-
1
-
-
3142723994
-
Bone engineering by controlled delivery of osteoinductive molecules and cells
-
Leach J.K., Mooney D.J. Bone engineering by controlled delivery of osteoinductive molecules and cells. Exp. Opin. Biol. Ther. 2004, 4:1015-1027.
-
(2004)
Exp. Opin. Biol. Ther.
, vol.4
, pp. 1015-1027
-
-
Leach, J.K.1
Mooney, D.J.2
-
2
-
-
84899076559
-
Bone regenerative medicine: classic options, novel strategies, and future directions
-
Oryan A., Alidadi S., Moshiri A., Maffuli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J. Ortho Surg. Res. 2014, 9.
-
(2014)
J. Ortho Surg. Res.
, vol.9
-
-
Oryan, A.1
Alidadi, S.2
Moshiri, A.3
Maffuli, N.4
-
3
-
-
81255211982
-
Targeting osteoclast-osteoblast communication
-
Cao X. Targeting osteoclast-osteoblast communication. Nat. Med. 2011, 17:1344-1346.
-
(2011)
Nat. Med.
, vol.17
, pp. 1344-1346
-
-
Cao, X.1
-
4
-
-
84873558051
-
WNT signalling in bone homeostasis and disease: from human mutations to treatments
-
Baron R., Kneissel M. WNT signalling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 2013, 19:179-192.
-
(2013)
Nat. Med.
, vol.19
, pp. 179-192
-
-
Baron, R.1
Kneissel, M.2
-
5
-
-
79952791984
-
Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering
-
Brydone A.S., Meek D., Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc. Inst. Mech. Eng. Part H. J. Eng. Med. 2010, 224:1329-1343.
-
(2010)
Proc. Inst. Mech. Eng. Part H. J. Eng. Med.
, vol.224
, pp. 1329-1343
-
-
Brydone, A.S.1
Meek, D.2
Maclaine, S.3
-
6
-
-
84906764023
-
Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery?
-
Gibbs D.M., Vaezi M., Yang S., Oreffo R.O.C. Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery?. Regen. Med. 2014, 9:535-549.
-
(2014)
Regen. Med.
, vol.9
, pp. 535-549
-
-
Gibbs, D.M.1
Vaezi, M.2
Yang, S.3
Oreffo, R.O.C.4
-
8
-
-
84866415693
-
Recent advances in bone tissue engineering scaffolds
-
Bose S., Roy M., Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012, 30:546-554.
-
(2012)
Trends Biotechnol.
, vol.30
, pp. 546-554
-
-
Bose, S.1
Roy, M.2
Bandyopadhyay, A.3
-
9
-
-
84869131568
-
Printing and prototyping of tissues and scaffolds
-
Derby B. Printing and prototyping of tissues and scaffolds. Science 2012, 338:921-926.
-
(2012)
Science
, vol.338
, pp. 921-926
-
-
Derby, B.1
-
10
-
-
34548260849
-
Concepts of scaffold-based tissue engineering- the rationale to use solid free-form fabrication techniques
-
Hutmacher D.W., Cool S. Concepts of scaffold-based tissue engineering- the rationale to use solid free-form fabrication techniques. J. Cell Mol. Med. 2007, 11:654-669.
-
(2007)
J. Cell Mol. Med.
, vol.11
, pp. 654-669
-
-
Hutmacher, D.W.1
Cool, S.2
-
11
-
-
84862648665
-
Additive manufacturing of tissues and organs
-
Melchels F.P.W., Domingos M.A.N., Klein T.J., Malda J., Bartolo P.J., Hutmacher D.W. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 2012, 37:1079-1104.
-
(2012)
Prog. Polym. Sci.
, vol.37
, pp. 1079-1104
-
-
Melchels, F.P.W.1
Domingos, M.A.N.2
Klein, T.J.3
Malda, J.4
Bartolo, P.J.5
Hutmacher, D.W.6
-
12
-
-
84958053606
-
Chapter II.6.7- bone tissue engineering
-
Academic Press, B.D.R.S.H.J.S.E. LEMONS (Ed.)
-
Brown J.L., Kumbar S.G., Laurencin C.T. Chapter II.6.7- bone tissue engineering. Biomaterials Science 2013, Academic Press. third ed. B.D.R.S.H.J.S.E. LEMONS (Ed.).
-
(2013)
Biomaterials Science
-
-
Brown, J.L.1
Kumbar, S.G.2
Laurencin, C.T.3
-
13
-
-
84877776671
-
Biofabrication: an overview of the approaches used for printing of living cells
-
in het Panhuis M.
-
Ferris C.J., Gilmore K.G., Wallace G.G., in het Panhuis M. Biofabrication: an overview of the approaches used for printing of living cells. App. Microbiol. Biotechnol. 2013, 97:4243-4258.
-
(2013)
App. Microbiol. Biotechnol.
, vol.97
, pp. 4243-4258
-
-
Ferris, C.J.1
Gilmore, K.G.2
Wallace, G.G.3
-
14
-
-
84871703021
-
Bioprinting for stem cell research
-
Tasoglu S., Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013, 31:10-19.
-
(2013)
Trends Biotechnol.
, vol.31
, pp. 10-19
-
-
Tasoglu, S.1
Demirci, U.2
-
15
-
-
77957562650
-
Biofabrication: a 21st century manufacturing paradigm
-
Mironov V., Trusk T., Kasyanov V., Little S., Swaja R., Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication 2009, 1:022001.
-
(2009)
Biofabrication
, vol.1
, pp. 022001
-
-
Mironov, V.1
Trusk, T.2
Kasyanov, V.3
Little, S.4
Swaja, R.5
Markwald, R.6
-
16
-
-
42449159656
-
A review of rapid prototyping techniques for tissue engineering purposes
-
Peltola S.M., Melchels F.P., Grijpma D.W., Kellomaki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 2008, 40:268-280.
-
(2008)
Ann. Med.
, vol.40
, pp. 268-280
-
-
Peltola, S.M.1
Melchels, F.P.2
Grijpma, D.W.3
Kellomaki, M.4
-
17
-
-
77955275038
-
Laser assisted bioprinting of engineered tissue with high cell density and microscale organization
-
Guillotin B., Souquet A., Catros S., Duocastella M., Pippenger B., Bellance S., Bareille R., Remy M., Bordenave L., Amedee J., Guillemot F. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 2010, 31:7250-7256.
-
(2010)
Biomaterials
, vol.31
, pp. 7250-7256
-
-
Guillotin, B.1
Souquet, A.2
Catros, S.3
Duocastella, M.4
Pippenger, B.5
Bellance, S.6
Bareille, R.7
Remy, M.8
Bordenave, L.9
Amedee, J.10
Guillemot, F.11
-
18
-
-
78650289774
-
Laser-based direct-write techniques for cell printing
-
Schiele N.R., Corr D.T., Huang Y., Raof N.A., Xie Y., Chrisey D.B. Laser-based direct-write techniques for cell printing. Biofabrication 2010, 2:032001.
-
(2010)
Biofabrication
, vol.2
, pp. 032001
-
-
Schiele, N.R.1
Corr, D.T.2
Huang, Y.3
Raof, N.A.4
Xie, Y.5
Chrisey, D.B.6
-
19
-
-
79952700142
-
Cell patterning technologies for organotypic tissue fabrication
-
Guillotin B., Guillemot F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 2011, 29:183-190.
-
(2011)
Trends Biotechnol.
, vol.29
, pp. 183-190
-
-
Guillotin, B.1
Guillemot, F.2
-
20
-
-
84855396802
-
Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds
-
Fedorovich N.E., Schuurman W., Wijnberg H.M., Prins H.J., van Weeren P.R., Malda J., Alblas J., Dhert W.J.A. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. Part C Methods 2012, 18:33-44.
-
(2012)
Tissue Eng. Part C Methods
, vol.18
, pp. 33-44
-
-
Fedorovich, N.E.1
Schuurman, W.2
Wijnberg, H.M.3
Prins, H.J.4
van Weeren, P.R.5
Malda, J.6
Alblas, J.7
Dhert, W.J.A.8
-
21
-
-
79960782567
-
Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells
-
Fedorovich N.E., Wijnberg H.M., Dhert W.J., Alblas J. Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng. Part A 2011, 17:2113-2121.
-
(2011)
Tissue Eng. Part A
, vol.17
, pp. 2113-2121
-
-
Fedorovich, N.E.1
Wijnberg, H.M.2
Dhert, W.J.3
Alblas, J.4
-
22
-
-
84864459017
-
Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system
-
Shim J.-H., Lee J.-S., Kim J.Y., Cho D.-W. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J. Micromech. Microeng. 2012, 22:085014.
-
(2012)
J. Micromech. Microeng.
, vol.22
, pp. 085014
-
-
Shim, J.-H.1
Lee, J.-S.2
Kim, J.Y.3
Cho, D.-W.4
-
23
-
-
84874163690
-
3D cell bioprinting for regenerative medicine research and therapies
-
Khatiwala C., Law R., Shepherd B., Dorfman S., Csete M. 3D cell bioprinting for regenerative medicine research and therapies. Gene Ther. Reg. 2012, 7:1230004.
-
(2012)
Gene Ther. Reg.
, vol.7
, pp. 1230004
-
-
Khatiwala, C.1
Law, R.2
Shepherd, B.3
Dorfman, S.4
Csete, M.5
-
25
-
-
84922739314
-
Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration
-
O'Brien C.M., Holmes B., Faucett S., Zhang L.G. Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng. Part B Rev. 2014, 21:103-114.
-
(2014)
Tissue Eng. Part B Rev.
, vol.21
, pp. 103-114
-
-
O'Brien, C.M.1
Holmes, B.2
Faucett, S.3
Zhang, L.G.4
-
26
-
-
81155150132
-
Organ printing: the future of bone regeneration?
-
Fedorovich N.E., Alblas J., Hennink W.E., Öner F.C., Dhert W.J.A. Organ printing: the future of bone regeneration?. Trends Biotechnol. 2011, 29:601-606.
-
(2011)
Trends Biotechnol.
, vol.29
, pp. 601-606
-
-
Fedorovich, N.E.1
Alblas, J.2
Hennink, W.E.3
Öner, F.C.4
Dhert, W.J.A.5
-
27
-
-
84905725612
-
3D bioprinting of tissues and organs
-
Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotech. 2014, 32:773-785.
-
(2014)
Nat. Biotech.
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
28
-
-
84929603616
-
Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting
-
Luo Y., Lode A., Akkineni A.R., Gelinsky M. Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv. 2015, 5:43480-43488.
-
(2015)
RSC Adv.
, vol.5
, pp. 43480-43488
-
-
Luo, Y.1
Lode, A.2
Akkineni, A.R.3
Gelinsky, M.4
-
29
-
-
82055190187
-
Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology
-
Shim J.-H., Kim J.Y., Park M., Park J., Cho D.-W. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 2011, 3:034102.
-
(2011)
Biofabrication
, vol.3
, pp. 034102
-
-
Shim, J.-H.1
Kim, J.Y.2
Park, M.3
Park, J.4
Cho, D.-W.5
-
30
-
-
38349195609
-
Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing
-
Fedorovich N.E., De Wijn J.R., Verbout A.J., Alblas J., Dhert W.J. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng. Part A 2008, 14:127-133.
-
(2008)
Tissue Eng. Part A
, vol.14
, pp. 127-133
-
-
Fedorovich, N.E.1
De Wijn, J.R.2
Verbout, A.J.3
Alblas, J.4
Dhert, W.J.5
-
31
-
-
77954525028
-
The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs
-
Fedorovich N.E., Haverslag R.T., Dhert W.J.A., Alblas J. The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs. Tissue Eng. Part A 2010, 16:2355-2367.
-
(2010)
Tissue Eng. Part A
, vol.16
, pp. 2355-2367
-
-
Fedorovich, N.E.1
Haverslag, R.T.2
Dhert, W.J.A.3
Alblas, J.4
-
32
-
-
80053095196
-
Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors
-
Fedorovich N.E., Kuipers E., Gawlitta D., Dhert W.J., Alblas J. Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors. Tissue Eng. Part A 2011, 17:2473-2486.
-
(2011)
Tissue Eng. Part A
, vol.17
, pp. 2473-2486
-
-
Fedorovich, N.E.1
Kuipers, E.2
Gawlitta, D.3
Dhert, W.J.4
Alblas, J.5
-
33
-
-
84904083798
-
-
Woodhead Publishing
-
Guillotin B., Catros S., Keriquel V., Souquet A., Fontaine A., Remy M., Fricain J.C., Guillemot F. Rapid Prototyping of Complex Tissues with Laser Assisted Bioprinting (LAB). Rapid Prototyping of Biomaterials: Principles and Applications 2014, 156-175. Woodhead Publishing.
-
(2014)
Rapid Prototyping of Complex Tissues with Laser Assisted Bioprinting (LAB). Rapid Prototyping of Biomaterials: Principles and Applications
, pp. 156-175
-
-
Guillotin, B.1
Catros, S.2
Keriquel, V.3
Souquet, A.4
Fontaine, A.5
Remy, M.6
Fricain, J.C.7
Guillemot, F.8
-
34
-
-
17044366500
-
Laser printing of single cells: statistical analysis, cell viability, and stress
-
Barron J.A., Krizman D.B., Ringeisen B.R. Laser printing of single cells: statistical analysis, cell viability, and stress. Ann. Biomed. Eng. 2005, 33:121-130.
-
(2005)
Ann. Biomed. Eng.
, vol.33
, pp. 121-130
-
-
Barron, J.A.1
Krizman, D.B.2
Ringeisen, B.R.3
-
35
-
-
82055185842
-
Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite
-
Catros S., Fricain J.C., Guillotin B., Pippenger B., Bareille R., Remy M., LeBraud E., Desbat B., Amedee J., Guillemot F. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 2011, 3:025001.
-
(2011)
Biofabrication
, vol.3
, pp. 025001
-
-
Catros, S.1
Fricain, J.C.2
Guillotin, B.3
Pippenger, B.4
Bareille, R.5
Remy, M.6
LeBraud, E.7
Desbat, B.8
Amedee, J.9
Guillemot, F.10
-
36
-
-
84855393806
-
Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo
-
Catros S., Guillemot F., Nandakumar A., Ziane S., Moroni L., Habibovic P., van Blitterswijk C., Rousseau B., Chassande O., Amedee J., Fricain J.C. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng. Part C Methods 2012, 18:62-70.
-
(2012)
Tissue Eng. Part C Methods
, vol.18
, pp. 62-70
-
-
Catros, S.1
Guillemot, F.2
Nandakumar, A.3
Ziane, S.4
Moroni, L.5
Habibovic, P.6
van Blitterswijk, C.7
Rousseau, B.8
Chassande, O.9
Amedee, J.10
Fricain, J.C.11
-
37
-
-
69649100202
-
Human microvasculature fabrication using thermal inkjet printing technology
-
Cui X.F., Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009, 30:6221-6227.
-
(2009)
Biomaterials
, vol.30
, pp. 6221-6227
-
-
Cui, X.F.1
Boland, T.2
-
38
-
-
70350100448
-
Characterization of cell viability during bioprinting processes
-
Nair K., Gandhi M., Khalil S., Yan K.C., Marcolongo M., Barbee K., Sun W. Characterization of cell viability during bioprinting processes. Biotechnol. J. 2009, 4:1168-1177.
-
(2009)
Biotechnol. J.
, vol.4
, pp. 1168-1177
-
-
Nair, K.1
Gandhi, M.2
Khalil, S.3
Yan, K.C.4
Marcolongo, M.5
Barbee, K.6
Sun, W.7
-
39
-
-
45249084145
-
Fibrin: a versatile scaffold for tissue engineering applications
-
Ahmed T.A., Dare E.V., Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev. 2008, 14:199-215.
-
(2008)
Tissue Eng. Part B Rev.
, vol.14
, pp. 199-215
-
-
Ahmed, T.A.1
Dare, E.V.2
Hincke, M.3
-
40
-
-
34548086740
-
Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing
-
Fedorovich N.E., Alblas J., De Wijn J.R., Hennink W.E., Verbout A.J., Dhert W.J. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng. 2007, 13:1905-1925.
-
(2007)
Tissue Eng.
, vol.13
, pp. 1905-1925
-
-
Fedorovich, N.E.1
Alblas, J.2
De Wijn, J.R.3
Hennink, W.E.4
Verbout, A.J.5
Dhert, W.J.6
-
41
-
-
84908496206
-
Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
-
Gao G.F., Schilling A.F., Yonezawa T., Wang J., Dai G.H., Cui X.F. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 2014, 9:1304-1311.
-
(2014)
Biotechnol. J.
, vol.9
, pp. 1304-1311
-
-
Gao, G.F.1
Schilling, A.F.2
Yonezawa, T.3
Wang, J.4
Dai, G.H.5
Cui, X.F.6
-
42
-
-
78650862905
-
Laser printing of stem cells for biofabrication of scaffold-free autologous grafts
-
Gruene M., Deiwick A., Koch L., Schlie S., Unger C., Hofmann N., Bernemann I., Glasmacher B., Chichkov B. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng. Part C Methods 2011, 17:79-87.
-
(2011)
Tissue Eng. Part C Methods
, vol.17
, pp. 79-87
-
-
Gruene, M.1
Deiwick, A.2
Koch, L.3
Schlie, S.4
Unger, C.5
Hofmann, N.6
Bernemann, I.7
Glasmacher, B.8
Chichkov, B.9
-
43
-
-
84914689347
-
Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution
-
Ali M., Pages E., Ducom A., Fontaine A., Guillemot F. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication 2014, 6:045001.
-
(2014)
Biofabrication
, vol.6
, pp. 045001
-
-
Ali, M.1
Pages, E.2
Ducom, A.3
Fontaine, A.4
Guillemot, F.5
-
44
-
-
34147114353
-
Photo-patterning of porous hydrogels for tissue engineering
-
Bryant S.J., Cuy J.L., Hauch K.D., Ratner B.D. Photo-patterning of porous hydrogels for tissue engineering. Biomaterials 2007, 28:2978-2986.
-
(2007)
Biomaterials
, vol.28
, pp. 2978-2986
-
-
Bryant, S.J.1
Cuy, J.L.2
Hauch, K.D.3
Ratner, B.D.4
-
45
-
-
84884903697
-
25th anniversary article: engineering hydrogels for biofabrication
-
Malda J., Visser J., Melchels F.P., Jungst T., Hennick W.E., Dhert W.J.A., Groll J., Hutmacher D.W. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 2013, 25:5011-5028.
-
(2013)
Adv. Mater.
, vol.25
, pp. 5011-5028
-
-
Malda, J.1
Visser, J.2
Melchels, F.P.3
Jungst, T.4
Hennick, W.E.5
Dhert, W.J.A.6
Groll, J.7
Hutmacher, D.W.8
-
46
-
-
84891833699
-
25th anniversary article: rational design and applications of hydrogels in regenerative medicine
-
Annabi N., Tamayol A., Uquillas J.A., Akbari M., Bertassoni L.E., Cha C., Dokmeci M.R., Peppas N.A., Khademhosseini A. 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv. Mater. 2014, 26:85-124.
-
(2014)
Adv. Mater.
, vol.26
, pp. 85-124
-
-
Annabi, N.1
Tamayol, A.2
Uquillas, J.A.3
Akbari, M.4
Bertassoni, L.E.5
Cha, C.6
Dokmeci, M.R.7
Peppas, N.A.8
Khademhosseini, A.9
-
47
-
-
79551573106
-
Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability
-
Rouillard A.D., Berglund C.M., Lee J.Y., Polacheck W.J., Tsui Y., Bonassar L.J., Kirby B.J. Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability. Tissue Eng. Part C Methods 2011, 17:173-179.
-
(2011)
Tissue Eng. Part C Methods
, vol.17
, pp. 173-179
-
-
Rouillard, A.D.1
Berglund, C.M.2
Lee, J.Y.3
Polacheck, W.J.4
Tsui, Y.5
Bonassar, L.J.6
Kirby, B.J.7
-
48
-
-
82055196987
-
Bioprinting of hybrid tissue constructs with tailorable mechanical properties
-
Schuurman W., Khristov V., Pot M.W., van Weeren P.R., Dhert W.J.A., Malda J. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 2011, 3:021001.
-
(2011)
Biofabrication
, vol.3
, pp. 021001
-
-
Schuurman, W.1
Khristov, V.2
Pot, M.W.3
van Weeren, P.R.4
Dhert, W.J.A.5
Malda, J.6
-
49
-
-
84929119055
-
Reinforcement of hydrogels using three-dimensionally printed microfibres
-
Visser J., Melchels F.P.W., Jeon J.E., van Bussel E.M., Kimpton L.S., Byrne H.M., Dhert W.J.A., Dalton P.D., Hutmacher D.W., Malda J. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat. Comms 2015, 6:1-10.
-
(2015)
Nat. Comms
, vol.6
, pp. 1-10
-
-
Visser, J.1
Melchels, F.P.W.2
Jeon, J.E.3
van Bussel, E.M.4
Kimpton, L.S.5
Byrne, H.M.6
Dhert, W.J.A.7
Dalton, P.D.8
Hutmacher, D.W.9
Malda, J.10
-
50
-
-
3042778829
-
Engineering principles of clinical cell-based tissue engineering
-
Muschler G.F., Nakamoto C., Griffith L.G. Engineering principles of clinical cell-based tissue engineering. J Bone Jt. Surg 2004, 86A:1541-1558.
-
(2004)
J Bone Jt. Surg
, vol.86A
, pp. 1541-1558
-
-
Muschler, G.F.1
Nakamoto, C.2
Griffith, L.G.3
-
51
-
-
75749108220
-
Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges
-
Santos M.I., Reis R.L. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol. Biosci. 2010, 10:12-27.
-
(2010)
Macromol. Biosci.
, vol.10
, pp. 12-27
-
-
Santos, M.I.1
Reis, R.L.2
-
52
-
-
84866840029
-
Vascularized bone tissue engineering: approaches for potential improvement
-
Nguyen L.H., Annabi N., Nikkhah M., Bae H., Binan L., Park S., Kang Y., Yang Y., Khademhosseini A. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng. Part B Rev. 2012, 18:363-382.
-
(2012)
Tissue Eng. Part B Rev.
, vol.18
, pp. 363-382
-
-
Nguyen, L.H.1
Annabi, N.2
Nikkhah, M.3
Bae, H.4
Binan, L.5
Park, S.6
Kang, Y.7
Yang, Y.8
Khademhosseini, A.9
-
53
-
-
84934347754
-
Vascularization in bone tissue engineering constructs
-
Mercado-Pagan A.E., Stahl A.M., Shanjani Y., Yang Y. Vascularization in bone tissue engineering constructs. Ann. Biomed. Eng. 2015, 43:718-729.
-
(2015)
Ann. Biomed. Eng.
, vol.43
, pp. 718-729
-
-
Mercado-Pagan, A.E.1
Stahl, A.M.2
Shanjani, Y.3
Yang, Y.4
-
54
-
-
84993661873
-
Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow
-
Costa P.F., Vaquette C., Baldwin J., Chhaya M., Gomes M.E., Reis R.L., Theodoropoulos C., Hutmacher D.W. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow. Biofabrication 2014, 6:035006.
-
(2014)
Biofabrication
, vol.6
, pp. 035006
-
-
Costa, P.F.1
Vaquette, C.2
Baldwin, J.3
Chhaya, M.4
Gomes, M.E.5
Reis, R.L.6
Theodoropoulos, C.7
Hutmacher, D.W.8
-
55
-
-
84968328407
-
Dynamic cell culture for vascularized bone engineering
-
Allori A.C., Sailon A.M., Clark E., Cretiu-Vasiliu C., Smay J., Ricci J.L., Warren S.M. Dynamic cell culture for vascularized bone engineering. J. Am. Col. Surg. 2008, 207:S51-S52.
-
(2008)
J. Am. Col. Surg.
, vol.207
, pp. S51-S52
-
-
Allori, A.C.1
Sailon, A.M.2
Clark, E.3
Cretiu-Vasiliu, C.4
Smay, J.5
Ricci, J.L.6
Warren, S.M.7
-
56
-
-
84958095577
-
Chapter II.6.6- bioreactors for tissue engineering
-
Academic Press, B.D.R.S.H.J.S.E. LEMONS (Ed.)
-
Tandon N., Cimetta E., Bhumiratana S., Godier-Furnemont A., Maidhof R., Vunjak-Novakovic G. Chapter II.6.6- bioreactors for tissue engineering. Biomaterials Science 2013, Academic Press. third ed. B.D.R.S.H.J.S.E. LEMONS (Ed.).
-
(2013)
Biomaterials Science
-
-
Tandon, N.1
Cimetta, E.2
Bhumiratana, S.3
Godier-Furnemont, A.4
Maidhof, R.5
Vunjak-Novakovic, G.6
-
57
-
-
84866355664
-
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
-
Miller J.S., Stevens K.R., Yang M.T., Baker B.M., Nguyen D.H., Cohen D.M., Toro E., Chen A.A., Galie P.A., Yu X., Chaturvedi R., Bhatia S.N., Chen C.S. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 2012, 11:768-774.
-
(2012)
Nat. Mater.
, vol.11
, pp. 768-774
-
-
Miller, J.S.1
Stevens, K.R.2
Yang, M.T.3
Baker, B.M.4
Nguyen, D.H.5
Cohen, D.M.6
Toro, E.7
Chen, A.A.8
Galie, P.A.9
Yu, X.10
Chaturvedi, R.11
Bhatia, S.N.12
Chen, C.S.13
-
58
-
-
33748316443
-
Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness
-
Moroni L., Schotel R., Sohier J., De Wijn J.R., van Blitterswijk C.A. Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials 2006, 27:5918-5926.
-
(2006)
Biomaterials
, vol.27
, pp. 5918-5926
-
-
Moroni, L.1
Schotel, R.2
Sohier, J.3
De Wijn, J.R.4
van Blitterswijk, C.A.5
-
59
-
-
84903737158
-
Creating perfused functional vascular channels using 3D bio-printing technology
-
Lee V.K., Kim D.Y., Ngo H., Lee Y., Seo L., Yoo S.-S., Vincent P.A., Dai G. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 2014, 35:8092-8102.
-
(2014)
Biomaterials
, vol.35
, pp. 8092-8102
-
-
Lee, V.K.1
Kim, D.Y.2
Ngo, H.3
Lee, Y.4
Seo, L.5
Yoo, S.-S.6
Vincent, P.A.7
Dai, G.8
-
60
-
-
84900988712
-
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
-
Kolesky D.B., Truby R.L., Gladman A.S., Busbee T.A., Homan K.A., Lewis J.A. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 2014, 26:3124-3130.
-
(2014)
Adv. Mater.
, vol.26
, pp. 3124-3130
-
-
Kolesky, D.B.1
Truby, R.L.2
Gladman, A.S.3
Busbee, T.A.4
Homan, K.A.5
Lewis, J.A.6
-
61
-
-
45549085001
-
Osteogenesis and angiogenesis: the potential for engineering bone
-
Kanczler J.M., Oreffo R.O. Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cell Mater. 2008, 15:100-114.
-
(2008)
Eur. Cell Mater.
, vol.15
, pp. 100-114
-
-
Kanczler, J.M.1
Oreffo, R.O.2
-
62
-
-
70350726213
-
Scaffolds with covalently immobilized VEGF and angiopoietin-for vascularization of engineered tissues
-
Chiu L.L.Y., Radisic M. Scaffolds with covalently immobilized VEGF and angiopoietin-for vascularization of engineered tissues. Biomaterials 2010, 31:226-241.
-
(2010)
Biomaterials
, vol.31
, pp. 226-241
-
-
Chiu, L.L.Y.1
Radisic, M.2
-
63
-
-
79959900850
-
Tunable dual growth factor delivery from polyelectrolyte multilayer films
-
Shah N.J., MacDonald M.L., Beben Y.M., Padera R.F., Samuel R.E., Hammond P.T. Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 2011, 32:6183-6193.
-
(2011)
Biomaterials
, vol.32
, pp. 6183-6193
-
-
Shah, N.J.1
MacDonald, M.L.2
Beben, Y.M.3
Padera, R.F.4
Samuel, R.E.5
Hammond, P.T.6
-
64
-
-
17844400927
-
Porosity of 3D biomaterial scaffolds and osteogenesis
-
Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26:5474-5491.
-
(2005)
Biomaterials
, vol.26
, pp. 5474-5491
-
-
Karageorgiou, V.1
Kaplan, D.2
-
65
-
-
33846188184
-
In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method
-
Oh S.H., Park I.K., Kim J.M., Lee J.H. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 2007, 28:1664-1671.
-
(2007)
Biomaterials
, vol.28
, pp. 1664-1671
-
-
Oh, S.H.1
Park, I.K.2
Kim, J.M.3
Lee, J.H.4
-
66
-
-
56349117564
-
Effect of pore size and interpore distance on endothelial cell growth on polymers
-
Narayan D., Venkatraman S.S. Effect of pore size and interpore distance on endothelial cell growth on polymers. J. Biomed. Mater. Res. A 2008, 87A:710-718.
-
(2008)
J. Biomed. Mater. Res. A
, vol.87A
, pp. 710-718
-
-
Narayan, D.1
Venkatraman, S.S.2
-
67
-
-
78650041547
-
The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study
-
Bai F., Wang Z., Lu J., Liu J., Chen G., Lv R., Wang J., Lin K., Zhang J., Huang X. The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study. Tissue Eng. Part A 2010, 16:3791-3803.
-
(2010)
Tissue Eng. Part A
, vol.16
, pp. 3791-3803
-
-
Bai, F.1
Wang, Z.2
Lu, J.3
Liu, J.4
Chen, G.5
Lv, R.6
Wang, J.7
Lin, K.8
Zhang, J.9
Huang, X.10
-
68
-
-
43049110288
-
Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo
-
Klenke F.M., Liu Y., Yuan H., Hunziker E.B., Siebenrock K.A., Hofstetter W. Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J. Biomed. Mater. Res. A 2008, 85A:777-786.
-
(2008)
J. Biomed. Mater. Res. A
, vol.85A
, pp. 777-786
-
-
Klenke, F.M.1
Liu, Y.2
Yuan, H.3
Hunziker, E.B.4
Siebenrock, K.A.5
Hofstetter, W.6
-
69
-
-
77958103709
-
Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo
-
Ghanaati S., Barbeck M., Orth C., Willershausen I., Thimm B.W., Hoffmann C., Rasic A., Sader R.A., Unger R.E., Peters F., Kirkpatrick C.J. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater. 2010, 6:4476-4487.
-
(2010)
Acta Biomater.
, vol.6
, pp. 4476-4487
-
-
Ghanaati, S.1
Barbeck, M.2
Orth, C.3
Willershausen, I.4
Thimm, B.W.5
Hoffmann, C.6
Rasic, A.7
Sader, R.A.8
Unger, R.E.9
Peters, F.10
Kirkpatrick, C.J.11
-
70
-
-
35148867435
-
A fibrinogen based precision microporous scaffold for tissue engineering
-
Linnes M., Ratner B.D., Giachelli C.M. A fibrinogen based precision microporous scaffold for tissue engineering. Biomaterials 2007, 28:5298-5306.
-
(2007)
Biomaterials
, vol.28
, pp. 5298-5306
-
-
Linnes, M.1
Ratner, B.D.2
Giachelli, C.M.3
-
71
-
-
49449094276
-
Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering
-
Osathanon T., Linnes M.L., Rajachar R.M., Ratner B.D., Somerman M.J., Giachelli C.M. Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials 2008, 29:4091-4099.
-
(2008)
Biomaterials
, vol.29
, pp. 4091-4099
-
-
Osathanon, T.1
Linnes, M.L.2
Rajachar, R.M.3
Ratner, B.D.4
Somerman, M.J.5
Giachelli, C.M.6
-
72
-
-
84862702111
-
Engineering biomaterials to integrate and heal: the biocompatibility paradigm shifts
-
Bryers J.D., Giachelli C.M., Ratner B.D. Engineering biomaterials to integrate and heal: the biocompatibility paradigm shifts. Biotechnol. Bioeng. 2012, 109:1898-1911.
-
(2012)
Biotechnol. Bioeng.
, vol.109
, pp. 1898-1911
-
-
Bryers, J.D.1
Giachelli, C.M.2
Ratner, B.D.3
-
73
-
-
42749096667
-
On the mechanisms of biocompatibility
-
Williams D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29:941-953.
-
(2008)
Biomaterials
, vol.29
, pp. 941-953
-
-
Williams, D.F.1
-
75
-
-
84898472940
-
The biomaterials conundrum in tissue engineering
-
Williams D.F. The biomaterials conundrum in tissue engineering. Tissue Eng. Part A 2014, 20:1129-1131.
-
(2014)
Tissue Eng. Part A
, vol.20
, pp. 1129-1131
-
-
Williams, D.F.1
-
76
-
-
84908102077
-
There is no such thing as a biocompatible material
-
Williams D.F. There is no such thing as a biocompatible material. Biomaterials 2014, 35:10009-10014.
-
(2014)
Biomaterials
, vol.35
, pp. 10009-10014
-
-
Williams, D.F.1
-
77
-
-
28444490061
-
Mesenchymal stem cells
-
Oreffo R.O.C., Cooper C., Mason C., Clements M. Mesenchymal stem cells. Stem Cell Rev. 2005, 1:169-178.
-
(2005)
Stem Cell Rev.
, vol.1
, pp. 169-178
-
-
Oreffo, R.O.C.1
Cooper, C.2
Mason, C.3
Clements, M.4
-
78
-
-
44649141451
-
Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration
-
Tare R.S., Babister J.C., Kanczler J., Oreffo R.O.C. Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration. Mol. Cell Endocrinol. 2008, 288:11-21.
-
(2008)
Mol. Cell Endocrinol.
, vol.288
, pp. 11-21
-
-
Tare, R.S.1
Babister, J.C.2
Kanczler, J.3
Oreffo, R.O.C.4
-
79
-
-
81755166878
-
Cell sources for bone regeneration: the good, the bad, and the ugly (but promising)
-
Robey P.G. Cell sources for bone regeneration: the good, the bad, and the ugly (but promising). Tissue Eng. Part B Rev. 2011, 17:423-430.
-
(2011)
Tissue Eng. Part B Rev.
, vol.17
, pp. 423-430
-
-
Robey, P.G.1
-
80
-
-
84555187779
-
Isolation, differentiation, and characterisation of skeletal stem cells from human bone marrow in vitro and in vivo
-
Tare R.S., Mitchell P.D., Kanczler J., Oreffo R.O.C. Isolation, differentiation, and characterisation of skeletal stem cells from human bone marrow in vitro and in vivo. Methods Mol. Biol. 2012, 816:83-99.
-
(2012)
Methods Mol. Biol.
, vol.816
, pp. 83-99
-
-
Tare, R.S.1
Mitchell, P.D.2
Kanczler, J.3
Oreffo, R.O.C.4
-
81
-
-
84891750619
-
Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies- where are we now?
-
Dawson J.I., Kanczler J., Tare R., Kassem M., Oreffo R.O.C. Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies- where are we now?. Stem cells 2014, 32:35-44.
-
(2014)
Stem cells
, vol.32
, pp. 35-44
-
-
Dawson, J.I.1
Kanczler, J.2
Tare, R.3
Kassem, M.4
Oreffo, R.O.C.5
-
82
-
-
70350673594
-
Progenitor and stem cells for bone and cartilage regeneration
-
El Tamer M.K., Reis R.L. Progenitor and stem cells for bone and cartilage regeneration. J. Tissue Eng. Regen. Med. 2009, 3:327-337.
-
(2009)
J. Tissue Eng. Regen. Med.
, vol.3
, pp. 327-337
-
-
El Tamer, M.K.1
Reis, R.L.2
-
83
-
-
84864273761
-
Bone tissue engineering: current strategies and techniques- part II: cell types
-
Szpalski C., Barbaro M., Sagebin F., Warren S.M. Bone tissue engineering: current strategies and techniques- part II: cell types. Tissue Eng. Part B Rev. 2012, 18:258-269.
-
(2012)
Tissue Eng. Part B Rev.
, vol.18
, pp. 258-269
-
-
Szpalski, C.1
Barbaro, M.2
Sagebin, F.3
Warren, S.M.4
-
84
-
-
82455168205
-
Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration
-
Wang F., Yu M., Yan X., Wen Y., Zeng Q., Yue W., Yang P., Pei X. Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration. Stem Cells Dev 2011, 2011(20):2093-2102.
-
(2011)
Stem Cells Dev
, vol.2011
, Issue.20
, pp. 2093-2102
-
-
Wang, F.1
Yu, M.2
Yan, X.3
Wen, Y.4
Zeng, Q.5
Yue, W.6
Yang, P.7
Pei, X.8
-
85
-
-
84878146454
-
Engineering bone tissue substitutes from human induced pluripotent stem cells
-
De Peppo G.M., Marcos-Campos I., Kahler D.J., AlSalman D., Shang L., Vunjak-Novakovic G., Marolt D. Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:8680-8685.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 8680-8685
-
-
De Peppo, G.M.1
Marcos-Campos, I.2
Kahler, D.J.3
AlSalman, D.4
Shang, L.5
Vunjak-Novakovic, G.6
Marolt, D.7
-
86
-
-
84881027626
-
Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering
-
Liu J., Chen W., Zhao Z., Xu H.H.K. Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering. Biomaterials 2013, 34:7862-7872.
-
(2013)
Biomaterials
, vol.34
, pp. 7862-7872
-
-
Liu, J.1
Chen, W.2
Zhao, Z.3
Xu, H.H.K.4
-
87
-
-
84903518256
-
Directed differentiation of human induced pluripotent stem cells toward bone and cartilage: in vitro versus in vivo assays
-
Phillips M.D., Kuznetsov S.A., Cherman N., Park K., Chen K.G., McClendon B.N., Hamilton R.S., McKay R.D.G., Chenoweth J.G., Mallon B.S., Robey P.G. Directed differentiation of human induced pluripotent stem cells toward bone and cartilage: in vitro versus in vivo assays. Stem Cells Transl. Med. 2014, 3:867-878.
-
(2014)
Stem Cells Transl. Med.
, vol.3
, pp. 867-878
-
-
Phillips, M.D.1
Kuznetsov, S.A.2
Cherman, N.3
Park, K.4
Chen, K.G.5
McClendon, B.N.6
Hamilton, R.S.7
McKay, R.D.G.8
Chenoweth, J.G.9
Mallon, B.S.10
Robey, P.G.11
-
88
-
-
84968362658
-
Dental stem cells characterization and bone regenerative potential in oral medicine
-
Rodrigues R., Viana B., Vieira I., Tavares J., Lobo R., Portella A., Vasconcelos M. Dental stem cells characterization and bone regenerative potential in oral medicine. Int. J. Stem Cell Res. Ther. 2015, 2:009.
-
(2015)
Int. J. Stem Cell Res. Ther.
, vol.2
, pp. 009
-
-
Rodrigues, R.1
Viana, B.2
Vieira, I.3
Tavares, J.4
Lobo, R.5
Portella, A.6
Vasconcelos, M.7
-
89
-
-
84920941427
-
Review of vascularised bone tissue engineering strategies with a focus on co-culture systems
-
Liu Y., Chan J.K., Teoh S.H. Review of vascularised bone tissue engineering strategies with a focus on co-culture systems. J. Tissue Eng. Regen. Med. 2015, 9:85-105.
-
(2015)
J. Tissue Eng. Regen. Med.
, vol.9
, pp. 85-105
-
-
Liu, Y.1
Chan, J.K.2
Teoh, S.H.3
-
91
-
-
78650051718
-
Stem cells in bone tissue engineering
-
Seong J.M., Kim B.C., Park J.H., Kwon I.K., Mantalaris A., Hwang Y.S. Stem cells in bone tissue engineering. Biomed. Mater. 2010, 5:062001.
-
(2010)
Biomed. Mater.
, vol.5
, pp. 062001
-
-
Seong, J.M.1
Kim, B.C.2
Park, J.H.3
Kwon, I.K.4
Mantalaris, A.5
Hwang, Y.S.6
-
92
-
-
84958095578
-
Chapter II.6.4- cell sources for tissue engineering: mesenchymal stem cells
-
Academic Press, B.D.R.S.H.J.S.E. LEMONS (Ed.)
-
Caplan A.I. Chapter II.6.4- cell sources for tissue engineering: mesenchymal stem cells. Biomaterials Science 2013, Academic Press. third ed. B.D.R.S.H.J.S.E. LEMONS (Ed.).
-
(2013)
Biomaterials Science
-
-
Caplan, A.I.1
-
93
-
-
0009877834
-
Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells
-
Wang D.S., Miura M., Demura H., Sato K. Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells. Endocrinol 1997, 138:2953-2962.
-
(1997)
Endocrinol
, vol.138
, pp. 2953-2962
-
-
Wang, D.S.1
Miura, M.2
Demura, H.3
Sato, K.4
-
94
-
-
84947615903
-
Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems
-
Unger R.E., Dohle E., Kirkpatrick C.J. Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems. Adv. Drug Deliv. Rev. 2015, 94:116-125.
-
(2015)
Adv. Drug Deliv. Rev.
, vol.94
, pp. 116-125
-
-
Unger, R.E.1
Dohle, E.2
Kirkpatrick, C.J.3
-
95
-
-
84874747360
-
Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and cultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering
-
Liu Y., Teoh S.H., Chong M.S., Yeow C.H., Kamm R.D., Choolani M., Chan J.K. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and cultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Tissue Eng. Part A 2013, 19:893-904.
-
(2013)
Tissue Eng. Part A
, vol.19
, pp. 893-904
-
-
Liu, Y.1
Teoh, S.H.2
Chong, M.S.3
Yeow, C.H.4
Kamm, R.D.5
Choolani, M.6
Chan, J.K.7
-
96
-
-
42649095181
-
A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues
-
Stevens B., Yang Y., Mohandas A., Stucker B., Nguyen K.T. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 85:573-582.
-
(2008)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.85
, pp. 573-582
-
-
Stevens, B.1
Yang, Y.2
Mohandas, A.3
Stucker, B.4
Nguyen, K.T.5
-
97
-
-
79952420018
-
Biomaterials & scaffolds for tissue engineering
-
O'Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011, 14:88-95.
-
(2011)
Mater. Today
, vol.14
, pp. 88-95
-
-
O'Brien, F.J.1
-
98
-
-
84929128339
-
Cell based advanced therapeutic medicinal products for bone repair: keep it simple?
-
Leijten J., Chai Y.C., Papantoniou I., Geris L., Schrooten J., Luyten F.P. Cell based advanced therapeutic medicinal products for bone repair: keep it simple?. Adv. Drug Deliv. Rev. 2014, 84:30-44.
-
(2014)
Adv. Drug Deliv. Rev.
, vol.84
, pp. 30-44
-
-
Leijten, J.1
Chai, Y.C.2
Papantoniou, I.3
Geris, L.4
Schrooten, J.5
Luyten, F.P.6
-
100
-
-
84862869528
-
A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering
-
Billiet T., Vandenhaute M., Schelfhout J., van Vlierberghe S., Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 2012, 33:6020-6041.
-
(2012)
Biomaterials
, vol.33
, pp. 6020-6041
-
-
Billiet, T.1
Vandenhaute, M.2
Schelfhout, J.3
van Vlierberghe, S.4
Dubruel, P.5
-
101
-
-
84958095579
-
Chapter II.6.3- tissue engineering scaffolds
-
Academic Press, B.D.R.S.H.J.S.E. LEMONS (Ed.)
-
Kasper F.K., Singh M., Mikos A.G. Chapter II.6.3- tissue engineering scaffolds. Biomaterials Science 2013, Academic Press. third ed. B.D.R.S.H.J.S.E. LEMONS (Ed.).
-
(2013)
Biomaterials Science
-
-
Kasper, F.K.1
Singh, M.2
Mikos, A.G.3
-
102
-
-
84899123590
-
Biomaterial-based scaffolds- current status and future directions
-
Garg T., Goyal A.K. Biomaterial-based scaffolds- current status and future directions. Exp. Opin. Drug Deliv. 2014, 11:767-789.
-
(2014)
Exp. Opin. Drug Deliv.
, vol.11
, pp. 767-789
-
-
Garg, T.1
Goyal, A.K.2
-
103
-
-
84912561353
-
Bone tissue engineering and regenerative medicine: Targeting pathological fractures
-
Nguyen D.T., Burg K.J.L. Bone tissue engineering and regenerative medicine: Targeting pathological fractures. J. Biomed. Mater. Res. A 2015, 103A:420-429.
-
(2015)
J. Biomed. Mater. Res. A
, vol.103A
, pp. 420-429
-
-
Nguyen, D.T.1
Burg, K.J.L.2
-
104
-
-
84929131367
-
Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies
-
Fernandez-Yague M.A., Abbah S.A., McNamara L., Zeugolis D.I., Pandit A., Biggs M.J. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv. Drug Deliv. Rev. 2015, 84:1-29.
-
(2015)
Adv. Drug Deliv. Rev.
, vol.84
, pp. 1-29
-
-
Fernandez-Yague, M.A.1
Abbah, S.A.2
McNamara, L.3
Zeugolis, D.I.4
Pandit, A.5
Biggs, M.J.6
-
105
-
-
84868560510
-
Bioreactor strategy in bone tissue engineering: pre-culture and osteogenic differentiation under two flow configurations
-
Kim J., Ma T. Bioreactor strategy in bone tissue engineering: pre-culture and osteogenic differentiation under two flow configurations. Tissue Eng. Part A 2012, 18:2354-2364.
-
(2012)
Tissue Eng. Part A
, vol.18
, pp. 2354-2364
-
-
Kim, J.1
Ma, T.2
-
106
-
-
81755188465
-
Evaluation of angiogenesis and osteogenesis
-
Das A., Botchwey E. Evaluation of angiogenesis and osteogenesis. Tissue Eng. Part B Rev. 2011, 17:403-414.
-
(2011)
Tissue Eng. Part B Rev.
, vol.17
, pp. 403-414
-
-
Das, A.1
Botchwey, E.2
-
108
-
-
84893695400
-
Comparison of cell response and surface characteristics on titanium implant with SLA and SLAffinity functionalization
-
Huang C.-F., Chiang H.-J., Lin H.-J., Hosseinkhani H., Ou K.-L., Peng P.-W. Comparison of cell response and surface characteristics on titanium implant with SLA and SLAffinity functionalization. J. Electrochem Soc. 2014, 161:G15-G20.
-
(2014)
J. Electrochem Soc.
, vol.161
, pp. G15-G20
-
-
Huang, C.-F.1
Chiang, H.-J.2
Lin, H.-J.3
Hosseinkhani, H.4
Ou, K.-L.5
Peng, P.-W.6
-
109
-
-
84937883768
-
Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium
-
Tsai M.-H., Huang C.-F., Shyu S.-S., Chou Y.-R., Lin M.-H., Peng P.-W., Ou K.-L., Yu C.-H. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium. Mater. Char. 2015, 106:463-469.
-
(2015)
Mater. Char.
, vol.106
, pp. 463-469
-
-
Tsai, M.-H.1
Huang, C.-F.2
Shyu, S.-S.3
Chou, Y.-R.4
Lin, M.-H.5
Peng, P.-W.6
Ou, K.-L.7
Yu, C.-H.8
-
110
-
-
84901194561
-
Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate
-
Dalby M.J., Gadegaard N., Oreffo R.O.C. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat. Mater. 2014, 13:558-569.
-
(2014)
Nat. Mater.
, vol.13
, pp. 558-569
-
-
Dalby, M.J.1
Gadegaard, N.2
Oreffo, R.O.C.3
-
111
-
-
67849101009
-
The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells
-
Biggs M.J.P., Richards R.G., Gadegaard N., Wilkinson C.D.W., Oreffo R.O.C., Dalby M.J. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials 2009, 30:5094-5103.
-
(2009)
Biomaterials
, vol.30
, pp. 5094-5103
-
-
Biggs, M.J.P.1
Richards, R.G.2
Gadegaard, N.3
Wilkinson, C.D.W.4
Oreffo, R.O.C.5
Dalby, M.J.6
-
112
-
-
60549098069
-
Stem cell fate dictated solely by altered nanotube dimension
-
Oh S., Brammer K.S., Li Y.S., Teng D., Engler A.J., Chien S., Jin S. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:2130-2135.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 2130-2135
-
-
Oh, S.1
Brammer, K.S.2
Li, Y.S.3
Teng, D.4
Engler, A.J.5
Chien, S.6
Jin, S.7
-
113
-
-
84884904798
-
Embossing of micro-patterned ceramics and their cellular response
-
Nadeem D., Sjostrom T., Wilkinson A., Smith C.A., Oreffo R.O.C., Dalby M.J., Su B. Embossing of micro-patterned ceramics and their cellular response. J. Biomed. Mater. Res. A 2013, 101:3247-3255.
-
(2013)
J. Biomed. Mater. Res. A
, vol.101
, pp. 3247-3255
-
-
Nadeem, D.1
Sjostrom, T.2
Wilkinson, A.3
Smith, C.A.4
Oreffo, R.O.C.5
Dalby, M.J.6
Su, B.7
-
114
-
-
84914697152
-
Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner
-
Cheng A., Humayun A., Cohen D.J., Boyan B.D., Schwartz Z. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication 2014, 6:045007.
-
(2014)
Biofabrication
, vol.6
, pp. 045007
-
-
Cheng, A.1
Humayun, A.2
Cohen, D.J.3
Boyan, B.D.4
Schwartz, Z.5
-
115
-
-
80053322011
-
Effect of geometric challenges on cell migration
-
Mills R.J., Frith J.E., Hudson J.E., Cooper-White J.J. Effect of geometric challenges on cell migration. Tissue Eng. Part C Methods 2011, 17:999-1010.
-
(2011)
Tissue Eng. Part C Methods
, vol.17
, pp. 999-1010
-
-
Mills, R.J.1
Frith, J.E.2
Hudson, J.E.3
Cooper-White, J.J.4
-
116
-
-
84879112861
-
Cellular behavior in micro-patterned hydrogels by bioprinting system depended on the cell types and cellular interaction
-
Hong S., Song S.-J., Lee J.Y., Jang H., Choi J., Sun K., Park Y. Cellular behavior in micro-patterned hydrogels by bioprinting system depended on the cell types and cellular interaction. J. Biosci. Bioeng. 2013, 116:224-230.
-
(2013)
J. Biosci. Bioeng.
, vol.116
, pp. 224-230
-
-
Hong, S.1
Song, S.-J.2
Lee, J.Y.3
Jang, H.4
Choi, J.5
Sun, K.6
Park, Y.7
-
117
-
-
84907846850
-
Tissue engineered bone using select growth factors: a comprehensive review of animal studies and clinical translation studies in man
-
Gothard D., Smith E.L., Kanczler J.M., Rashidi H., Qutachi O., Henstock J., Rotherham M., El Haj A.J., Shakesheff K.M., Oreffo R.O.C. Tissue engineered bone using select growth factors: a comprehensive review of animal studies and clinical translation studies in man. Eur. Cell Mater. 2014, 28:166-208.
-
(2014)
Eur. Cell Mater.
, vol.28
, pp. 166-208
-
-
Gothard, D.1
Smith, E.L.2
Kanczler, J.M.3
Rashidi, H.4
Qutachi, O.5
Henstock, J.6
Rotherham, M.7
El Haj, A.J.8
Shakesheff, K.M.9
Oreffo, R.O.C.10
-
118
-
-
84877969932
-
Controlled release strategies for bone, cartilage, and osteochondral engineering - Part II: challenges on the evolution from single to multiple bioactive factor delivery
-
Santo V.E., Gomes M.E., Mano J.F., Reis R.L. Controlled release strategies for bone, cartilage, and osteochondral engineering - Part II: challenges on the evolution from single to multiple bioactive factor delivery. Tissue Eng. Part B Rev. 2013, 19:327-352.
-
(2013)
Tissue Eng. Part B Rev.
, vol.19
, pp. 327-352
-
-
Santo, V.E.1
Gomes, M.E.2
Mano, J.F.3
Reis, R.L.4
-
119
-
-
69249088910
-
Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenic protein-on bone regeneration in a rat critical-size defect model
-
Young S., Patel Z.S., Kretlow J.D., Murphy M.B., Mountziaris P.M., Baggett L.S., Ueda H., Tabata Y., Jansen J.A., Wong M., Mikos A.G. Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenic protein-on bone regeneration in a rat critical-size defect model. Tissue Eng. Part A 2009, 15:2347-2362.
-
(2009)
Tissue Eng. Part A
, vol.15
, pp. 2347-2362
-
-
Young, S.1
Patel, Z.S.2
Kretlow, J.D.3
Murphy, M.B.4
Mountziaris, P.M.5
Baggett, L.S.6
Ueda, H.7
Tabata, Y.8
Jansen, J.A.9
Wong, M.10
Mikos, A.G.11
-
120
-
-
84884992545
-
Fibroblast Growth Factor-and Bone Morphogenetic Protein-have a synergistic stimulatory effect on bone formation in cell cultures from elderly mouse and human bone
-
Kuhn L.T., Ou G.M., Charles L., Hurley M.M., Rodner C.M., Gronowicz G. Fibroblast Growth Factor-and Bone Morphogenetic Protein-have a synergistic stimulatory effect on bone formation in cell cultures from elderly mouse and human bone. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68:1170-1180.
-
(2013)
J. Gerontol. A Biol. Sci. Med. Sci.
, vol.68
, pp. 1170-1180
-
-
Kuhn, L.T.1
Ou, G.M.2
Charles, L.3
Hurley, M.M.4
Rodner, C.M.5
Gronowicz, G.6
-
121
-
-
84906572761
-
Controlled multiple growth factor delivery from bone tissue engineering scaffolds via designed affinity
-
Suarez-Gonzalez D., Lee J.S., Diggs A., Lu Y., Nemke B., Markel M., Hollister S.J., Murphy W.L. Controlled multiple growth factor delivery from bone tissue engineering scaffolds via designed affinity. Tissue Eng. Part A 2014, 20:2077-2087.
-
(2014)
Tissue Eng. Part A
, vol.20
, pp. 2077-2087
-
-
Suarez-Gonzalez, D.1
Lee, J.S.2
Diggs, A.3
Lu, Y.4
Nemke, B.5
Markel, M.6
Hollister, S.J.7
Murphy, W.L.8
-
122
-
-
78149250686
-
Chemically-conjugated Bone Morphogenetic Protein-on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells
-
Zhang H., Migneco F., Lin C.Y., Hollister S.J. Chemically-conjugated Bone Morphogenetic Protein-on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells. Tissue Eng. Part A 2010, 16:3441-3448.
-
(2010)
Tissue Eng. Part A
, vol.16
, pp. 3441-3448
-
-
Zhang, H.1
Migneco, F.2
Lin, C.Y.3
Hollister, S.J.4
-
123
-
-
84884561213
-
Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering
-
Mourino V., Cattalini J.P., Roether J.A., Dubey P., Roy I., Boccaccini A.R. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Exp. Opin. Drug Deliv. 2013, 10:1353-1365.
-
(2013)
Exp. Opin. Drug Deliv.
, vol.10
, pp. 1353-1365
-
-
Mourino, V.1
Cattalini, J.P.2
Roether, J.A.3
Dubey, P.4
Roy, I.5
Boccaccini, A.R.6
-
124
-
-
84991550909
-
Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair
-
Sawkins M.J., Mistry P., Brown B.N., Shakesheff K., Bonassar L.J., Yang J. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair. Biofabrication 2015, 7:035004.
-
(2015)
Biofabrication
, vol.7
, pp. 035004
-
-
Sawkins, M.J.1
Mistry, P.2
Brown, B.N.3
Shakesheff, K.4
Bonassar, L.J.5
Yang, J.6
-
125
-
-
38349076688
-
Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations
-
Phillippi J.A., Miller E., Weiss L., Huard J., Waggoner A., Campbell P. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 2008, 26:127-134.
-
(2008)
Stem Cells
, vol.26
, pp. 127-134
-
-
Phillippi, J.A.1
Miller, E.2
Weiss, L.3
Huard, J.4
Waggoner, A.5
Campbell, P.6
-
126
-
-
77952710862
-
Simultaneous immobilization of bioactives during 3D powder printing of bioceramic drug-release matrices
-
Vorndran E., Klammert U., Ewald A., Barralet J.E., Gbureck U. Simultaneous immobilization of bioactives during 3D powder printing of bioceramic drug-release matrices. Adv. Funct. Mater. 2010, 20:1585-1591.
-
(2010)
Adv. Funct. Mater.
, vol.20
, pp. 1585-1591
-
-
Vorndran, E.1
Klammert, U.2
Ewald, A.3
Barralet, J.E.4
Gbureck, U.5
-
127
-
-
56449125956
-
Effect of grafting RGD and BMP-protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells
-
He X., Ma J., Jabbari E. Effect of grafting RGD and BMP-protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells. Langmuir 2008, 24:12508-12516.
-
(2008)
Langmuir
, vol.24
, pp. 12508-12516
-
-
He, X.1
Ma, J.2
Jabbari, E.3
-
128
-
-
3142703230
-
Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells
-
Simmons C.A., Alsberg E., Hsiong S., Kim W.J., Mooney D.J. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 2004, 35:562-569.
-
(2004)
Bone
, vol.35
, pp. 562-569
-
-
Simmons, C.A.1
Alsberg, E.2
Hsiong, S.3
Kim, W.J.4
Mooney, D.J.5
-
130
-
-
82055190144
-
CAD/CAM-assisted breast reconstruction
-
Melchels F.P., Wiggenhauser P.S., Warne D., Barry M., Ong F.R., Chong W.S., Hutmacher D.W., Schantz J.-T. CAD/CAM-assisted breast reconstruction. Biofabrication 2011, 3:034114.
-
(2011)
Biofabrication
, vol.3
, pp. 034114
-
-
Melchels, F.P.1
Wiggenhauser, P.S.2
Warne, D.3
Barry, M.4
Ong, F.R.5
Chong, W.S.6
Hutmacher, D.W.7
Schantz, J.-T.8
-
131
-
-
15444367350
-
Volume-based non-continuum modeling of bone functional adaptation
-
Wang Z., Mondry A. Volume-based non-continuum modeling of bone functional adaptation. Theor. Biol. Med. Model 2005, 2:6.
-
(2005)
Theor. Biol. Med. Model
, vol.2
, pp. 6
-
-
Wang, Z.1
Mondry, A.2
-
132
-
-
84908245495
-
Evaluation of skeletal tissue repair, Part 1: Assessment of novel growth factor-releasing hydrogels in an ex vivo chick femur defect model
-
Smith E.L., Kanczler J.M., Gothard D., Roberts C.A., Wells J.A., White L.J., Qutachi O., Sawkins M.J., Peto H., Rashidi H., Rojo L., Stevens M.M., El Haj A.J., Rose F.R., Shakesheff K.M., Oreffo R.O.C. Evaluation of skeletal tissue repair, Part 1: Assessment of novel growth factor-releasing hydrogels in an ex vivo chick femur defect model. Acta Biomater. 2014, 10:4186-4196.
-
(2014)
Acta Biomater.
, vol.10
, pp. 4186-4196
-
-
Smith, E.L.1
Kanczler, J.M.2
Gothard, D.3
Roberts, C.A.4
Wells, J.A.5
White, L.J.6
Qutachi, O.7
Sawkins, M.J.8
Peto, H.9
Rashidi, H.10
Rojo, L.11
Stevens, M.M.12
El Haj, A.J.13
Rose, F.R.14
Shakesheff, K.M.15
Oreffo, R.O.C.16
-
133
-
-
84907593135
-
The chicken chorioallantoic membrane model in biology, medicine and bioengineering
-
Nowak-Sliwinska P., Segura T., Iruela-Arispe M.L. The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis 2014, 17:779-804.
-
(2014)
Angiogenesis
, vol.17
, pp. 779-804
-
-
Nowak-Sliwinska, P.1
Segura, T.2
Iruela-Arispe, M.L.3
-
134
-
-
84884690579
-
A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation
-
Smith E.L., Kanczler J.M., Oreffo R.O.C. A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation. Eur. Cell Mater. 2013, 26:91-106.
-
(2013)
Eur. Cell Mater.
, vol.26
, pp. 91-106
-
-
Smith, E.L.1
Kanczler, J.M.2
Oreffo, R.O.C.3
-
135
-
-
33644934897
-
Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
-
Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27:3413-3431.
-
(2006)
Biomaterials
, vol.27
, pp. 3413-3431
-
-
Rezwan, K.1
Chen, Q.Z.2
Blaker, J.J.3
Boccaccini, A.R.4
-
137
-
-
84864267743
-
Bone tissue engineering: current strategies and techniques- Part I: scaffolds
-
Szpalski C., Wetterau M., Barr J., Warren S.M. Bone tissue engineering: current strategies and techniques- Part I: scaffolds. Tissue Eng. Part B Rev. 2012, 18:246-257.
-
(2012)
Tissue Eng. Part B Rev.
, vol.18
, pp. 246-257
-
-
Szpalski, C.1
Wetterau, M.2
Barr, J.3
Warren, S.M.4
-
138
-
-
84880771640
-
Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine
-
Vielreicher M., Schurmann S., Detsch R., Schmidt M.A., Buttgereit A., Boccaccini A., Friedrich O. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J. R. Soc. Interf. 2013, 10.
-
(2013)
J. R. Soc. Interf.
, vol.10
-
-
Vielreicher, M.1
Schurmann, S.2
Detsch, R.3
Schmidt, M.A.4
Buttgereit, A.5
Boccaccini, A.6
Friedrich, O.7
-
139
-
-
84920147009
-
Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering
-
Wang M.O., Vorwald C.E., Dreher M.L., Mott E.J., Cheng M.-H., Cinar A., Mehdizadeh H., Somo S., Dean D., Brey E.M., Fisher J.P. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. Adv. Mater. 2015, 27:138-144.
-
(2015)
Adv. Mater.
, vol.27
, pp. 138-144
-
-
Wang, M.O.1
Vorwald, C.E.2
Dreher, M.L.3
Mott, E.J.4
Cheng, M.-H.5
Cinar, A.6
Mehdizadeh, H.7
Somo, S.8
Dean, D.9
Brey, E.M.10
Fisher, J.P.11
|