-
1
-
-
77956775210
-
Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis
-
COI: 1:CAS:528:DC%2BC3cXhtFyhsLnI, PID: 20732306
-
Aguirre, A., J. A. Planell, and E. Engel. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochem. Biophys. Res. Commun. 400:284–291, 2010.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.400
, pp. 284-291
-
-
Aguirre, A.1
Planell, J.A.2
Engel, E.3
-
2
-
-
3042854894
-
Capillary vessel network integration by inserting a vascular pedicle enhances bone formation in tissue-engineered bone using interconnected porous hydroxyapatite ceramics
-
COI: 1:CAS:528:DC%2BD2cXlsVOmsb0%3D, PID: 15265296
-
Akita, S., N. Tamai, A. Myoui, M. Nishikawa, T. Kaito, K. Takaoka, and H. Yoshikawa. Capillary vessel network integration by inserting a vascular pedicle enhances bone formation in tissue-engineered bone using interconnected porous hydroxyapatite ceramics. Tissue Eng. 10:789–795, 2004.
-
(2004)
Tissue Eng.
, vol.10
, pp. 789-795
-
-
Akita, S.1
Tamai, N.2
Myoui, A.3
Nishikawa, M.4
Kaito, T.5
Takaoka, K.6
Yoshikawa, H.7
-
3
-
-
0034782891
-
Osteoinduction, osteoconduction and osseointegration
-
PID: 11716023
-
Albrektsson, T., and C. Johansson. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 10:S96–S101, 2001.
-
(2001)
Eur. Spine J.
, vol.10
, pp. 96-101
-
-
Albrektsson, T.1
Johansson, C.2
-
5
-
-
85057671270
-
Mechanical properties of bone
-
An YH, Draughn RA, (eds), CRC Press, Boca Raton, FL:
-
An, Y. H. Mechanical properties of bone. In: Mechanical Testing of Bone and the Bone-Implant Interface, edited by Y. H. An, and R. A. Draughn. Boca Raton, FL: CRC Press, 2000, pp. 41–63.
-
(2000)
Mechanical Testing of Bone and the Bone-Implant Interface
, pp. 41-63
-
-
An, Y.H.1
-
7
-
-
84877348134
-
Geometric control of vascular networks to enhance engineered tissue integration and function
-
COI: 1:CAS:528:DC%2BC3sXptFGrt74%3D, PID: 23610423
-
Baranski, J. D., R. R. Chaturvedi, K. R. Stevens, J. Eyckmans, B. Carvalho, R. D. Solorzano, M. T. Yang, J. S. Miller, S. N. Bhatia, and C. S. Chen. Geometric control of vascular networks to enhance engineered tissue integration and function. Proc. Natl. Acad. Sci. USA 110:7586–7591, 2013.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 7586-7591
-
-
Baranski, J.D.1
Chaturvedi, R.R.2
Stevens, K.R.3
Eyckmans, J.4
Carvalho, B.5
Solorzano, R.D.6
Yang, M.T.7
Miller, J.S.8
Bhatia, S.N.9
Chen, C.S.10
-
8
-
-
0033961003
-
Bone graft materials. An overview of the basic science
-
PID: 10693546
-
Bauer, T., and G. Muschler. Bone graft materials. An overview of the basic science. Clin. Orthop. Relat. Res. 371:10–27, 2000.
-
(2000)
Clin. Orthop. Relat. Res.
, vol.371
, pp. 10-27
-
-
Bauer, T.1
Muschler, G.2
-
9
-
-
27644557532
-
The role of pericytes in blood-vessel formation and maintenance
-
COI: 1:CAS:528:DC%2BD2MXht1SisLvP, PID: 16212810
-
Bergers, G., and S. Song. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 7:452–464, 2005.
-
(2005)
Neuro Oncol.
, vol.7
, pp. 452-464
-
-
Bergers, G.1
Song, S.2
-
10
-
-
84862777217
-
Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration
-
COI: 1:CAS:528:DC%2BC38Xktlejtb8%3D, PID: 22277992
-
Berner, A., J. Boerckel, S. Saifzadeh, R. Steck, J. Ren, C. Vaquette, J. Q. Zhang, M. Nerlich, R. E. Guldberg, and D. Hutmacher. Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration. Cell Tissue Res. 347:603–612, 2012.
-
(2012)
Cell Tissue Res.
, vol.347
, pp. 603-612
-
-
Berner, A.1
Boerckel, J.2
Saifzadeh, S.3
Steck, R.4
Ren, J.5
Vaquette, C.6
Zhang, J.Q.7
Nerlich, M.8
Guldberg, R.E.9
Hutmacher, D.10
-
11
-
-
0036590612
-
Limitations of autograft and allograft: new synthetic solutions
-
PID: 12038843
-
Betz, R. Limitations of autograft and allograft: new synthetic solutions. Orthopedics 25:s561–s570, 2002.
-
(2002)
Orthopedics
, vol.25
, pp. 561-570
-
-
Betz, R.1
-
12
-
-
24044497243
-
Extracellular matrix proteoglycans control the fate of bone marrow stromal cells
-
COI: 1:CAS:528:DC%2BD2MXos1Cqs7k%3D, PID: 15964849
-
Bi, Y., C. H. Stuelten, T. Kilts, S. Wadhwa, R. V. Iozzo, P. G. Robey, X.-D. Chen, and M. F. Young. Extracellular matrix proteoglycans control the fate of bone marrow stromal cells. J. Biol. Chem. 280:30481–30489, 2005.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 30481-30489
-
-
Bi, Y.1
Stuelten, C.H.2
Kilts, T.3
Wadhwa, S.4
Iozzo, R.V.5
Robey, P.G.6
Chen, X.-D.7
Young, M.F.8
-
13
-
-
77954202486
-
Current themes in cement research
-
COI: 1:CAS:528:DC%2BC3cXpslSisL8%3D
-
Black, L., P. Purnell, and J. Hill. Current themes in cement research. Adv. Appl. Ceram. 109:253–259, 2010.
-
(2010)
Adv. Appl. Ceram.
, vol.109
, pp. 253-259
-
-
Black, L.1
Purnell, P.2
Hill, J.3
-
14
-
-
77950610892
-
Complications associated with distraction osteogenesis for infected nonunion of the femoral shaft in the presence of a bone defect: a retrospective series
-
Blum, A. L. L., J. C. Bongiovanni, S. J. Morgan, M. A. Flierl, and F. B. dos Reis. Complications associated with distraction osteogenesis for infected nonunion of the femoral shaft in the presence of a bone defect: a retrospective series. J. Bone Joint Surg. Br. 92-B:565–570, 2010.
-
(2010)
J. Bone Joint Surg. Br.
, vol.92-B
, pp. 565-570
-
-
Blum, A.L.L.1
Bongiovanni, J.C.2
Morgan, S.J.3
Flierl, M.A.4
dos Reis, F.B.5
-
15
-
-
33750161995
-
Synthesis of two-component injectable polyurethanes for bone tissue engineering
-
COI: 1:CAS:528:DC%2BD28XhtFeiu73L, PID: 16979756
-
Bonzani, I. C., R. Adhikari, S. Houshyar, R. Mayadunne, P. Gunatillake, and M. M. Stevens. Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials 28:423–433, 2007.
-
(2007)
Biomaterials
, vol.28
, pp. 423-433
-
-
Bonzani, I.C.1
Adhikari, R.2
Houshyar, S.3
Mayadunne, R.4
Gunatillake, P.5
Stevens, M.M.6
-
16
-
-
0029144035
-
Bone biology
-
Buckwalter, J., M. Glimcher, R. Cooper, and R. Recker. Bone biology. J. Bone Joint Surg. Am. 77:1256–1275, 1995.
-
(1995)
J. Bone Joint Surg. Am.
, vol.77
, pp. 1256-1275
-
-
Buckwalter, J.1
Glimcher, M.2
Cooper, R.3
Recker, R.4
-
17
-
-
84884312245
-
Reconstruction of mandibular defects
-
PID: 22550439
-
Chim, H., C. J. Salgado, S. Mardini, and H.-C. Chen. Reconstruction of mandibular defects. Semin. Plast. Surg. 24:188–197, 2010.
-
(2010)
Semin. Plast. Surg.
, vol.24
, pp. 188-197
-
-
Chim, H.1
Salgado, C.J.2
Mardini, S.3
Chen, H.-C.4
-
18
-
-
78449271130
-
Highly porous titanium scaffolds for orthopaedic applications
-
COI: 1:CAS:528:DC%2BC3cXhtFChu7rI
-
Dabrowski, B., W. Swieszkowski, D. Godlinski, and K. J. Kurzydlowski. Highly porous titanium scaffolds for orthopaedic applications. J. Biomed. Mater. Res. B Appl. Biomater. 95B:53–61, 2010.
-
(2010)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.95B
, pp. 53-61
-
-
Dabrowski, B.1
Swieszkowski, W.2
Godlinski, D.3
Kurzydlowski, K.J.4
-
19
-
-
33644683263
-
Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization
-
COI: 1:CAS:528:DC%2BD2MXht1artrvJ, PID: 16306453
-
Davis, G. E., and D. R. Senger. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97:1093–1107, 2005.
-
(2005)
Circ. Res.
, vol.97
, pp. 1093-1107
-
-
Davis, G.E.1
Senger, D.R.2
-
20
-
-
77951252663
-
® derived porous scaffolds for co-culturing osteoblasts and endothelial cells
-
COI: 1:CAS:528:DC%2BC3cXjtVyhtbo%3D, PID: 20091103
-
® derived porous scaffolds for co-culturing osteoblasts and endothelial cells. J. Mater. Sci. Mater. Med. 21:893–905, 2010.
-
(2010)
J. Mater. Sci. Mater. Med.
, vol.21
, pp. 893-905
-
-
Deb, S.1
Mandegaran, R.2
Di Silvio, L.3
-
21
-
-
80053383214
-
Engineering porous scaffolds using gas-based techniques
-
COI: 1:CAS:528:DC%2BC3MXht1Kmt7nN, PID: 21546240
-
Dehghani, F., and N. Annabi. Engineering porous scaffolds using gas-based techniques. Curr. Opin. Biotechnol. 22:661–666, 2011.
-
(2011)
Curr. Opin. Biotechnol.
, vol.22
, pp. 661-666
-
-
Dehghani, F.1
Annabi, N.2
-
22
-
-
0042061223
-
Hydrogels for tissue engineering: scaffold design variables and applications
-
COI: 1:CAS:528:DC%2BD3sXmtFansLw%3D, PID: 12922147
-
Drury, J. L., and D. J. Mooney. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351, 2003.
-
(2003)
Biomaterials
, vol.24
, pp. 4337-4351
-
-
Drury, J.L.1
Mooney, D.J.2
-
23
-
-
84886996337
-
Cytotoxicity of polypropylene fumarate nanocomposites used in bone tissue engineering
-
NEBEC, Syracuse, NY:
-
Farshid, B., G. Lalwani, and B. Sitharaman. Cytotoxicity of polypropylene fumarate nanocomposites used in bone tissue engineering. In: 39th Annual Northeast Bioengineering Conference (NEBEC). Syracuse, NY, 2013, pp. 119–120.
-
(2013)
39th Annual Northeast Bioengineering Conference
, pp. 119-120
-
-
Farshid, B.1
Lalwani, G.2
Sitharaman, B.3
-
24
-
-
84877582403
-
TGF-β1 and BMP-4 carried by liposomes enhance the healing process in alveolar bone
-
COI: 1:CAS:528:DC%2BC3sXhvFSqtg%3D%3D, PID: 23290003
-
Ferreira, C. L., F. A. M. D. Abreu, G. A. B. Silva, F. F. Silveira, L. B. A. Barreto, T. D. P. Paulino, M. N. Miziara, and J. B. Alves. TGF-β1 and BMP-4 carried by liposomes enhance the healing process in alveolar bone. Arch. Oral Biol. 58:646–656, 2013.
-
(2013)
Arch. Oral Biol.
, vol.58
, pp. 646-656
-
-
Ferreira, C.L.1
Abreu, F.A.M.D.2
Silva, G.A.B.3
Silveira, F.F.4
Barreto, L.B.A.5
Paulino, T.D.P.6
Miziara, M.N.7
Alves, J.B.8
-
25
-
-
0015804548
-
Self-regulation of growth in three dimensions
-
COI: 1:STN:280:DyaE2c%2Fgsl2qsw%3D%3D, PID: 4744009
-
Folkman, J., and M. Hochberg. Self-regulation of growth in three dimensions. J. Exp. Med. 138:745–753, 1973.
-
(1973)
J. Exp. Med.
, vol.138
, pp. 745-753
-
-
Folkman, J.1
Hochberg, M.2
-
26
-
-
47749121495
-
Collagen scaffolds for tissue engineering
-
COI: 1:CAS:528:DC%2BD1cXksFWqs7o%3D, PID: 17941007
-
Glowacki, J., and S. Mizuno. Collagen scaffolds for tissue engineering. Biopolymers 89:338–344, 2008.
-
(2008)
Biopolymers
, vol.89
, pp. 338-344
-
-
Glowacki, J.1
Mizuno, S.2
-
27
-
-
77649269504
-
Engineering anatomically shaped human bone grafts
-
COI: 1:CAS:528:DC%2BC3cXjtFymt7Y%3D, PID: 19820164
-
Grayson, W. L., M. Fröhlich, K. Yeager, S. Bhumiratana, M. E. Chan, C. Cannizzaro, L. Q. Wan, X. S. Liu, X. E. Guo, and G. Vunjak-Novakovic. Engineering anatomically shaped human bone grafts. Proc. Natl. Acad. Sci. USA 107:3299–3304, 2010.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 3299-3304
-
-
Grayson, W.L.1
Fröhlich, M.2
Yeager, K.3
Bhumiratana, S.4
Chan, M.E.5
Cannizzaro, C.6
Wan, L.Q.7
Liu, X.S.8
Guo, X.E.9
Vunjak-Novakovic, G.10
-
28
-
-
0034102398
-
Improving vascular grafts: the importance of mechanical and haemodynamic properties
-
COI: 1:CAS:528:DC%2BD3cXitFyiu7Y%3D, PID: 10685063
-
Greenwald, S. E., and C. L. Berry. Improving vascular grafts: the importance of mechanical and haemodynamic properties. J. Pathol. 190:292–299, 2000.
-
(2000)
J. Pathol.
, vol.190
, pp. 292-299
-
-
Greenwald, S.E.1
Berry, C.L.2
-
29
-
-
84977810185
-
Composite tissue engineering and organ regeneration using explanted microvascular beds (EMBs)
-
Gurtner, G. C., K. A. Bhatt, and V. W. Wong. Composite tissue engineering and organ regeneration using explanted microvascular beds (EMBs). Plast. Reconstr. Surg. 124:106–107, 2009.
-
(2009)
Plast. Reconstr. Surg.
, vol.124
, pp. 106-107
-
-
Gurtner, G.C.1
Bhatt, K.A.2
Wong, V.W.3
-
30
-
-
37349056774
-
Osteoinductive biomaterials-properties and relevance in bone repair
-
COI: 1:CAS:528:DC%2BD2sXntl2ltb0%3D, PID: 18038389
-
Habibovic, P., and K. de Groot. Osteoinductive biomaterials-properties and relevance in bone repair. J. Tissue Eng. Regen. Med. 1:25–32, 2007.
-
(2007)
J. Tissue Eng. Regen. Med.
, vol.1
, pp. 25-32
-
-
Habibovic, P.1
de Groot, K.2
-
31
-
-
84881073637
-
Prefabrication of vascularized bone graft using an interconnected porous calcium hydroxyapatite ceramic in presence of vascular endothelial growth factor and bone marrow mesenchymal stem cells: experimental study in rats
-
PID: 23450373
-
Haholu, A., C. Sever, F. Uygur, G. Kose, M. Urhan, O. Sinan, O. Omer, S. Cihan, and Y. Kulahci. Prefabrication of vascularized bone graft using an interconnected porous calcium hydroxyapatite ceramic in presence of vascular endothelial growth factor and bone marrow mesenchymal stem cells: experimental study in rats. Indian J. Plast. Surg. 45:444–452, 2012.
-
(2012)
Indian J. Plast. Surg.
, vol.45
, pp. 444-452
-
-
Haholu, A.1
Sever, C.2
Uygur, F.3
Kose, G.4
Urhan, M.5
Sinan, O.6
Omer, O.7
Cihan, S.8
Kulahci, Y.9
-
32
-
-
84862627199
-
Development of a thermoresponsive chitosan gel combined with human mesenchymal stem cells and desferrioxamine as a multimodal pro-angiogenic therapeutic for the treatment of critical limb ischaemia
-
COI: 1:CAS:528:DC%2BC38XmvFKns70%3D, PID: 22562065
-
Hastings, C. L., H. M. Kelly, M. J. Murphy, F. P. Barry, F. J. O’Brien, and G. P. Duffy. Development of a thermoresponsive chitosan gel combined with human mesenchymal stem cells and desferrioxamine as a multimodal pro-angiogenic therapeutic for the treatment of critical limb ischaemia. J. Control. Release 161:73–80, 2012.
-
(2012)
J. Control. Release
, vol.161
, pp. 73-80
-
-
Hastings, C.L.1
Kelly, H.M.2
Murphy, M.J.3
Barry, F.P.4
O’Brien, F.J.5
Duffy, G.P.6
-
33
-
-
0001219279
-
Studies on transference of bone: I. A comparison of autologous and homologous bone implants with reference to osteocyte survival, osteogenesis and host reaction
-
COI: 1:STN:280:DyaF3c7lsVSqsg%3D%3D, PID: 14401480
-
Heslop, B. F., I. M. Zeiss, and N. W. Nisbet. Studies on transference of bone: I. A comparison of autologous and homologous bone implants with reference to osteocyte survival, osteogenesis and host reaction. Br. J. Exp. Pathol. 41:269–287, 1960.
-
(1960)
Br. J. Exp. Pathol.
, vol.41
, pp. 269-287
-
-
Heslop, B.F.1
Zeiss, I.M.2
Nisbet, N.W.3
-
34
-
-
71849103855
-
Blood components: red blood cell hemolysis during blood bank storage: using national quality management data to answer basic scientific questions
-
PID: 20163690
-
Hess, J. R., R. L. Sparrow, P. F. Van Der Meer, J. P. Acker, R. A. Cardigan, and D. V. Devine. Blood components: red blood cell hemolysis during blood bank storage: using national quality management data to answer basic scientific questions. Transfusion 49:2599–2603, 2009.
-
(2009)
Transfusion
, vol.49
, pp. 2599-2603
-
-
Hess, J.R.1
Sparrow, R.L.2
Van Der Meer, P.F.3
Acker, J.P.4
Cardigan, R.A.5
Devine, D.V.6
-
35
-
-
0024505048
-
The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction
-
PID: 2912628
-
Ilizarov, G. A. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin. Orthop. Relat. Res. 239:263–285, 1989.
-
(1989)
Clin. Orthop. Relat. Res.
, vol.239
, pp. 263-285
-
-
Ilizarov, G.A.1
-
36
-
-
24944569212
-
Engineering vascularized tissue
-
COI: 1:CAS:528:DC%2BD2MXlvFehu7o%3D, PID: 16003365
-
Jain, R. K., P. Au, J. Tam, D. G. Duda, and D. Fukumura. Engineering vascularized tissue. Nat. Biotechnol. 23:821–823, 2005.
-
(2005)
Nat. Biotechnol.
, vol.23
, pp. 821-823
-
-
Jain, R.K.1
Au, P.2
Tam, J.3
Duda, D.G.4
Fukumura, D.5
-
37
-
-
84874180668
-
The effect of sinusoidal AC electric stimulation of 3D PCL/CNT and PCL/β-TCP based bio-composites on cellular activities for bone tissue regeneration
-
COI: 1:CAS:528:DC%2BC3sXisVCqsLk%3D
-
Jin, G., and G. Kim. The effect of sinusoidal AC electric stimulation of 3D PCL/CNT and PCL/β-TCP based bio-composites on cellular activities for bone tissue regeneration. J. Mater. Chem. B 1:1439–1452, 2013.
-
(2013)
J. Mater. Chem. B
, vol.1
, pp. 1439-1452
-
-
Jin, G.1
Kim, G.2
-
38
-
-
84937561906
-
Angiogenesis — the key to regeneration
-
Andrades JA, (ed), InTech, Rijeka:
-
Jung, S., and J. Kleinheinz. Angiogenesis — the key to regeneration. In: Regenerative Medicine and Tissue Engineering, edited by J. A. Andrades. Rijeka: InTech, 2013, pp. 453–473.
-
(2013)
Regenerative Medicine and Tissue Engineering
, pp. 453-473
-
-
Jung, S.1
Kleinheinz, J.2
-
39
-
-
84887195422
-
Integrating top-down and bottom-up scaffolding tissue engineering approach for bone regeneration
-
Ramalingam M, Jabbari E, Ramakrishna S, Khademhosseini A, (eds), Wiley, Hoboken, NJ:
-
Kang, Y., E. Jabbari, and Y. Yang. Integrating top-down and bottom-up scaffolding tissue engineering approach for bone regeneration. In: Micro and Nanotechnologies in Engineering Stem Cells and Tissues, edited by M. Ramalingam, E. Jabbari, S. Ramakrishna, and A. Khademhosseini. Hoboken, NJ: Wiley, 2013, pp. 142–159.
-
(2013)
Micro and Nanotechnologies in Engineering Stem Cells and Tissues
, pp. 142-159
-
-
Kang, Y.1
Jabbari, E.2
Yang, Y.3
-
40
-
-
79959902042
-
Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2
-
COI: 1:CAS:528:DC%2BC3MXotlChsb8%3D, PID: 21632105
-
Kang, Y., S. Kim, A. Khademhosseini, and Y. Yang. Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2. Biomaterials 32:6119–6130, 2011.
-
(2011)
Biomaterials
, vol.32
, pp. 6119-6130
-
-
Kang, Y.1
Kim, S.2
Khademhosseini, A.3
Yang, Y.4
-
41
-
-
78650976404
-
Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration
-
COI: 1:CAS:528:DC%2BC3MXmvF2ltA%3D%3D, PID: 20870047
-
Kang, S.-W., J.-S. Kim, K.-S. Park, B.-H. Cha, J.-H. Shim, J. Y. Kim, D.-W. Cho, J.-W. Rhie, and S.-H. Lee. Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone 48:298–306, 2011.
-
(2011)
Bone
, vol.48
, pp. 298-306
-
-
Kang, S.-W.1
Kim, J.-S.2
Park, K.-S.3
Cha, B.-H.4
Shim, J.-H.5
Kim, J.Y.6
Cho, D.-W.7
Rhie, J.-W.8
Lee, S.-H.9
-
42
-
-
84867232891
-
Effective layer by layer cell seeding into non-woven 3D electrospun scaffolds of poly-L-lactic acid microfibers for uniform tissue formation
-
COI: 1:CAS:528:DC%2BC38XotFynsrc%3D
-
Kang, J. K., M. H. Lee, B. J. Kwon, H. H. Kim, I. K. Shim, M. R. Jung, S. J. Lee, and J.-C. Park. Effective layer by layer cell seeding into non-woven 3D electrospun scaffolds of poly-L-lactic acid microfibers for uniform tissue formation. Macromol. Res. 20:795–799, 2012.
-
(2012)
Macromol. Res.
, vol.20
, pp. 795-799
-
-
Kang, J.K.1
Lee, M.H.2
Kwon, B.J.3
Kim, H.H.4
Shim, I.K.5
Jung, M.R.6
Lee, S.J.7
Park, J.-C.8
-
43
-
-
84925013339
-
Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach
-
COI: 1:CAS:528:DC%2BC2cXhslehsLfK, PID: 25263031
-
Kang, Y., N. Mochizuki, A. Khademhosseini, J. Fukuda, and Y. Yang. Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach. Acta Biomater. 11:449–458, 2015.
-
(2015)
Acta Biomater.
, vol.11
, pp. 449-458
-
-
Kang, Y.1
Mochizuki, N.2
Khademhosseini, A.3
Fukuda, J.4
Yang, Y.5
-
44
-
-
84903527579
-
Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold
-
COI: 1:CAS:528:DC%2BC2cXos1Wmsbk%3D, PID: 24858072
-
Kang, Y., L. Ren, and Y. Yang. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold. ACS Appl. Mater. Interfaces 6:9622–9633, 2014.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 9622-9633
-
-
Kang, Y.1
Ren, L.2
Yang, Y.3
-
45
-
-
79961168901
-
Enhanced mechanical performance and biological evaluation of a PLGA coated ε-TCP composite scaffold for load-bearing applications
-
COI: 1:CAS:528:DC%2BC3MXpvFWrtL4%3D, PID: 21892228
-
Kang, Y., A. Scully, D. A. Young, S. Kim, H. Tsao, M. Sen, and Y. Yang. Enhanced mechanical performance and biological evaluation of a PLGA coated ε-TCP composite scaffold for load-bearing applications. Eur. Polym. J. 47:1569–1577, 2011.
-
(2011)
Eur. Polym. J.
, vol.47
, pp. 1569-1577
-
-
Kang, Y.1
Scully, A.2
Young, D.A.3
Kim, S.4
Tsao, H.5
Sen, M.6
Yang, Y.7
-
46
-
-
84856625179
-
Treatment of posttraumatic bone defects by the induced membrane technique
-
COI: 1:STN:280:DC%2BC38zhtF2itA%3D%3D, PID: 22244249
-
Karger, C., T. Kishi, L. Schneider, F. Fitoussi, and A. C. Masquelet. Treatment of posttraumatic bone defects by the induced membrane technique. Orthop. Traumatol. Surg. Res. 98:97–102, 2012.
-
(2012)
Orthop. Traumatol. Surg. Res.
, vol.98
, pp. 97-102
-
-
Karger, C.1
Kishi, T.2
Schneider, L.3
Fitoussi, F.4
Masquelet, A.C.5
-
47
-
-
70349943734
-
Vascularization—the conduit to viable engineered tissues
-
COI: 1:CAS:528:DC%2BD1MXntlCqtr0%3D, PID: 19309238
-
Kaully, T., K. Kaufman-Francis, A. Lesman, and S. Levenberg. Vascularization—the conduit to viable engineered tissues. Tissue Eng. Part B Rev. 15:159–169, 2009.
-
(2009)
Tissue Eng. Part B Rev.
, vol.15
, pp. 159-169
-
-
Kaully, T.1
Kaufman-Francis, K.2
Lesman, A.3
Levenberg, S.4
-
48
-
-
84878755162
-
Pedicled vascularized fibular graft with Ilizarov external fixator for reconstructing a large bone defect of the tibia after tumor resection
-
PID: 23417160
-
Khira, Y. M., and H. A. Badawy. Pedicled vascularized fibular graft with Ilizarov external fixator for reconstructing a large bone defect of the tibia after tumor resection. J. Orthop. Traumatol. 14:91–100, 2013.
-
(2013)
J. Orthop. Traumatol.
, vol.14
, pp. 91-100
-
-
Khira, Y.M.1
Badawy, H.A.2
-
49
-
-
84926390216
-
Novel osteoinductive photo-cross-linkable chitosan-lactide-fibrinogen hydrogels enhance bone regeneration in critical size segmental bone defects
-
COI: 1:CAS:528:DC%2BC2cXhsFags7bK, PID: 25174669
-
Kim, S., K. Bedigrew, T. Guda, W. J. Maloney, S. Park, J. C. Wenke, and Y. P. Yang. Novel osteoinductive photo-cross-linkable chitosan-lactide-fibrinogen hydrogels enhance bone regeneration in critical size segmental bone defects. Acta Biomater. 10:5021–5033, 2014.
-
(2014)
Acta Biomater.
, vol.10
, pp. 5021-5033
-
-
Kim, S.1
Bedigrew, K.2
Guda, T.3
Maloney, W.J.4
Park, S.5
Wenke, J.C.6
Yang, Y.P.7
-
50
-
-
84862782801
-
Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation
-
COI: 1:CAS:528:DC%2BC38Xks1yqs7g%3D, PID: 22293583
-
Kim, S., Y. Kang, C. A. Krueger, M. Sen, J. B. Holcomb, D. Chen, J. C. Wenke, and Y. Yang. Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomater. 8:1768–1777, 2012.
-
(2012)
Acta Biomater.
, vol.8
, pp. 1768-1777
-
-
Kim, S.1
Kang, Y.2
Krueger, C.A.3
Sen, M.4
Holcomb, J.B.5
Chen, D.6
Wenke, J.C.7
Yang, Y.8
-
51
-
-
84899905889
-
In vitro evaluation of photo-crosslinkable chitosan-lactide hydrogels for bone tissue engineering
-
PID: 24500890
-
Kim, S., Y. Kang, Á. E. Mercado-Pagán, W. J. Maloney, and Y. Yang. In vitro evaluation of photo-crosslinkable chitosan-lactide hydrogels for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 102:1393–1406, 2014.
-
(2014)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.102
, pp. 1393-1406
-
-
Kim, S.1
Kang, Y.2
Mercado-Pagán, Á.E.3
Maloney, W.J.4
Yang, Y.5
-
52
-
-
44949186624
-
Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application
-
COI: 1:CAS:528:DC%2BD1cXktVCkt7w%3D, PID: 18454639
-
Kim, S., and Hv. Recum. Endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application. Tissue Eng. Part B Rev. 14:133–147, 2008.
-
(2008)
Tissue Eng. Part B Rev.
, vol.14
, pp. 133-147
-
-
Kim, S.1
Recum, H.2
-
53
-
-
77956677451
-
Bone void fillers
-
PID: 20810939
-
Kirkpatrick, J. S., C. N. Cornell, B. H. Hoang, W. Hsu, J. T. Watson, W. C. Watters, C. M. Turkelson, J. L. Wies, and S. Anderson. Bone void fillers. J. Am. Acad. Orthop. Surg. 18:576–579, 2010.
-
(2010)
J. Am. Acad. Orthop. Surg.
, vol.18
, pp. 576-579
-
-
Kirkpatrick, J.S.1
Cornell, C.N.2
Hoang, B.H.3
Hsu, W.4
Watson, J.T.5
Watters, W.C.6
Turkelson, C.M.7
Wies, J.L.8
Anderson, S.9
-
54
-
-
33746745292
-
Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop
-
COI: 1:CAS:528:DC%2BD28XnslOisrc%3D, PID: 16889503
-
Kneser, U., E. Polykandriotis, J. Ohnolz, K. Heidner, L. Grabinger, S. Euler, K. U. Amann, A. Hess, K. Brune, and P. Greil. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng. 12:1721–1731, 2006.
-
(2006)
Tissue Eng.
, vol.12
, pp. 1721-1731
-
-
Kneser, U.1
Polykandriotis, E.2
Ohnolz, J.3
Heidner, K.4
Grabinger, L.5
Euler, S.6
Amann, K.U.7
Hess, A.8
Brune, K.9
Greil, P.10
-
55
-
-
33745871068
-
Tissue engineering of bone: the reconstructive surgeon’s point of view
-
COI: 1:STN:280:DC%2BD287ntVOmsA%3D%3D, PID: 16563218
-
Kneser, U., D. Schaefer, E. Polykandriotis, and R. Horch. Tissue engineering of bone: the reconstructive surgeon’s point of view. J. Cell Mol. Med. 10:7–19, 2006.
-
(2006)
J. Cell Mol. Med.
, vol.10
, pp. 7-19
-
-
Kneser, U.1
Schaefer, D.2
Polykandriotis, E.3
Horch, R.4
-
56
-
-
80052589300
-
Improved vascular organization enhances functional integration of engineered skeletal muscle grafts
-
COI: 1:CAS:528:DC%2BC3MXhtFyktLbJ, PID: 21878567
-
Koffler, J., K. Kaufman-Francis, Y. Shandalov, D. Egozi, D. Amiad Pavlov, A. Landesberg, and S. Levenberg. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc. Natl. Acad. Sci. USA 108:14789–14794, 2011.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 14789-14794
-
-
Koffler, J.1
Kaufman-Francis, K.2
Shandalov, Y.3
Egozi, D.4
Amiad Pavlov, D.5
Landesberg, A.6
Levenberg, S.7
-
57
-
-
74749107477
-
An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds
-
COI: 1:CAS:528:DC%2BC3cXhtlKhtLg%3D
-
Kramschuster, A., and L.-S. Turng. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 92B:366–376, 2010.
-
(2010)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.92B
, pp. 366-376
-
-
Kramschuster, A.1
Turng, L.-S.2
-
58
-
-
84899414007
-
Vascularization strategies for bone regeneration
-
PID: 24468975
-
Krishnan, L., N. Willett, and R. Guldberg. Vascularization strategies for bone regeneration. Ann. Biomed. Eng. 42:432–444, 2014.
-
(2014)
Ann. Biomed. Eng.
, vol.42
, pp. 432-444
-
-
Krishnan, L.1
Willett, N.2
Guldberg, R.3
-
59
-
-
33846584507
-
Tissue engineering: perspectives, challenges, and future directions
-
PID: 17518575
-
Langer, R. Tissue engineering: perspectives, challenges, and future directions. Tissue Eng. 13:1–2, 2007.
-
(2007)
Tissue Eng.
, vol.13
, pp. 1-2
-
-
Langer, R.1
-
60
-
-
33750939285
-
Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes
-
COI: 1:CAS:528:DC%2BD28XptlOhtbk%3D, PID: 16968151
-
Laschke, M. W., Y. Harder, M. Amon, I. Martin, J. Farhadi, A. Ring, N. Torio-Padron, R. Schramm, M. Rücker, and D. Junker. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 12:2093–2104, 2006.
-
(2006)
Tissue Eng.
, vol.12
, pp. 2093-2104
-
-
Laschke, M.W.1
Harder, Y.2
Amon, M.3
Martin, I.4
Farhadi, J.5
Ring, A.6
Torio-Padron, N.7
Schramm, R.8
Rücker, M.9
Junker, D.10
-
61
-
-
79952142411
-
Short-term cultivation of in situ prevascularized tissue constructs accelerates inosculation of their preformed microvascular networks after implantation into the host tissue
-
PID: 20973748
-
Laschke, M. W., H. Mussawy, S. Schuler, A. Kazakov, M. Rücker, D. Eglin, M. Alini, and M. D. Menger. Short-term cultivation of in situ prevascularized tissue constructs accelerates inosculation of their preformed microvascular networks after implantation into the host tissue. Tissue Eng. Part A 17:841–853, 2010.
-
(2010)
Tissue Eng. Part A
, vol.17
, pp. 841-853
-
-
Laschke, M.W.1
Mussawy, H.2
Schuler, S.3
Kazakov, A.4
Rücker, M.5
Eglin, D.6
Alini, M.7
Menger, M.D.8
-
62
-
-
84977793876
-
VS5 human tissue-engineered grafts for hemodialysis: development, preclinical data, and early investigational human implant experience
-
Lawson, J., S. Dahl, H. Prichard, R. Manson, S. Gage, A. Kypson, J. Blum, A. Pilgrim, W. Tente, and L. Niklason. VS5 human tissue-engineered grafts for hemodialysis: development, preclinical data, and early investigational human implant experience. J. Vasc. Surg. 59:32S–33S, 2014.
-
(2014)
J. Vasc. Surg.
, vol.59
, pp. 32-33
-
-
Lawson, J.1
Dahl, S.2
Prichard, H.3
Manson, R.4
Gage, S.5
Kypson, A.6
Blum, J.7
Pilgrim, A.8
Tente, W.9
Niklason, L.10
-
63
-
-
79956145649
-
Tissue-engineered bone formation using periosteal-derived cells and polydioxanone/pluronic F127 scaffold with pre-seeded adipose tissue-derived CD146 positive endothelial-like cells
-
COI: 1:CAS:528:DC%2BC3MXmtlehsLY%3D, PID: 21543114
-
Lee, J.-H., J.-H. Kim, S.-H. Oh, S.-J. Kim, Y.-S. Hah, B.-W. Park, D. R. Kim, G.-J. Rho, G.-H. Maeng, R.-H. Jeon, H.-C. Lee, J.-R. Kim, G.-C. Kim, U.-K. Kim, and J.-H. Byun. Tissue-engineered bone formation using periosteal-derived cells and polydioxanone/pluronic F127 scaffold with pre-seeded adipose tissue-derived CD146 positive endothelial-like cells. Biomaterials 32:5033–5045, 2011.
-
(2011)
Biomaterials
, vol.32
, pp. 5033-5045
-
-
Lee, J.-H.1
Kim, J.-H.2
Oh, S.-H.3
Kim, S.-J.4
Hah, Y.-S.5
Park, B.-W.6
Kim, D.R.7
Rho, G.-J.8
Maeng, G.-H.9
Jeon, R.-H.10
Lee, H.-C.11
Kim, J.-R.12
Kim, G.-C.13
Kim, U.-K.14
Byun, J.-H.15
-
64
-
-
2642619407
-
A completely biological tissue-engineered human blood vessel
-
PID: 9438410
-
L’Heureux, N., S. Pâquet, R. Labbé, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. FASEB J. 12:47–56, 1998.
-
(1998)
FASEB J.
, vol.12
, pp. 47-56
-
-
L’Heureux, N.1
Pâquet, S.2
Labbé, R.3
Germain, L.4
Auger, F.A.5
-
65
-
-
67650135520
-
Development of nanohydroxyapatite/polycarbonate composite for bone repair
-
COI: 1:CAS:528:DC%2BD1MXptlWltb0%3D
-
Liao, J., L. Zhang, Y. Zuo, H. Wang, J. Li, Q. Zou, and Y. Li. Development of nanohydroxyapatite/polycarbonate composite for bone repair. J. Biomater. Appl. 24:31–45, 2009.
-
(2009)
J. Biomater. Appl.
, vol.24
, pp. 31-45
-
-
Liao, J.1
Zhang, L.2
Zuo, Y.3
Wang, H.4
Li, J.5
Zou, Q.6
Li, Y.7
-
66
-
-
72849119087
-
Expediting patients’ access to medicines by improving the predictability of drug development and the regulatory approval process
-
Liberti, L., A. Breckenridge, H. G. Eichler, R. Peterson, N. McAuslane, and S. Walker. Expediting patients’ access to medicines by improving the predictability of drug development and the regulatory approval process. Clin. Pharmacol. Ther. 87:27–31, 2009.
-
(2009)
Clin. Pharmacol. Ther.
, vol.87
, pp. 27-31
-
-
Liberti, L.1
Breckenridge, A.2
Eichler, H.G.3
Peterson, R.4
McAuslane, N.5
Walker, S.6
-
67
-
-
36448992325
-
Photopolymers for rapid prototyping
-
COI: 1:CAS:528:DC%2BD2sXhsVOqsLvM
-
Liska, R., M. Schuster, R. Inführ, C. Turecek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl. Photopolymers for rapid prototyping. J. Coat. Techol. Res. 4:505–510, 2007.
-
(2007)
J. Coat. Techol. Res.
, vol.4
, pp. 505-510
-
-
Liska, R.1
Schuster, M.2
Inführ, R.3
Turecek, C.4
Fritscher, C.5
Seidl, B.6
Schmidt, V.7
Kuna, L.8
Haase, A.9
Varga, F.10
Lichtenegger, H.11
Stampfl, J.12
-
68
-
-
80053520408
-
Sequential release of BMP-7 and VEGF from the PLGA/AK-gelatin composite scaffolds
-
COI: 1:CAS:528:DC%2BC3MXhs1WgsbfK
-
Liu, G., W. Fan, X. Miao, Y. Xiao, D. Good, and M. Q. Wei. Sequential release of BMP-7 and VEGF from the PLGA/AK-gelatin composite scaffolds. J. Biomim. Biomater. Tissue Eng. 11:81–91, 2011.
-
(2011)
J. Biomim. Biomater. Tissue Eng.
, vol.11
, pp. 81-91
-
-
Liu, G.1
Fan, W.2
Miao, X.3
Xiao, Y.4
Good, D.5
Wei, M.Q.6
-
69
-
-
84939953434
-
-
Liu, Y., J. H. Kim, D. Young, S. K. Nishimoto, R. Heck, and Y. Yang. Biomimetic macroporous scaffolds with high mechanical strength and biological evaluation. In: Miami, FL, 2009, p. 120808.
-
Liu, Y., J. H. Kim, D. Young, S. K. Nishimoto, R. Heck, and Y. Yang. Biomimetic macroporous scaffolds with high mechanical strength and biological evaluation. In: 38th Annual Meeting of the American Association for Dental Research. Miami, FL, 2009, p. 120808.
-
38th Annual Meeting of the American Association for Dental Research.
-
-
-
70
-
-
84874747360
-
Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering
-
PID: 23102089
-
Liu, Y., S.-H. Teoh, M. S. K. Chong, C.-H. Yeow, R. D. Kamm, M. Choolani, and J. K. Y. Chan. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Tissue Eng. Part A 19:893–904, 2012.
-
(2012)
Tissue Eng. Part A
, vol.19
, pp. 893-904
-
-
Liu, Y.1
Teoh, S.-H.2
Chong, M.S.K.3
Yeow, C.-H.4
Kamm, R.D.5
Choolani, M.6
Chan, J.K.Y.7
-
71
-
-
78649724173
-
Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants
-
COI: 1:CAS:528:DC%2BC3cXhsFWjsLfE, PID: 21084117
-
Macdonald, M. L., R. E. Samuel, N. J. Shah, R. F. Padera, Y. M. Beben, and P. T. Hammond. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials 32:1446–1453, 2011.
-
(2011)
Biomaterials
, vol.32
, pp. 1446-1453
-
-
Macdonald, M.L.1
Samuel, R.E.2
Shah, N.J.3
Padera, R.F.4
Beben, Y.M.5
Hammond, P.T.6
-
72
-
-
84861852805
-
Engineering bone tissue from human embryonic stem cells
-
COI: 1:CAS:528:DC%2BC38Xoslequ7c%3D, PID: 22586099
-
Marolt, D., I. M. Campos, S. Bhumiratana, A. Koren, P. Petridis, G. Zhang, P. F. Spitalnik, W. L. Grayson, and G. Vunjak-Novakovic. Engineering bone tissue from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 109:8705–8709, 2012.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 8705-8709
-
-
Marolt, D.1
Campos, I.M.2
Bhumiratana, S.3
Koren, A.4
Petridis, P.5
Zhang, G.6
Spitalnik, P.F.7
Grayson, W.L.8
Vunjak-Novakovic, G.9
-
73
-
-
70449492725
-
The concept of induced membrane for reconstruction of long bone defects
-
Masquelet, A. C., and T. Begue. The concept of induced membrane for reconstruction of long bone defects. Orthop. Clin. N. Am. 41:27–37, 2010.
-
(2010)
Orthop. Clin. N. Am.
, vol.41
, pp. 27-37
-
-
Masquelet, A.C.1
Begue, T.2
-
74
-
-
0033930153
-
Reconstruction of the long bones by the induced membrane and spongy autograft
-
COI: 1:STN:280:DC%2BD3cvhs1Kmug%3D%3D, PID: 10929461
-
Masquelet, A., F. Fitoussi, T. Begue, and G. Muller. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann. Chir. Plast. Esthet. 45:346–353, 2000.
-
(2000)
Ann. Chir. Plast. Esthet.
, vol.45
, pp. 346-353
-
-
Masquelet, A.1
Fitoussi, F.2
Begue, T.3
Muller, G.4
-
75
-
-
34047266512
-
Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing
-
COI: 1:CAS:528:DC%2BD28XhtFeitb7O, PID: 17003498
-
Matsumoto, T., A. Kawamoto, R. Kuroda, M. Ishikawa, Y. Mifune, H. Iwasaki, M. Miwa, M. Horii, S. Hayashi, A. Oyamada, H. Nishimura, S. Murasawa, M. Doita, M. Kurosaka, and T. Asahara. Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am. J. Pathol. 169:1440–1457, 2006.
-
(2006)
Am. J. Pathol.
, vol.169
, pp. 1440-1457
-
-
Matsumoto, T.1
Kawamoto, A.2
Kuroda, R.3
Ishikawa, M.4
Mifune, Y.5
Iwasaki, H.6
Miwa, M.7
Horii, M.8
Hayashi, S.9
Oyamada, A.10
Nishimura, H.11
Murasawa, S.12
Doita, M.13
Kurosaka, M.14
Asahara, T.15
-
76
-
-
84857356747
-
Bone graft harvest site options in orthopaedic trauma: a prospective in vivo quantification study
-
PID: 21917258
-
Mauffrey, C., M. Madsen, R. J. Bowles, and D. Seligson. Bone graft harvest site options in orthopaedic trauma: a prospective in vivo quantification study. Injury 43:323–326, 2012.
-
(2012)
Injury
, vol.43
, pp. 323-326
-
-
Mauffrey, C.1
Madsen, M.2
Bowles, R.J.3
Seligson, D.4
-
77
-
-
33750728630
-
The physiology of bone blood flow: a review
-
PID: 17079361
-
McCarthy, I. The physiology of bone blood flow: a review. J. Bone Joint Surg. Am. 88:4–9, 2006.
-
(2006)
J. Bone Joint Surg. Am.
, vol.88
, pp. 4-9
-
-
McCarthy, I.1
-
78
-
-
84887205900
-
The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen–glycosaminoglycan scaffold in vivo
-
COI: 1:CAS:528:DC%2BC3sXhsVOns7jM, PID: 23958783
-
McFadden, T. M., G. P. Duffy, A. B. Allen, H. Y. Stevens, S. M. Schwarzmaier, N. Plesnila, J. M. Murphy, F. P. Barry, R. E. Guldberg, and F. J. O’Brien. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen–glycosaminoglycan scaffold in vivo. Acta Biomater. 9:9303–9316, 2013.
-
(2013)
Acta Biomater.
, vol.9
, pp. 9303-9316
-
-
McFadden, T.M.1
Duffy, G.P.2
Allen, A.B.3
Stevens, H.Y.4
Schwarzmaier, S.M.5
Plesnila, N.6
Murphy, J.M.7
Barry, F.P.8
Guldberg, R.E.9
O’Brien, F.J.10
-
79
-
-
84871360334
-
Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering
-
COI: 1:CAS:528:DC%2BC38XhslKmsrfK
-
Meng, Z. X., H. F. Li, Z. Z. Sun, W. Zheng, and Y. F. Zheng. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering. Mater. Sci. Eng. C 33:699–706, 2013.
-
(2013)
Mater. Sci. Eng. C
, vol.33
, pp. 699-706
-
-
Meng, Z.X.1
Li, H.F.2
Sun, Z.Z.3
Zheng, W.4
Zheng, Y.F.5
-
80
-
-
84939992707
-
Strategies towards engineering vascularized bone graft substitutes
-
Laurencin C, Jiang T, (eds), ASTM International, West Conshohocken, PA:
-
Mercado, Á. E., and Y. Yang. Strategies towards engineering vascularized bone graft substitutes. In: Bone Graft Substitutes and Bone Regenerative Engineering, edited by C. Laurencin, and T. Jiang. West Conshohocken, PA: ASTM International, 2014, pp. 299–334.
-
(2014)
Bone Graft Substitutes and Bone Regenerative Engineering
, pp. 299-334
-
-
Mercado, Á.E.1
Yang, Y.2
-
81
-
-
84891635564
-
Effect of grafting BMP2-derived peptide to nanoparticles on osteogenic and vasculogenic expression of stromal cells
-
COI: 1:CAS:528:DC%2BC2cXktFeltA%3D%3D, PID: 22764116
-
Mercado, A. E., X. Yang, X. He, and E. Jabbari. Effect of grafting BMP2-derived peptide to nanoparticles on osteogenic and vasculogenic expression of stromal cells. J. Tissue Eng. Regen. Med. 8:15–28, 2014.
-
(2014)
J. Tissue Eng. Regen. Med.
, vol.8
, pp. 15-28
-
-
Mercado, A.E.1
Yang, X.2
He, X.3
Jabbari, E.4
-
82
-
-
84883888366
-
Synthesis and characterization of novel elastomeric poly(D, L-lactide urethane) maleate composites for bone tissue engineering
-
PID: 24817764
-
Mercado-Pagán, Á. E., Y. Kang, D. F. E. Ker, S. Park, J. Yao, J. Bishop, and Y. P. Yang. Synthesis and characterization of novel elastomeric poly(D, L-lactide urethane) maleate composites for bone tissue engineering. Eur. Polym. J. 49:3337–3349, 2013.
-
(2013)
Eur. Polym. J.
, vol.49
, pp. 3337-3349
-
-
Mercado-Pagán, Á.E.1
Kang, Y.2
Ker, D.F.E.3
Park, S.4
Yao, J.5
Bishop, J.6
Yang, Y.P.7
-
83
-
-
84907159525
-
Hemocompatibility evaluation of small elastomeric hollow fiber membranes as vascular substitutes
-
PID: 24913612
-
Mercado-Pagán, Á. E., D. F. E. Ker, and Y. Yang. Hemocompatibility evaluation of small elastomeric hollow fiber membranes as vascular substitutes. J. Biomater. Appl. 29:557–565, 2014.
-
(2014)
J. Biomater. Appl.
, vol.29
, pp. 557-565
-
-
Mercado-Pagán, Á.E.1
Ker, D.F.E.2
Yang, Y.3
-
84
-
-
84866355664
-
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
-
COI: 1:CAS:528:DC%2BC38XpsVWhsbc%3D, PID: 22751181
-
Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D.-H. T. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, X. Yu, R. Chaturvedi, S. N. Bhatia, and C. S. Chen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.
-
(2012)
Nat. Mater.
, vol.11
, pp. 768-774
-
-
Miller, J.S.1
Stevens, K.R.2
Yang, M.T.3
Baker, B.M.4
Nguyen, D.-H.T.5
Cohen, D.M.6
Toro, E.7
Chen, A.A.8
Galie, P.A.9
Yu, X.10
Chaturvedi, R.11
Bhatia, S.N.12
Chen, C.S.13
-
85
-
-
84875954737
-
BMP-6 is more efficient in bone formation than BMP-2 when overexpressed in mesenchymal stem cells
-
COI: 1:CAS:528:DC%2BC38XovFyksLc%3D, PID: 22717741
-
Mizrahi, O., D. Sheyn, W. Tawackoli, I. Kallai, A. Oh, S. Su, X. Da, P. Zarrini, G. Cook-Wiens, D. Gazit, and Z. Gazit. BMP-6 is more efficient in bone formation than BMP-2 when overexpressed in mesenchymal stem cells. Gene Ther. 20:370–377, 2013.
-
(2013)
Gene Ther.
, vol.20
, pp. 370-377
-
-
Mizrahi, O.1
Sheyn, D.2
Tawackoli, W.3
Kallai, I.4
Oh, A.5
Su, S.6
Da, X.7
Zarrini, P.8
Cook-Wiens, G.9
Gazit, D.10
Gazit, Z.11
-
86
-
-
84866063075
-
Investigation of apatite mineralization on antioxidant polyphosphazenes for bone tissue engineering
-
COI: 1:CAS:528:DC%2BC38Xht1OksLnP
-
Morozowich, N. L., J. L. Nichol, and H. R. Allcock. Investigation of apatite mineralization on antioxidant polyphosphazenes for bone tissue engineering. Chem. Mater. 24:3500–3509, 2012.
-
(2012)
Chem. Mater.
, vol.24
, pp. 3500-3509
-
-
Morozowich, N.L.1
Nichol, J.L.2
Allcock, H.R.3
-
87
-
-
84879464132
-
Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering
-
COI: 1:CAS:528:DC%2BC3sXpsV2ktr8%3D, PID: 23773817
-
Moshaverinia, A., S. Ansari, C. Chen, X. Xu, K. Akiyama, M. L. Snead, H. H. Zadeh, and S. Shi. Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering. Biomaterials 34:6572–6579, 2013.
-
(2013)
Biomaterials
, vol.34
, pp. 6572-6579
-
-
Moshaverinia, A.1
Ansari, S.2
Chen, C.3
Xu, X.4
Akiyama, K.5
Snead, M.L.6
Zadeh, H.H.7
Shi, S.8
-
88
-
-
77956259610
-
Growth factors: beyond bone morphogenetic proteins
-
PID: 20736791
-
Nauth, A., P. V. Giannoudis, T. A. Einhorn, K. D. Hankenson, G. E. Friedlaender, R. Li, and E. H. Schemitsch. Growth factors: beyond bone morphogenetic proteins. J. Orthop. Trauma 24:543–546, 2010.
-
(2010)
J. Orthop. Trauma
, vol.24
, pp. 543-546
-
-
Nauth, A.1
Giannoudis, P.V.2
Einhorn, T.A.3
Hankenson, K.D.4
Friedlaender, G.E.5
Li, R.6
Schemitsch, E.H.7
-
89
-
-
79251596824
-
Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo
-
PID: 20934837
-
Neff, L. P., B. W. Tillman, S. K. Yazdani, M. A. Machingal, J. J. Yoo, S. Soker, B. W. Bernish, R. L. Geary, and G. J. Christ. Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo. J. Vasc. Surg. 53:426–434, 2011.
-
(2011)
J. Vasc. Surg.
, vol.53
, pp. 426-434
-
-
Neff, L.P.1
Tillman, B.W.2
Yazdani, S.K.3
Machingal, M.A.4
Yoo, J.J.5
Soker, S.6
Bernish, B.W.7
Geary, R.L.8
Christ, G.J.9
-
90
-
-
84866840029
-
Vascularized bone tissue engineering: approaches for potential improvement
-
COI: 1:CAS:528:DC%2BC38Xhtl2lsbjE, PID: 22765012
-
Nguyen, L. H., N. Annabi, M. Nikkhah, H. Bae, L. Binan, S. Park, Y. Kang, Y. Yang, and A. Khademhosseini. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng. Part B Rev. 18:363–382, 2012.
-
(2012)
Tissue Eng. Part B Rev.
, vol.18
, pp. 363-382
-
-
Nguyen, L.H.1
Annabi, N.2
Nikkhah, M.3
Bae, H.4
Binan, L.5
Park, S.6
Kang, Y.7
Yang, Y.8
Khademhosseini, A.9
-
91
-
-
84939980407
-
In vivo techniques and strategies for enhanced vascularization of engineered bone
-
Brey EM, (ed), CRC Press, Boca Raton, FL:
-
Nguyen, B.-N. B., and J. P. Fisher. In vivo techniques and strategies for enhanced vascularization of engineered bone. In: Vascularization—Regenerative Medicine and Tissue Engineering, edited by E. M. Brey. Boca Raton, FL: CRC Press, 2014, pp. 263–282.
-
(2014)
Vascularization—Regenerative Medicine and Tissue Engineering
, pp. 263-282
-
-
Nguyen, B.-N.B.1
Fisher, J.P.2
-
92
-
-
80053128627
-
A 3D in vitro bone organ model using human progenitor cells
-
COI: 1:CAS:528:DC%2BC3MXmslCrsLg%3D
-
Papadimitropoulos, A., A. Scherberich, S. Güven, N. Theilgaard, H. J. A. Crooijmans, F. Santini, K. Scheffler, A. Zallone, and I. Martin. A 3D in vitro bone organ model using human progenitor cells. Eur. Cells Mater. 21:445–458, 2011.
-
(2011)
Eur. Cells Mater.
, vol.21
, pp. 445-458
-
-
Papadimitropoulos, A.1
Scherberich, A.2
Güven, S.3
Theilgaard, N.4
Crooijmans, H.J.A.5
Santini, F.6
Scheffler, K.7
Zallone, A.8
Martin, I.9
-
93
-
-
84892503355
-
Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis
-
PID: 24293599
-
Papakostidis, C., M. Bhandari, and P. Giannoudis. Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis. Bone Joint J. 95:1673–1680, 2013.
-
(2013)
Bone Joint J.
, vol.95
, pp. 1673-1680
-
-
Papakostidis, C.1
Bhandari, M.2
Giannoudis, P.3
-
94
-
-
51449094036
-
Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model
-
COI: 1:CAS:528:DC%2BD1cXht1ejtLbJ, PID: 18675385
-
Patel, Z. S., S. Young, Y. Tabata, J. A. Jansen, M. E. K. Wong, and A. G. Mikos. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 43:931–940, 2008.
-
(2008)
Bone
, vol.43
, pp. 931-940
-
-
Patel, Z.S.1
Young, S.2
Tabata, Y.3
Jansen, J.A.4
Wong, M.E.K.5
Mikos, A.G.6
-
95
-
-
77954383096
-
Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration
-
COI: 1:CAS:528:DC%2BC3cXosF2iurY%3D, PID: 20573393
-
Patterson, J., R. Siew, S. W. Herring, A. S. Lin, R. Guldberg, and P. S. Stayton. Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31:6772–6781, 2010.
-
(2010)
Biomaterials
, vol.31
, pp. 6772-6781
-
-
Patterson, J.1
Siew, R.2
Herring, S.W.3
Lin, A.S.4
Guldberg, R.5
Stayton, P.S.6
-
96
-
-
0031106404
-
Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity
-
COI: 1:CAS:528:DyaK2sXktFShsbo%3D, PID: 9174661
-
Pepper, M. S. Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev. 8:21–43, 1997.
-
(1997)
Cytokine Growth Factor Rev.
, vol.8
, pp. 21-43
-
-
Pepper, M.S.1
-
97
-
-
0012679275
-
Changes in bones and joints resulting from interruption of circulation: I. General considerations and changes resulting from injuries
-
Phemister, D. B. Changes in bones and joints resulting from interruption of circulation: I. General considerations and changes resulting from injuries. Arch. Surg. 41:436–472, 1940.
-
(1940)
Arch. Surg.
, vol.41
, pp. 436-472
-
-
Phemister, D.B.1
-
98
-
-
75149193073
-
The AJT report: news and issues that affect organ and tissue transplantation
-
PID: 20887424
-
Pondrom, S. The AJT report: news and issues that affect organ and tissue transplantation. Am. J. Transplant. 10:1953–1954, 2010.
-
(2010)
Am. J. Transplant.
, vol.10
, pp. 1953-1954
-
-
Pondrom, S.1
-
99
-
-
0347482465
-
Histocompatibility of photocrosslinked polyanhydrides: a novel in situ forming orthopaedic biomaterial
-
PID: 12483697
-
Poshusta, A. K., J. A. Burdick, D. J. Mortisen, R. F. Padera, D. Ruehlman, M. J. Yaszemski, and K. S. Anseth. Histocompatibility of photocrosslinked polyanhydrides: a novel in situ forming orthopaedic biomaterial. J. Biomed. Mater. Res. A 64:62–69, 2003.
-
(2003)
J. Biomed. Mater. Res. A
, vol.64
, pp. 62-69
-
-
Poshusta, A.K.1
Burdick, J.A.2
Mortisen, D.J.3
Padera, R.F.4
Ruehlman, D.5
Yaszemski, M.J.6
Anseth, K.S.7
-
100
-
-
84879882625
-
Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies
-
COI: 1:CAS:528:DC%2BC3sXjsFCksL8%3D, PID: 23415750
-
Prodanov, L., C. M. Semeins, J. J. W. A. van Loon, J. te Riet, J. A. Jansen, J. Klein-Nulend, and X. F. Walboomers. Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies. Acta Biomater. 9:6653–6662, 2013.
-
(2013)
Acta Biomater.
, vol.9
, pp. 6653-6662
-
-
Prodanov, L.1
Semeins, C.M.2
van Loon, J.J.W.A.3
te Riet, J.4
Jansen, J.A.5
Klein-Nulend, J.6
Walboomers, X.F.7
-
101
-
-
79251495438
-
Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects
-
COI: 1:CAS:528:DC%2BC3MXnsFSisg%3D%3D
-
Qu, D., J. Li, Y. Li, Y. Gao, Y. Zuo, Y. Hsu, and J. Hu. Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects. J. Biomed. Mater. Res. A 96A:543–551, 2011.
-
(2011)
J. Biomed. Mater. Res. A
, vol.96A
, pp. 543-551
-
-
Qu, D.1
Li, J.2
Li, Y.3
Gao, Y.4
Zuo, Y.5
Hsu, Y.6
Hu, J.7
-
102
-
-
80054894161
-
The conflicts between strength and toughness
-
COI: 1:CAS:528:DC%2BC3MXhtlKhtrbP, PID: 22020005
-
Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10:817–822, 2011.
-
(2011)
Nat. Mater.
, vol.10
, pp. 817-822
-
-
Ritchie, R.O.1
-
103
-
-
46849102164
-
Engineering vascularised tissues in vitro
-
COI: 1:CAS:528:DC%2BD1cXjsFelu78%3D
-
Rivron, N., J. Liu, J. Rouwkema, J. de Boer, and C. van Blitterswijk. Engineering vascularised tissues in vitro. Eur. Cells Mater. 15:27–40, 2008.
-
(2008)
Eur. Cells Mater.
, vol.15
, pp. 27-40
-
-
Rivron, N.1
Liu, J.2
Rouwkema, J.3
de Boer, J.4
van Blitterswijk, C.5
-
104
-
-
68749098312
-
The use of endothelial progenitor cells for prevascularized bone tissue engineering
-
COI: 1:CAS:528:DC%2BD1MXhtVWnurjP, PID: 19196146
-
Rouwkema, J., P. E. Westerweel, J. de Boer, M. C. Verhaar, and C. A. van Blitterswijk. The use of endothelial progenitor cells for prevascularized bone tissue engineering. Tissue Eng. Part A 15:2015–2027, 2009.
-
(2009)
Tissue Eng. Part A
, vol.15
, pp. 2015-2027
-
-
Rouwkema, J.1
Westerweel, P.E.2
de Boer, J.3
Verhaar, M.C.4
van Blitterswijk, C.A.5
-
105
-
-
50349088678
-
Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering
-
COI: 1:CAS:528:DC%2BD1cXhtVOqtrzN, PID: 18706689
-
Santos, M. I., K. Tuzlakoglu, S. Fuchs, M. E. Gomes, K. Peters, R. E. Unger, E. Piskin, R. L. Reis, and C. J. Kirkpatrick. Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials 29:4306–4313, 2008.
-
(2008)
Biomaterials
, vol.29
, pp. 4306-4313
-
-
Santos, M.I.1
Tuzlakoglu, K.2
Fuchs, S.3
Gomes, M.E.4
Peters, K.5
Unger, R.E.6
Piskin, E.7
Reis, R.L.8
Kirkpatrick, C.J.9
-
106
-
-
33947323908
-
Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions?
-
PID: 17383488
-
Sen, M., and T. Miclau. Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 38:S75–S80, 2007.
-
(2007)
Injury
, vol.38
, pp. 75-80
-
-
Sen, M.1
Miclau, T.2
-
107
-
-
84880510713
-
Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: in vivo studies
-
COI: 1:CAS:528:DC%2BC3sXhtVyksb7K
-
Shanjani, Y., Y. Hu, E. Toyserkani, M. Grynpas, R. A. Kandel, and R. M. Pilliar. Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: in vivo studies. J. Biomed. Mater. Res. B Appl. Biomater. 101B:972–980, 2013.
-
(2013)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.101B
, pp. 972-980
-
-
Shanjani, Y.1
Hu, Y.2
Toyserkani, E.3
Grynpas, M.4
Kandel, R.A.5
Pilliar, R.M.6
-
108
-
-
84903960656
-
Role of osteocyte-derived insulin-like growth factor I in developmental growth, modeling, remodeling, and regeneration of the bone
-
PID: 24707466
-
Sheng, M. H. C., K. H. W. Lau, and D. J. Baylink. Role of osteocyte-derived insulin-like growth factor I in developmental growth, modeling, remodeling, and regeneration of the bone. J. Bone Metab. 21:41–54, 2014.
-
(2014)
J. Bone Metab.
, vol.21
, pp. 41-54
-
-
Sheng, M.H.C.1
Lau, K.H.W.2
Baylink, D.J.3
-
109
-
-
28844481103
-
Magnesium and its alloys as orthopedic biomaterials: a review
-
COI: 1:CAS:528:DC%2BD2MXht12isL%2FI, PID: 16246414
-
Staiger, M. P., A. M. Pietak, J. Huadmai, and G. Dias. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734, 2006.
-
(2006)
Biomaterials
, vol.27
, pp. 1728-1734
-
-
Staiger, M.P.1
Pietak, A.M.2
Huadmai, J.3
Dias, G.4
-
110
-
-
42149178627
-
Biomaterials for bone tissue engineering
-
COI: 1:CAS:528:DC%2BD1cXmvVeqs7g%3D
-
Stevens, M. M. Biomaterials for bone tissue engineering. Mater. Today 11:18–25, 2008.
-
(2008)
Mater. Today
, vol.11
, pp. 18-25
-
-
Stevens, M.M.1
-
111
-
-
77950916298
-
Free vascularised fibular grafting in the treatment of large skeletal defects due to osteomyelitis
-
PID: 19308407
-
Sun, Y., C. Zhang, D. Jin, J. Sheng, X. Cheng, X. Liu, S. Chen, and B. Zeng. Free vascularised fibular grafting in the treatment of large skeletal defects due to osteomyelitis. Int. Orthop. 34:425–430, 2010.
-
(2010)
Int. Orthop.
, vol.34
, pp. 425-430
-
-
Sun, Y.1
Zhang, C.2
Jin, D.3
Sheng, J.4
Cheng, X.5
Liu, X.6
Chen, S.7
Zeng, B.8
-
112
-
-
84859495854
-
Induced membrane technique for reconstruction to manage bone loss
-
PID: 22382286
-
Taylor, B. C., B. G. French, T. T. Fowler, J. Russell, and A. Poka. Induced membrane technique for reconstruction to manage bone loss. J. Am. Acad. Orthop. Surg. 20:142–150, 2012.
-
(2012)
J. Am. Acad. Orthop. Surg.
, vol.20
, pp. 142-150
-
-
Taylor, B.C.1
French, B.G.2
Fowler, T.T.3
Russell, J.4
Poka, A.5
-
113
-
-
77950190285
-
In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering
-
COI: 1:CAS:528:DC%2BC3cXjslKitb0%3D
-
Teixeira, S., H. Fernandes, A. Leusink, C. van Blitterswijk, M. P. Ferraz, F. J. Monteiro, and J. de Boer. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A 93A:567–575, 2010.
-
(2010)
J. Biomed. Mater. Res. A
, vol.93A
, pp. 567-575
-
-
Teixeira, S.1
Fernandes, H.2
Leusink, A.3
van Blitterswijk, C.4
Ferraz, M.P.5
Monteiro, F.J.6
de Boer, J.7
-
114
-
-
0038545277
-
Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly
-
COI: 1:CAS:528:DC%2BD3sXisFWgs7o%3D, PID: 12690401
-
Therriault, D., S. R. White, and J. A. Lewis. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2:265–271, 2003.
-
(2003)
Nat. Mater.
, vol.2
, pp. 265-271
-
-
Therriault, D.1
White, S.R.2
Lewis, J.A.3
-
115
-
-
17644392452
-
Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice
-
PID: 15816880
-
Tremblay, P.-L., V. Hudon, F. Berthod, L. Germain, and F. A. Auger. Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am. J. Transplant. 5:1002–1010, 2005.
-
(2005)
Am. J. Transplant.
, vol.5
, pp. 1002-1010
-
-
Tremblay, P.-L.1
Hudon, V.2
Berthod, F.3
Germain, L.4
Auger, F.A.5
-
116
-
-
1942422675
-
Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells
-
COI: 1:CAS:528:DC%2BD2cXjtlymur0%3D, PID: 15109837
-
Unger, R. E., K. Peters, M. Wolf, A. Motta, C. Migliaresi, and C. J. Kirkpatrick. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials 25:5137–5146, 2004.
-
(2004)
Biomaterials
, vol.25
, pp. 5137-5146
-
-
Unger, R.E.1
Peters, K.2
Wolf, M.3
Motta, A.4
Migliaresi, C.5
Kirkpatrick, C.J.6
-
117
-
-
84863720406
-
Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery
-
COI: 1:CAS:528:DC%2BC38XovFykurY%3D, PID: 22729285
-
Wu, W., R. A. Allen, and Y. Wang. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat. Med. 18:1148–1153, 2012.
-
(2012)
Nat. Med.
, vol.18
, pp. 1148-1153
-
-
Wu, W.1
Allen, R.A.2
Wang, Y.3
-
118
-
-
84880820357
-
Bioceramics in tissue engineering
-
Burdick J, Mauck R, (eds), Springer Wien, New York, NY:
-
Yang, Y., Y. Kang, M. Sen, and S. Park. Bioceramics in tissue engineering. In: Biomaterials for Tissue Engineering: A Review of the Past and Future Trends, edited by J. Burdick, and R. Mauck. New York, NY: Springer Wien, 2010, pp. 179–208.
-
(2010)
Biomaterials for Tissue Engineering: A Review of the Past and Future Trends
, pp. 179-208
-
-
Yang, Y.1
Kang, Y.2
Sen, M.3
Park, S.4
-
119
-
-
84875738295
-
Structural preparation and biocompatibility evaluation of highly porous tantalum scaffolds
-
COI: 1:CAS:528:DC%2BC3sXnsFSlt7c%3D
-
Yang, H., J. Li, Z. Zhou, and J. Ruan. Structural preparation and biocompatibility evaluation of highly porous tantalum scaffolds. Mater. Lett. 100:152–155, 2013.
-
(2013)
Mater. Lett.
, vol.100
, pp. 152-155
-
-
Yang, H.1
Li, J.2
Zhou, Z.3
Ruan, J.4
-
120
-
-
64349098874
-
165: a preliminary study in rats
-
COI: 1:CAS:528:DC%2BD1MXktFSru7k%3D, PID: 18587233
-
165: a preliminary study in rats. Cells Tissues Organs 189:327–337, 2009.
-
(2009)
Cells Tissues Organs
, vol.189
, pp. 327-337
-
-
Yang, P.1
Wang, C.2
Shi, Z.3
Huang, X.4
Dang, X.5
Xu, S.6
Wang, K.7
-
121
-
-
84871381981
-
Human adipose-derived stem cells and three-dimensional scaffold constructs: A review of the biomaterials and models currently used for bone regeneration
-
COI: 1:CAS:528:DC%2BC38XhvVamsrbL
-
Zanetti, A. S., C. Sabliov, J. M. Gimble, and D. J. Hayes. Human adipose-derived stem cells and three-dimensional scaffold constructs: A review of the biomaterials and models currently used for bone regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 101B:187–199, 2013.
-
(2013)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.101B
, pp. 187-199
-
-
Zanetti, A.S.1
Sabliov, C.2
Gimble, J.M.3
Hayes, D.J.4
-
122
-
-
84863011063
-
Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury
-
PID: 21396163
-
Zeng, X., Y.-S. Zeng, Y.-H. Ma, L.-Y. Lu, B.-L. Du, W. Zhang, Y. Li, and W. Y. Chan. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury. Cell Transplant. 20:1881–1899, 2011.
-
(2011)
Cell Transplant.
, vol.20
, pp. 1881-1899
-
-
Zeng, X.1
Zeng, Y.-S.2
Ma, Y.-H.3
Lu, L.-Y.4
Du, B.-L.5
Zhang, W.6
Li, Y.7
Chan, W.Y.8
-
123
-
-
84862197029
-
In vitro microvessels for the study of angiogenesis and thrombosis
-
COI: 1:CAS:528:DC%2BC38Xptlaiur0%3D, PID: 22645376
-
Zheng, Y., J. Chen, M. Craven, N. W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J. A. López, and A. D. Stroock. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. USA 109:9342–9347, 2012.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 9342-9347
-
-
Zheng, Y.1
Chen, J.2
Craven, M.3
Choi, N.W.4
Totorica, S.5
Diaz-Santana, A.6
Kermani, P.7
Hempstead, B.8
Fischbach-Teschl, C.9
López, J.A.10
Stroock, A.D.11
-
124
-
-
80052843407
-
Allograft bone matrix versus synthetic bone graft substitutes
-
PID: 21889142
-
Zimmermann, G., and A. Moghaddam. Allograft bone matrix versus synthetic bone graft substitutes. Injury 42(Supplement 2):S16–S21, 2011.
-
(2011)
Injury
, vol.42
, pp. 16-21
-
-
Zimmermann, G.1
Moghaddam, A.2
-
125
-
-
0028377564
-
The extent of microcracking and the morphology of microcracks in damaged bone
-
Zioupos, P., and J. D. Currey. The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29:978–986, 1994.
-
(1994)
J. Mater. Sci.
, vol.29
, pp. 978-986
-
-
Zioupos, P.1
Currey, J.D.2
|