메뉴 건너뛰기




Volumn 7, Issue 3, 2015, Pages

Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair

Author keywords

3D printing; biomaterials; bioprinting; bone; thermoresponsive; tissue engineering

Indexed keywords

3D PRINTERS; BIOMATERIALS; BONE; ELASTIC MODULI; REPAIR; TISSUE; TISSUE ENGINEERING;

EID: 84991550909     PISSN: 17585082     EISSN: 17585090     Source Type: Journal    
DOI: 10.1088/1758-5090/7/3/035004     Document Type: Article
Times cited : (94)

References (54)
  • 1
    • 33751346057 scopus 로고    scopus 로고
    • Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering
    • 1-12
    • Wiria F E et al 2007 Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering Acta Biomater. 3 1-12
    • (2007) Acta Biomater. , vol.3 , pp. 1-12
    • Wiria, F.E.1
  • 2
    • 14844322862 scopus 로고    scopus 로고
    • Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
    • 4817-27
    • Williams J M et al 2005 Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering Biomaterials 26 4817-27
    • (2005) Biomaterials , vol.26 , pp. 4817-4827
    • Williams, J.M.1
  • 3
    • 77954382856 scopus 로고    scopus 로고
    • Mathematically defined tissue engineering scaffold architectures prepared by stereolithography
    • 6909-16
    • Melchels F P W et al 2010 Mathematically defined tissue engineering scaffold architectures prepared by stereolithography Biomaterials 31 6909-16
    • (2010) Biomaterials , vol.31 , pp. 6909-6916
    • Melchels, F.P.W.1
  • 4
    • 79955876243 scopus 로고    scopus 로고
    • Rigid biodegradable photopolymer structures of high resolution using deep-UV laser photocuring
    • Brandi F et al 2011 Rigid biodegradable photopolymer structures of high resolution using deep-UV laser photocuring J. Micromech. Microeng. 21 054007
    • (2011) J. Micromech. Microeng. , vol.21 , Issue.5
    • Brandi, F.1
  • 5
    • 78549257386 scopus 로고    scopus 로고
    • Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres
    • Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres 744-52
    • Lee J W et al 2011 Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres Biomaterials 32 744-52
    • (2011) Biomaterials , vol.32 , pp. 744-752
    • Lee, J.W.1
  • 6
    • 79953891357 scopus 로고    scopus 로고
    • Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications
    • 1999-2006
    • Seyednejad H et al 2011 Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications Acta Biomater. 7 1999-2006
    • (2011) Acta Biomater. , vol.7 , pp. 1999-2006
    • Seyednejad, H.1
  • 7
    • 79956196821 scopus 로고    scopus 로고
    • Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering
    • Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering 505-13
    • Park S A, Lee S H and Kim W D 2011 Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering Bioprocess Biosyst. Eng. 34 505-13
    • (2011) Bioprocess Biosyst. Eng. , vol.34 , pp. 505-513
    • Park, S.A.1    Lee, S.H.2    Kim, W.D.3
  • 8
    • 33645525595 scopus 로고    scopus 로고
    • Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures
    • 100-5
    • Ang K C et al 2006 Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures Rapid Prototyping J. 12 100-5
    • (2006) Rapid Prototyping J. , vol.12 , pp. 100-105
    • Ang, K.C.1
  • 9
    • 33846407296 scopus 로고    scopus 로고
    • Fabrication and tcharacterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection moulding
    • Fabrication and tcharacterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection moulding 2801-11
    • Lee K -W et al 2006 Fabrication and tcharacterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection moulding Tissue Eng. 12 2801-11
    • (2006) Tissue Eng. , vol.12 , pp. 2801-2811
    • Lee, K.-W.1
  • 10
    • 34248562050 scopus 로고    scopus 로고
    • Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants
    • 909-16
    • Khalyfa A et al 2007 Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants J. Mater. Sci. - Mater. Med. 18 909-16
    • (2007) J. Mater. Sci. - Mater. Med. , vol.18 , pp. 909-916
    • Khalyfa, A.1
  • 11
    • 84855815432 scopus 로고    scopus 로고
    • Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds
    • 113-22
    • Fielding G A, Bandyopadhyay A and Bose S 2012 Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds Dental Mater. 28 113-22
    • (2012) Dental Mater. , vol.28 , pp. 113-122
    • Fielding, G.A.1    Bandyopadhyay, A.2    Bose, S.3
  • 12
    • 65549152830 scopus 로고    scopus 로고
    • Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds
    • 533-47
    • Ge Z et al 2009 Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds J. Biomater. Appl. 23 533-47
    • (2009) J. Biomater. Appl. , vol.23 , pp. 533-547
    • Ge, Z.1
  • 13
    • 83555177196 scopus 로고    scopus 로고
    • Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells
    • 1782-90
    • Gaetani R et al 2012 Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells Biomaterials 33 1782-90
    • (2012) Biomaterials , vol.33 , pp. 1782-1790
    • Gaetani, R.1
  • 14
    • 33745786636 scopus 로고    scopus 로고
    • Direct freeform fabrication of seeded hydrogels in arbitrary geometries
    • 1325-35
    • Cohen D L et al 2006 Direct freeform fabrication of seeded hydrogels in arbitrary geometries Tissue Eng. 12 1325-35
    • (2006) Tissue Eng. , vol.12 , pp. 1325-1335
    • Cohen, D.L.1
  • 15
    • 77954494231 scopus 로고    scopus 로고
    • Bioprinting endothelial cells with alginate for 3D tissue constructs
    • Khalil S and Sun W 2009 Bioprinting endothelial cells with alginate for 3D tissue constructs J. Biomech. Eng. 131 111002
    • (2009) J. Biomech. Eng. , vol.131
    • Khalil, S.1    Sun, W.2
  • 16
    • 77955565285 scopus 로고    scopus 로고
    • Regeneration of the articular surface of the rabbit synovial joint by cell homing: A proof of concept study
    • 440-8
    • Lee C H et al 2010 Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study Lancet 376 440-8
    • (2010) Lancet , vol.376 , pp. 440-448
    • Lee, C.H.1
  • 17
    • 77956090298 scopus 로고    scopus 로고
    • Photocrosslinkable hyaluronan-gelatin hydrogels
    • 2675-85
    • Skardal A et al 2010 Photocrosslinkable hyaluronan-gelatin hydrogels Tissue Eng. A 16 2675-85
    • (2010) Tissue Eng. , vol.16 , pp. 2675-2685
    • Skardal, A.1
  • 18
    • 77953651709 scopus 로고    scopus 로고
    • Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
    • 6173-81
    • Skardal A, Zhang J and Prestwich G D 2010 Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates Biomaterials 31 6173-81
    • (2010) Biomaterials , vol.31 , pp. 6173-6181
    • Skardal, A.1    Zhang, J.2    Prestwich, G.D.3
  • 19
    • 79956126266 scopus 로고    scopus 로고
    • A printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for tissue engineering
    • A printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for tissue engineering 1833-42
    • Censi R et al 2011 A printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for tissue engineering Adv. Funct. Mater. 21 1833-42
    • (2011) Adv. Funct. Mater. , vol.21 , pp. 1833-1842
    • Censi, R.1
  • 20
    • 67649354904 scopus 로고    scopus 로고
    • Direct-write assembly of 3D hydrogel scaffolds for guided cell growth
    • 2407-10
    • Barry R A et al 2009 Direct-write assembly of 3D hydrogel scaffolds for guided cell growth Adv. Mater. 21 2407-10
    • (2009) Adv. Mater. , vol.21 , pp. 2407-2410
    • Barry, R.A.1
  • 21
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • 677-89
    • Engler A J et al 2006 Matrix elasticity directs stem cell lineage specification Cell 126 677-89
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1
  • 22
    • 84945185423 scopus 로고    scopus 로고
    • Physical and biological characterisation of a novel injectable scaffold formulation
    • 1510-1
    • Dhillon A et al 2010 Physical and biological characterisation of a novel injectable scaffold formulation J. Pharmacy Pharmacol. 62 1510-1
    • (2010) J. Pharmacy Pharmacol. , vol.62 , pp. 1510-1511
    • Dhillon, A.1
  • 23
    • 84355166685 scopus 로고    scopus 로고
    • Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing
    • 2599-605
    • Dhillon A et al 2011 Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing J. Mater. Sci. - Mater. Med. 22 2599-605
    • (2011) J. Mater. Sci. - Mater. Med. , vol.22 , pp. 2599-2605
    • Dhillon, A.1
  • 24
  • 25
    • 84945197302 scopus 로고    scopus 로고
    • Injectable scaffold for bone tissue engineering applications
    • 1508-9
    • Rahman C V et al 2010 Injectable scaffold for bone tissue engineering applications J. Pharmacy Pharmacol. 62 1508-9
    • (2010) J. Pharmacy Pharmacol. , vol.62 , pp. 1508-1509
    • Rahman, C.V.1
  • 26
    • 84945181157 scopus 로고    scopus 로고
    • An injectable scaffold with sustained release of rhBMP2 for bone regeneration
    • 1499-500
    • Boussahel A et al 2010 An injectable scaffold with sustained release of rhBMP2 for bone regeneration J. Pharmacy Pharmacol. 62 1499-500
    • (2010) J. Pharmacy Pharmacol. , vol.62 , pp. 1499-1500
    • Boussahel, A.1
  • 27
    • 84891628053 scopus 로고    scopus 로고
    • Controlled release of BMP-2 from a sintered polymer scaffold enhances bone repair in a mouse calvarial defect model
    • 59-66
    • Rahman C V et al 2012 Controlled release of BMP-2 from a sintered polymer scaffold enhances bone repair in a mouse calvarial defect model J. Tissue Eng. Regenerative Med. 8 59-66
    • (2012) J. Tissue Eng. Regenerative Med. , vol.8 , pp. 59-66
    • Rahman, C.V.1
  • 28
    • 0035055590 scopus 로고    scopus 로고
    • Dependence of yield strain of human trabecular bone on anatomic site
    • 569-77
    • Morgan E F and Keaveny T M 2001 Dependence of yield strain of human trabecular bone on anatomic site J. Biomech. 34 569-77
    • (2001) J. Biomech. , vol.34 , pp. 569-577
    • Morgan, E.F.1    Keaveny, T.M.2
  • 29
    • 0032123274 scopus 로고    scopus 로고
    • Yield strain behavior of trabecular bone
    • 601-8
    • Kopperdahl D L and Keaveny T M 1998 Yield strain behavior of trabecular bone J. Biomech. 31 601-8
    • (1998) J. Biomech. , vol.31 , pp. 601-608
    • Kopperdahl, D.L.1    Keaveny, T.M.2
  • 30
    • 0025012729 scopus 로고
    • Mechanical properties of trabecular bone from the proximal femur - A quantitative CT study
    • 107-14
    • Lotz J C, Gerhart T N and Hayes W C 1990 Mechanical properties of trabecular bone from the proximal femur - a quantitative CT study J. Comput. Assist. Tomogr. 14 107-14
    • (1990) J. Comput. Assist. Tomogr. , vol.14 , pp. 107-114
    • Lotz, J.C.1    Gerhart, T.N.2    Hayes, W.C.3
  • 31
    • 0017137485 scopus 로고
    • Bone compressive strength - Influence of density and strain rate
    • 1174-6
    • Carter D R and Hayes W C 1976 Bone compressive strength - influence of density and strain rate Science 194 1174-6
    • (1976) Science , vol.194 , pp. 1174-1176
    • Carter, D.R.1    Hayes, W.C.2
  • 32
    • 34547399078 scopus 로고    scopus 로고
    • Fab@Home: The personal desktop fabricator kit
    • 245-55
    • Malone E and Lipson H 2007 Fab@Home: the personal desktop fabricator kit Rapid Prototyping J. 13 245-55
    • (2007) Rapid Prototyping J. , vol.13 , pp. 245-255
    • Malone, E.1    Lipson, H.2
  • 33
    • 84864019760 scopus 로고    scopus 로고
    • PLGA-based microparticles for the sustained release of BMP-2
    • 571-86
    • Kirby G T S et al 2011 PLGA-based microparticles for the sustained release of BMP-2 Polymers 3 571-86
    • (2011) Polymers , vol.3 , pp. 571-586
    • Kirby, G.T.S.1
  • 34
    • 0036064136 scopus 로고    scopus 로고
    • Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells
    • 354-61
    • Okamoto T et al 2002 Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells Biochem. Biophys. Res. Commun. 295 354-61
    • (2002) Biochem. Biophys. Res. Commun. , vol.295 , pp. 354-361
    • Okamoto, T.1
  • 35
    • 79952108287 scopus 로고    scopus 로고
    • Additive manufacturing for in situ repair of osteochondral defects
    • Cohen D L et al 2010 Additive manufacturing for in situ repair of osteochondral defects Biofabrication 2 035004
    • (2010) Biofabrication , vol.2 , Issue.3
    • Cohen, D.L.1
  • 36
    • 0023515099 scopus 로고
    • The mechanical-properties of trabecular bone - Dependence on anatomic location and function
    • 1055-61
    • Goldstein S A 1987 The mechanical-properties of trabecular bone - dependence on anatomic location and function J. Biomech. 20 1055-61
    • (1987) J. Biomech. , vol.20 , pp. 1055-1061
    • Goldstein, S.A.1
  • 37
    • 0028416797 scopus 로고
    • The relationship between the structural and orthogonal compressive properties of trabecular bone
    • 375-89
    • Goulet R W et al 1994 The relationship between the structural and orthogonal compressive properties of trabecular bone J. Biomech. 27 375-89
    • (1994) J. Biomech. , vol.27 , pp. 375-389
    • Goulet, R.W.1
  • 38
    • 0031045696 scopus 로고    scopus 로고
    • Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis
    • 317-24
    • Tsuruga E et al 1997 Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis J. Biochem. 121 317-24
    • (1997) J. Biochem. , vol.121 , pp. 317-324
    • Tsuruga, E.1
  • 39
    • 84991148363 scopus 로고
    • Application of porous ceramics for the attachment of load bearing internal orthopedic applications
    • 161-229
    • Klawitter J J and Hulbert S F 1972 Application of porous ceramics for the attachment of load bearing internal orthopedic applications J. Biomed. Mater. Res. Biomed. Mater. Symp. 2 161-229
    • (1972) J. Biomed. Mater. Res. Biomed. Mater. Symp. , vol.2 , pp. 161-229
    • Klawitter, J.J.1    Hulbert, S.F.2
  • 40
    • 0029051554 scopus 로고
    • Calvarial bone repair with porous D, L-polylactide
    • 707-13
    • Robinson B P et al 1995 Calvarial bone repair with porous D, L-polylactide Otolaryngol. - Head Neck Surg. 112 707-13
    • (1995) Otolaryngol. - Head Neck Surg. , vol.112 , pp. 707-713
    • Robinson, B.P.1
  • 41
    • 0344718455 scopus 로고    scopus 로고
    • Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture
    • 35-51
    • Whang K et al 1999 Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture Tissue Eng. 5 35-51
    • (1999) Tissue Eng. , vol.5 , pp. 35-51
    • Whang, K.1
  • 42
    • 77954626361 scopus 로고    scopus 로고
    • Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals
    • 2167-82
    • Dormer N H et al 2010 Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals Ann. Biomed. Eng. 38 2167-82
    • (2010) Ann. Biomed. Eng. , vol.38 , pp. 2167-2182
    • Dormer, N.H.1
  • 43
    • 33749847797 scopus 로고    scopus 로고
    • Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering
    • 3497-508
    • Spalazzi J P et al 2006 Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering Tissue Eng. 12 3497-508
    • (2006) Tissue Eng. , vol.12 , pp. 3497-3508
    • Spalazzi, J.P.1
  • 44
    • 84884821024 scopus 로고    scopus 로고
    • The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system
    • 9352-64
    • Curran J M et al 2013 The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system Biomaterials 34 9352-64
    • (2013) Biomaterials , vol.34 , pp. 9352-9364
    • Curran, J.M.1
  • 45
    • 84876682010 scopus 로고    scopus 로고
    • Accelerating protein release from microparticles for regenerative medicine applications
    • 2578-83
    • White L J et al 2013 Accelerating protein release from microparticles for regenerative medicine applications Mater. Sci. Eng. C: Mater. Biol. Appl. 33 2578-83
    • (2013) Mater. Sci. Eng. C: Mater. Biol. Appl. , vol.33 , pp. 2578-2583
    • White, L.J.1
  • 46
    • 67349143382 scopus 로고    scopus 로고
    • Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system
    • 1739-44
    • Lee J and Lee K Y 2009 Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system Pharmaceutical Res. 26 1739-44
    • (2009) Pharmaceutical Res. , vol.26 , pp. 1739-1744
    • Lee, J.1    Lee, K.Y.2
  • 47
    • 43749120033 scopus 로고    scopus 로고
    • Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering
    • 3245-52
    • Kempen D H R et al 2008 Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering Biomaterials 29 3245-52
    • (2008) Biomaterials , vol.29 , pp. 3245-3252
    • Kempen, D.H.R.1
  • 48
    • 61549132911 scopus 로고    scopus 로고
    • Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration
    • 2816-25
    • Kempen D H R et al 2009 Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration Biomaterials 30 2816-25
    • (2009) Biomaterials , vol.30 , pp. 2816-2825
    • Kempen, D.H.R.1
  • 49
    • 77953808640 scopus 로고    scopus 로고
    • Sustained release of insulin-like growth factor-1 from poly(lactide-co-glycolide) microspheres improves osseointegration of dental implants in type 2 diabetic rats
    • Sustained release of insulin-like growth factor-1 from poly(lactide-co-glycolide) microspheres improves osseointegration of dental implants in type 2 diabetic rats 226-32
    • Wang F et al 2010 Sustained release of insulin-like growth factor-1 from poly(lactide-co-glycolide) microspheres improves osseointegration of dental implants in type 2 diabetic rats Eur. J. Pharmacol. 640 226-32
    • (2010) Eur. J. Pharmacol. , vol.640 , pp. 226-232
    • Wang, F.1
  • 51
    • 34248355601 scopus 로고    scopus 로고
    • Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells
    • 665-77
    • Luu H H et al 2007 Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells J. Orthopaedic Res. 25 665-77
    • (2007) J. Orthopaedic Res. , vol.25 , pp. 665-677
    • Luu, H.H.1
  • 52
    • 0036181393 scopus 로고    scopus 로고
    • Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing
    • 513-20
    • Cho T-J, Gerstenfeld L C and Einhorn T A 2002 Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing J. Bone Miner. Res.: Official J. Am. Soc. Bone Miner. Res. 17 513-20
    • (2002) J. Bone Miner. Res.: Official J. Am. Soc. Bone Miner. Res. , vol.17 , pp. 513-520
    • Cho, T.-J.1    Gerstenfeld, L.C.2    Einhorn, T.A.3
  • 53
    • 0042134565 scopus 로고    scopus 로고
    • Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs)
    • Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs) 1544-52
    • Cheng H et al 2003 Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs) J. Bone Joint Surg. Am Vol. 85-A 1544-52
    • (2003) J. Bone Joint Surg. Am Vol. , vol.85 , pp. 1544-1552
    • Cheng, H.1
  • 54
    • 84875304095 scopus 로고    scopus 로고
    • Delivery of definable number of drug or growth factor loaded poly(DL-lactic acid-co-glycolic acid) microparticles within human embryonic stem cell derived aggregates
    • Delivery of definable number of drug or growth factor loaded poly(DL-lactic acid-co-glycolic acid) microparticles within human embryonic stem cell derived aggregates 18-27
    • Qutachi O, Shakesheff K M and Buttery L D K 2013 Delivery of definable number of drug or growth factor loaded poly(DL-lactic acid-co-glycolic acid) microparticles within human embryonic stem cell derived aggregates J. Control. Rel.: Official J. Control. Rel. Soc. 168 18-27
    • (2013) J. Control. Rel.: Official J. Control. Rel. Soc. , vol.168 , pp. 18-27
    • Qutachi, O.1    Shakesheff, K.M.2    Buttery, L.D.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.