102.
    • (2011) Stem Cells Dev , vol.2011 , Issue.20 , pp. 2093-2102
    • Wang, F.1    Yu, M.2    Yan, X.3    Wen, Y.4    Zeng, Q.5    Yue, W.6    Yang, P.7    Pei, X.8
  • 86
    • 84881027626 scopus 로고    scopus 로고
    • Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering
    • Liu J., Chen W., Zhao Z., Xu H.H.K. Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering. Biomaterials 2013, 34:7862-7872.
    • (2013) Biomaterials , vol.34 , pp. 7862-7872
    • Liu, J.1    Chen, W.2    Zhao, Z.3    Xu, H.H.K.4
  • 89
    • 84920941427 scopus 로고    scopus 로고
    • Review of vascularised bone tissue engineering strategies with a focus on co-culture systems
    • Liu Y., Chan J.K., Teoh S.H. Review of vascularised bone tissue engineering strategies with a focus on co-culture systems. J. Tissue Eng. Regen. Med. 2015, 9:85-105.
    • (2015) J. Tissue Eng. Regen. Med. , vol.9 , pp. 85-105
    • Liu, Y.1    Chan, J.K.2    Teoh, S.H.3
  • 92
    • 84958095578 scopus 로고    scopus 로고
    • Chapter II.6.4- cell sources for tissue engineering: mesenchymal stem cells
    • Academic Press, B.D.R.S.H.J.S.E. LEMONS (Ed.)
    • Caplan A.I. Chapter II.6.4- cell sources for tissue engineering: mesenchymal stem cells. Biomaterials Science 2013, Academic Press. third ed. B.D.R.S.H.J.S.E. LEMONS (Ed.).
    • (2013) Biomaterials Science
    • Caplan, A.I.1
  • 93
    • 0009877834 scopus 로고    scopus 로고
    • Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells
    • Wang D.S., Miura M., Demura H., Sato K. Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells. Endocrinol 1997, 138:2953-2962.
    • (1997) Endocrinol , vol.138 , pp. 2953-2962
    • Wang, D.S.1    Miura, M.2    Demura, H.3    Sato, K.4
  • 94
    • 84947615903 scopus 로고    scopus 로고
    • Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems
    • Unger R.E., Dohle E., Kirkpatrick C.J. Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems. Adv. Drug Deliv. Rev. 2015, 94:116-125.
    • (2015) Adv. Drug Deliv. Rev. , vol.94 , pp. 116-125
    • Unger, R.E.1    Dohle, E.2    Kirkpatrick, C.J.3
  • 95
    • 84874747360 scopus 로고    scopus 로고
    • Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and cultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering
    • Liu Y., Teoh S.H., Chong M.S., Yeow C.H., Kamm R.D., Choolani M., Chan J.K. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and cultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Tissue Eng. Part A 2013, 19:893-904.
    • (2013) Tissue Eng. Part A , vol.19 , pp. 893-904
    • Liu, Y.1    Teoh, S.H.2    Chong, M.S.3    Yeow, C.H.4    Kamm, R.D.5    Choolani, M.6    Chan, J.K.7
  • 96
    • 42649095181 scopus 로고    scopus 로고
    • A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues
    • Stevens B., Yang Y., Mohandas A., Stucker B., Nguyen K.T. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 85:573-582.
    • (2008) J. Biomed. Mater. Res. B Appl. Biomater. , vol.85 , pp. 573-582
    • Stevens, B.1    Yang, Y.2    Mohandas, A.3    Stucker, B.4    Nguyen, K.T.5
  • 97
    • 79952420018 scopus 로고    scopus 로고
    • Biomaterials & scaffolds for tissue engineering
    • O'Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011, 14:88-95.
    • (2011) Mater. Today , vol.14 , pp. 88-95
    • O'Brien, F.J.1
  • 100
    • 84862869528 scopus 로고    scopus 로고
    • A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
    • Billiet T., Vandenhaute M., Schelfhout J., van Vlierberghe S., Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 2012, 33:6020-6041.
    • (2012) Biomaterials , vol.33 , pp. 6020-6041
    • Billiet, T.1    Vandenhaute, M.2    Schelfhout, J.3    van Vlierberghe, S.4    Dubruel, P.5
  • 101
    • 84958095579 scopus 로고    scopus 로고
    • Chapter II.6.3- tissue engineering scaffolds
    • Academic Press, B.D.R.S.H.J.S.E. LEMONS (Ed.)
    • Kasper F.K., Singh M., Mikos A.G. Chapter II.6.3- tissue engineering scaffolds. Biomaterials Science 2013, Academic Press. third ed. B.D.R.S.H.J.S.E. LEMONS (Ed.).
    • (2013) Biomaterials Science
    • Kasper, F.K.1    Singh, M.2    Mikos, A.G.3
  • 102
    • 84899123590 scopus 로고    scopus 로고
    • Biomaterial-based scaffolds- current status and future directions
    • Garg T., Goyal A.K. Biomaterial-based scaffolds- current status and future directions. Exp. Opin. Drug Deliv. 2014, 11:767-789.
    • (2014) Exp. Opin. Drug Deliv. , vol.11 , pp. 767-789
    • Garg, T.1    Goyal, A.K.2
  • 103
    • 84912561353 scopus 로고    scopus 로고
    • Bone tissue engineering and regenerative medicine: Targeting pathological fractures
    • Nguyen D.T., Burg K.J.L. Bone tissue engineering and regenerative medicine: Targeting pathological fractures. J. Biomed. Mater. Res. A 2015, 103A:420-429.
    • (2015) J. Biomed. Mater. Res. A , vol.103A , pp. 420-429
    • Nguyen, D.T.1    Burg, K.J.L.2
  • 105
    • 84868560510 scopus 로고    scopus 로고
    • Bioreactor strategy in bone tissue engineering: pre-culture and osteogenic differentiation under two flow configurations
    • Kim J., Ma T. Bioreactor strategy in bone tissue engineering: pre-culture and osteogenic differentiation under two flow configurations. Tissue Eng. Part A 2012, 18:2354-2364.
    • (2012) Tissue Eng. Part A , vol.18 , pp. 2354-2364
    • Kim, J.1    Ma, T.2
  • 106
    • 81755188465 scopus 로고    scopus 로고
    • Evaluation of angiogenesis and osteogenesis
    • Das A., Botchwey E. Evaluation of angiogenesis and osteogenesis. Tissue Eng. Part B Rev. 2011, 17:403-414.
    • (2011) Tissue Eng. Part B Rev. , vol.17 , pp. 403-414
    • Das, A.1    Botchwey, E.2
  • 108
    • 84893695400 scopus 로고    scopus 로고
    • Comparison of cell response and surface characteristics on titanium implant with SLA and SLAffinity functionalization
    • Huang C.-F., Chiang H.-J., Lin H.-J., Hosseinkhani H., Ou K.-L., Peng P.-W. Comparison of cell response and surface characteristics on titanium implant with SLA and SLAffinity functionalization. J. Electrochem Soc. 2014, 161:G15-G20.
    • (2014) J. Electrochem Soc. , vol.161 , pp. G15-G20
    • Huang, C.-F.1    Chiang, H.-J.2    Lin, H.-J.3    Hosseinkhani, H.4    Ou, K.-L.5    Peng, P.-W.6
  • 109
    • 84937883768 scopus 로고    scopus 로고
    • Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium
    • Tsai M.-H., Huang C.-F., Shyu S.-S., Chou Y.-R., Lin M.-H., Peng P.-W., Ou K.-L., Yu C.-H. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium. Mater. Char. 2015, 106:463-469.
    • (2015) Mater. Char. , vol.106 , pp. 463-469
    • Tsai, M.-H.1    Huang, C.-F.2    Shyu, S.-S.3    Chou, Y.-R.4    Lin, M.-H.5    Peng, P.-W.6    Ou, K.-L.7    Yu, C.-H.8
  • 110
    • 84901194561 scopus 로고    scopus 로고
    • Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate
    • Dalby M.J., Gadegaard N., Oreffo R.O.C. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat. Mater. 2014, 13:558-569.
    • (2014) Nat. Mater. , vol.13 , pp. 558-569
    • Dalby, M.J.1    Gadegaard, N.2    Oreffo, R.O.C.3
  • 111
    • 67849101009 scopus 로고    scopus 로고
    • The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells
    • Biggs M.J.P., Richards R.G., Gadegaard N., Wilkinson C.D.W., Oreffo R.O.C., Dalby M.J. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials 2009, 30:5094-5103.
    • (2009) Biomaterials , vol.30 , pp. 5094-5103
    • Biggs, M.J.P.1    Richards, R.G.2    Gadegaard, N.3    Wilkinson, C.D.W.4    Oreffo, R.O.C.5    Dalby, M.J.6
  • 114
    • 84914697152 scopus 로고    scopus 로고
    • Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner
    • Cheng A., Humayun A., Cohen D.J., Boyan B.D., Schwartz Z. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication 2014, 6:045007.
    • (2014) Biofabrication , vol.6 , pp. 045007
    • Cheng, A.1    Humayun, A.2    Cohen, D.J.3    Boyan, B.D.4    Schwartz, Z.5
  • 116
    • 84879112861 scopus 로고    scopus 로고
    • Cellular behavior in micro-patterned hydrogels by bioprinting system depended on the cell types and cellular interaction
    • Hong S., Song S.-J., Lee J.Y., Jang H., Choi J., Sun K., Park Y. Cellular behavior in micro-patterned hydrogels by bioprinting system depended on the cell types and cellular interaction. J. Biosci. Bioeng. 2013, 116:224-230.
    • (2013) J. Biosci. Bioeng. , vol.116 , pp. 224-230
    • Hong, S.1    Song, S.-J.2    Lee, J.Y.3    Jang, H.4    Choi, J.5    Sun, K.6    Park, Y.7
  • 118
    • 84877969932 scopus 로고    scopus 로고
    • Controlled release strategies for bone, cartilage, and osteochondral engineering - Part II: challenges on the evolution from single to multiple bioactive factor delivery
    • Santo V.E., Gomes M.E., Mano J.F., Reis R.L. Controlled release strategies for bone, cartilage, and osteochondral engineering - Part II: challenges on the evolution from single to multiple bioactive factor delivery. Tissue Eng. Part B Rev. 2013, 19:327-352.
    • (2013) Tissue Eng. Part B Rev. , vol.19 , pp. 327-352
    • Santo, V.E.1    Gomes, M.E.2    Mano, J.F.3    Reis, R.L.4
  • 120
    • 84884992545 scopus 로고    scopus 로고
    • Fibroblast Growth Factor-and Bone Morphogenetic Protein-have a synergistic stimulatory effect on bone formation in cell cultures from elderly mouse and human bone
    • Kuhn L.T., Ou G.M., Charles L., Hurley M.M., Rodner C.M., Gronowicz G. Fibroblast Growth Factor-and Bone Morphogenetic Protein-have a synergistic stimulatory effect on bone formation in cell cultures from elderly mouse and human bone. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68:1170-1180.
    • (2013) J. Gerontol. A Biol. Sci. Med. Sci. , vol.68 , pp. 1170-1180
    • Kuhn, L.T.1    Ou, G.M.2    Charles, L.3    Hurley, M.M.4    Rodner, C.M.5    Gronowicz, G.6
  • 122
    • 78149250686 scopus 로고    scopus 로고
    • Chemically-conjugated Bone Morphogenetic Protein-on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells
    • Zhang H., Migneco F., Lin C.Y., Hollister S.J. Chemically-conjugated Bone Morphogenetic Protein-on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells. Tissue Eng. Part A 2010, 16:3441-3448.
    • (2010) Tissue Eng. Part A , vol.16 , pp. 3441-3448
    • Zhang, H.1    Migneco, F.2    Lin, C.Y.3    Hollister, S.J.4
  • 124
    • 84991550909 scopus 로고    scopus 로고
    • Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair
    • Sawkins M.J., Mistry P., Brown B.N., Shakesheff K., Bonassar L.J., Yang J. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair. Biofabrication 2015, 7:035004.
    • (2015) Biofabrication , vol.7 , pp. 035004
    • Sawkins, M.J.1    Mistry, P.2    Brown, B.N.3    Shakesheff, K.4    Bonassar, L.J.5    Yang, J.6
  • 125
    • 38349076688 scopus 로고    scopus 로고
    • Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations
    • Phillippi J.A., Miller E., Weiss L., Huard J., Waggoner A., Campbell P. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 2008, 26:127-134.
    • (2008) Stem Cells , vol.26 , pp. 127-134
    • Phillippi, J.A.1    Miller, E.2    Weiss, L.3    Huard, J.4    Waggoner, A.5    Campbell, P.6
  • 126
    • 77952710862 scopus 로고    scopus 로고
    • Simultaneous immobilization of bioactives during 3D powder printing of bioceramic drug-release matrices
    • Vorndran E., Klammert U., Ewald A., Barralet J.E., Gbureck U. Simultaneous immobilization of bioactives during 3D powder printing of bioceramic drug-release matrices. Adv. Funct. Mater. 2010, 20:1585-1591.
    • (2010) Adv. Funct. Mater. , vol.20 , pp. 1585-1591
    • Vorndran, E.1    Klammert, U.2    Ewald, A.3    Barralet, J.E.4    Gbureck, U.5
  • 127
    • 56449125956 scopus 로고    scopus 로고
    • Effect of grafting RGD and BMP-protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells
    • He X., Ma J., Jabbari E. Effect of grafting RGD and BMP-protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells. Langmuir 2008, 24:12508-12516.
    • (2008) Langmuir , vol.24 , pp. 12508-12516
    • He, X.1    Ma, J.2    Jabbari, E.3
  • 128
    • 3142703230 scopus 로고    scopus 로고
    • Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells
    • Simmons C.A., Alsberg E., Hsiong S., Kim W.J., Mooney D.J. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 2004, 35:562-569.
    • (2004) Bone , vol.35 , pp. 562-569
    • Simmons, C.A.1    Alsberg, E.2    Hsiong, S.3    Kim, W.J.4    Mooney, D.J.5
  • 131
    • 15444367350 scopus 로고    scopus 로고
    • Volume-based non-continuum modeling of bone functional adaptation
    • Wang Z., Mondry A. Volume-based non-continuum modeling of bone functional adaptation. Theor. Biol. Med. Model 2005, 2:6.
    • (2005) Theor. Biol. Med. Model , vol.2 , pp. 6
    • Wang, Z.1    Mondry, A.2
  • 133
    • 84907593135 scopus 로고    scopus 로고
    • The chicken chorioallantoic membrane model in biology, medicine and bioengineering
    • Nowak-Sliwinska P., Segura T., Iruela-Arispe M.L. The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis 2014, 17:779-804.
    • (2014) Angiogenesis , vol.17 , pp. 779-804
    • Nowak-Sliwinska, P.1    Segura, T.2    Iruela-Arispe, M.L.3
  • 134
    • 84884690579 scopus 로고    scopus 로고
    • A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation
    • Smith E.L., Kanczler J.M., Oreffo R.O.C. A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation. Eur. Cell Mater. 2013, 26:91-106.
    • (2013) Eur. Cell Mater. , vol.26 , pp. 91-106
    • Smith, E.L.1    Kanczler, J.M.2    Oreffo, R.O.C.3
  • 135
    • 33644934897 scopus 로고    scopus 로고
    • Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
    • Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27:3413-3431.
    • (2006) Biomaterials , vol.27 , pp. 3413-3431
    • Rezwan, K.1    Chen, Q.Z.2    Blaker, J.J.3    Boccaccini, A.R.4
  • 137
    • 84864267743 scopus 로고    scopus 로고
    • Bone tissue engineering: current strategies and techniques- Part I: scaffolds
    • Szpalski C., Wetterau M., Barr J., Warren S.M. Bone tissue engineering: current strategies and techniques- Part I: scaffolds. Tissue Eng. Part B Rev. 2012, 18:246-257.
    • (2012) Tissue Eng. Part B Rev. , vol.18 , pp. 246-257
    • Szpalski, C.1    Wetterau, M.2    Barr, J.3    Warren, S.M.4
  • 138
    • 84880771640 scopus 로고    scopus 로고
    • Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine
    • Vielreicher M., Schurmann S., Detsch R., Schmidt M.A., Buttgereit A., Boccaccini A., Friedrich O. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J. R. Soc. Interf. 2013, 10.
    • (2013) J. R. Soc. Interf. , vol.10
    • Vielreicher, M.1    Schurmann, S.2    Detsch, R.3    Schmidt, M.A.4    Buttgereit, A.5    Boccaccini, A.6    Friedrich, O.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.