메뉴 건너뛰기




Volumn 21, Issue 1, 2015, Pages 103-114

Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration

Author keywords

[No Author keywords available]

Indexed keywords

CUTTING TOOLS; NANOSTRUCTURED MATERIALS; SCAFFOLDS (BIOLOGY); TISSUE; TISSUE REGENERATION;

EID: 84922739314     PISSN: 19373368     EISSN: 19373376     Source Type: Journal    
DOI: 10.1089/ten.teb.2014.0168     Document Type: Article
Times cited : (190)

References (99)
  • 1
    • 79959393378 scopus 로고    scopus 로고
    • Tissue engineering and regenerative medicine: History, progress, and challenges
    • Berthiaume, F., Maguire, T.J., and Yarmush, M.L. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng 2, 403, 2011.
    • (2011) Annu Rev Chem Biomol Eng , vol.2 , pp. 403
    • Berthiaume, F.1    Maguire, T.J.2    Yarmush, M.L.3
  • 3
    • 82255170621 scopus 로고    scopus 로고
    • Biomolecule/nanomaterial hybrid systems for nanobiotechnology
    • Tel-Vered, R., Yehezkeli, O., and Willner, I. Biomolecule/nanomaterial hybrid systems for nanobiotechnology. Adv Exp Med Biol 733, 1, 2012.
    • (2012) Adv Exp Med Biol , vol.733 , pp. 1
    • Tel-Vered, R.1    Yehezkeli, O.2    Willner, I.3
  • 4
    • 84866165383 scopus 로고    scopus 로고
    • An updated view on stem cell differentiation into smooth muscle cells
    • Zhang, L., Zhou, Y., Zhu, J., and Xu, Q. An updated view on stem cell differentiation into smooth muscle cells. Vasc Pharmacol 56, 280, 2012.
    • (2012) Vasc Pharmacol , vol.56 , pp. 280
    • Zhang, L.1    Zhou, Y.2    Zhu, J.3    Xu, Q.4
  • 6
    • 0032803699 scopus 로고    scopus 로고
    • Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation
    • Vacanti, J.P., and Langer, R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354 Suppl 1, SI32, 1999.
    • (1999) Lancet , vol.354 , pp. SI32
    • Vacanti, J.P.1    Langer, R.2
  • 7
    • 0027595948 scopus 로고
    • Tissue engineering
    • Langer, R., and Vacanti, J.P. Tissue engineering. Science 260, 920, 1993.
    • (1993) Science , vol.260 , pp. 920
    • Langer, R.1    Vacanti, J.P.2
  • 8
    • 79551552693 scopus 로고    scopus 로고
    • Slow-release human recombinant bone morphogenetic protein-2 embedded within electrospun scaffolds for regeneration of bone defect: In vitro and in vivo evaluation
    • Samer, S., Ben-David, D., Lotan, R., Livne, E., Avrahami, R., and Zussman, E. Slow-release human recombinant bone morphogenetic protein-2 embedded within electrospun scaffolds for regeneration of bone defect: in vitro and in vivo evaluation. Tissue Eng Part A 17, 269, 2011.
    • (2011) Tissue Eng Part A , vol.17 , pp. 269
    • Samer, S.1    Ben-David, D.2    Lotan, R.3    Livne, E.4    Avrahami, R.5    Zussman, E.6
  • 10
    • 84863039344 scopus 로고    scopus 로고
    • Polycaprolactone scaffolds fabricated with an advanced electrohydrodynamic direct-printing method for bone tissue regeneration
    • Ahn, S.H., Lee, H.J., and Kim, G.H. Polycaprolactone scaffolds fabricated with an advanced electrohydrodynamic direct-printing method for bone tissue regeneration. Biomacromolecules 12, 4256, 2011.
    • (2011) Biomacromolecules , vol.12 , pp. 4256
    • Ahn, S.H.1    Lee, H.J.2    Kim, G.H.3
  • 11
    • 0037400540 scopus 로고    scopus 로고
    • A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering
    • Yoshimoto, H., Shin, Y.M., Terai, H., and Vacanti, J.P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24, 2077, 2003.
    • (2003) Biomaterials , vol.24 , pp. 2077
    • Yoshimoto, H.1    Shin, Y.M.2    Terai, H.3    Vacanti, J.P.4
  • 12
    • 84863494488 scopus 로고    scopus 로고
    • Fabrication and in vivo osteogenesis of biomimetic poly(propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering
    • Zhao, J., Han, W., Chen,H., Tu,M.,Huan, S.,Miao, G., Zeng, R., Wu, H., Cha, Z., and Zhou, C. Fabrication and in vivo osteogenesis of biomimetic poly(propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering. J Mater Sci Mater Med 23, 517, 2012.
    • (2012) J Mater Sci Mater Med , vol.23 , pp. 517
    • Zhao, J.1    Han, W.2    Chen, H.3    Tu, M.4    Huan, S.5    Miao, G.6    Zeng, R.7    Wu, H.8    Cha, Z.9    Zhou, C.10
  • 13
    • 84864555389 scopus 로고    scopus 로고
    • Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration
    • Im, O., Li, J., Wang, M., Zhang, L.G., and Keidar, M. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. Int J Nanomedicine 7, 2087, 2012.
    • (2012) Int J Nanomedicine , vol.7 , pp. 2087
    • Im, O.1    Li, J.2    Wang, M.3    Zhang, L.G.4    Keidar, M.5
  • 14
    • 84896836510 scopus 로고    scopus 로고
    • Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells
    • Wang, M., Cheng, X., Zhu, W., Holmes, B., Keidar, M., and Zhang, L.G. Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Tissue Eng Part A 20, 1060, 2014.
    • (2014) Tissue Eng Part A , vol.20 , pp. 1060
    • Wang, M.1    Cheng, X.2    Zhu, W.3    Holmes, B.4    Keidar, M.5    Zhang, L.G.6
  • 16
    • 84892435672 scopus 로고    scopus 로고
    • Biomimetic biphasic 3D nanocomposite scaffold for osteochondral regeneration
    • Castro, N.J., O'Brien, C., and Zhang, L.G. Biomimetic biphasic 3D nanocomposite scaffold for osteochondral regeneration. AICHE J 60, 432, 2014.
    • (2014) AICHE J , vol.60 , pp. 432
    • Castro, N.J.1    O'Brien, C.2    Zhang, L.G.3
  • 17
    • 84869059164 scopus 로고    scopus 로고
    • Electrospun fibrous scaffolds for bone and cartilage tissue generation: Recent progress and future developments
    • Holmes, B., Castro, N.J., Zhang, L.G., and Zussman, E. Electrospun fibrous scaffolds for bone and cartilage tissue generation: recent progress and future developments. Tissue Eng Part B Rev 18, 478, 2012.
    • (2012) Tissue Eng Part B Rev , vol.18 , pp. 478
    • Holmes, B.1    Castro, N.J.2    Zhang, L.G.3    Zussman, E.4
  • 18
    • 84883150103 scopus 로고    scopus 로고
    • Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes
    • Holmes, B., Castro, N.J., Li, J., Keidar, M., and Zhang, L.G. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes. Nanotechnology 24, 365102, 2013.
    • (2013) Nanotechnology , vol.24 , pp. 365102
    • Holmes, B.1    Castro, N.J.2    Li, J.3    Keidar, M.4    Zhang, L.G.5
  • 19
    • 84861698425 scopus 로고    scopus 로고
    • Thermal inkjet printing in tissue engineering and regenerative medicine
    • Cui, X., Boland, T., D'Lima, D.D., and Lotz, M.K. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6, 149, 2012.
    • (2012) Recent Pat Drug Deliv Formul , vol.6 , pp. 149
    • Cui, X.1    Boland, T.2    D'Lima, D.D.3    Lotz, M.K.4
  • 20
    • 55749100987 scopus 로고    scopus 로고
    • Nanotechnology and nanomaterials: Promises for improved tissue regeneration
    • Zhang, L., and Webster, T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 4, 66, 2009.
    • (2009) Nano Today , vol.4 , pp. 66
    • Zhang, L.1    Webster, T.J.2
  • 21
    • 84879418286 scopus 로고    scopus 로고
    • Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering
    • Zhao, C., Tan, A., Pastorin, G., and Ho, H.K. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv 31, 654, 2013.
    • (2013) Biotechnol Adv , vol.31 , pp. 654
    • Zhao, C.1    Tan, A.2    Pastorin, G.3    Ho, H.K.4
  • 22
    • 84889858025 scopus 로고    scopus 로고
    • Mimicking the nanostructure of bone matrix to regenerate bone
    • Kane, R., and Ma, P.X. Mimicking the nanostructure of bone matrix to regenerate bone. Mater Today 16, 418, 2013.
    • (2013) Mater Today , vol.16 , pp. 418
    • Kane, R.1    Ma, P.X.2
  • 23
    • 60849113390 scopus 로고    scopus 로고
    • Study on collagen membrane combinating with autogenous bone marrow stromal cells or platelet rich plasma in repairing alveolar bone defect in dogs
    • Chen, J., Yang, J., and Huang, W. [Study on collagen membrane combinating with autogenous bone marrow stromal cells or platelet rich plasma in repairing alveolar bone defect in dogs]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 21, 523, 2007.
    • (2007) Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi , vol.21 , pp. 523
    • Chen, J.1    Yang, J.2    Huang, W.3
  • 24
    • 84867001824 scopus 로고    scopus 로고
    • Bioactive rosette nanotube-hydroxyapatite nanocomposites improve osteoblast functions
    • Sun, L., Zhang, L., Hemraz, U.D., Fenniri, H., and Webster, T.J. Bioactive rosette nanotube-hydroxyapatite nanocomposites improve osteoblast functions. Tissue Eng Part A 18, 1741, 2012.
    • (2012) Tissue Eng Part A , vol.18 , pp. 1741
    • Sun, L.1    Zhang, L.2    Hemraz, U.D.3    Fenniri, H.4    Webster, T.J.5
  • 25
    • 84870778768 scopus 로고    scopus 로고
    • Greater osteoblast and mesenchymal stem cell adhesion and proliferation on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes
    • Wang, M., Castro, N.J., Li, J., Keidar, M., and Zhang, L.G. Greater osteoblast and mesenchymal stem cell adhesion and proliferation on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes. J Nanosci Nanotechnol 12, 7692, 2012.
    • (2012) J Nanosci Nanotechnol , vol.12 , pp. 7692
    • Wang, M.1    Castro, N.J.2    Li, J.3    Keidar, M.4    Zhang, L.G.5
  • 26
    • 65149091319 scopus 로고    scopus 로고
    • Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes
    • Zhang, L., Rodriguez, J.,Raez, J.,Myles, A.J., Fenniri, H., and Webster, T.J. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes. Nanotechnology 20, 175101, 2009.
    • (2009) Nanotechnology , vol.20 , pp. 175101
    • Zhang, L.1    Rodriguez, J.2    Raez, J.3    Myles, A.J.4    Fenniri, H.5    Webster, T.J.6
  • 28
    • 84864532793 scopus 로고    scopus 로고
    • Recent progress in interfacial tissue engineering approaches for osteochondral defects
    • Castro, N.J., Hacking, S.A., and Zhang, L.G. Recent progress in interfacial tissue engineering approaches for osteochondral defects. Ann Biomed Eng 40, 1628, 2012.
    • (2012) Ann Biomed Eng , vol.40 , pp. 1628
    • Castro, N.J.1    Hacking, S.A.2    Zhang, L.G.3
  • 29
    • 84892683067 scopus 로고    scopus 로고
    • Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stemcell chondrogenic differentiation
    • Childs, A., Hemraz, U.D., Castro, N.J., Fenniri, H., and Zhang, L.G. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stemcell chondrogenic differentiation. Biomed Mater 8, 065003, 2013.
    • (2013) Biomed Mater , vol.8 , pp. 065003
    • Childs, A.1    Hemraz, U.D.2    Castro, N.J.3    Fenniri, H.4    Zhang, L.G.5
  • 30
    • 84877647395 scopus 로고    scopus 로고
    • Improved neural differentiation of human mesenchymal stem cells interfaced with carbon nanotube scaffolds
    • Park, S.Y., Kang, B.S., and Hong, S. Improved neural differentiation of human mesenchymal stem cells interfaced with carbon nanotube scaffolds. Nanomedicine 8, 715, 2013.
    • (2013) Nanomedicine , vol.8 , pp. 715
    • Park, S.Y.1    Kang, B.S.2    Hong, S.3
  • 31
    • 84866347407 scopus 로고    scopus 로고
    • Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells
    • Huang, Y.J., Wu, H.C., Tai, N.H., and Wang, T.W. Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small 8, 2869, 2012.
    • (2012) Small , vol.8 , pp. 2869
    • Huang, Y.J.1    Wu, H.C.2    Tai, N.H.3    Wang, T.W.4
  • 32
    • 70349823235 scopus 로고    scopus 로고
    • Carbon nanofibers and carbon nanotubes in regenerative medicine
    • Tran, P.A., Zhang, L., and Webster, T.J. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 61, 1097, 2009.
    • (2009) Adv Drug Deliv Rev , vol.61 , pp. 1097
    • Tran, P.A.1    Zhang, L.2    Webster, T.J.3
  • 33
    • 84896694615 scopus 로고    scopus 로고
    • Culture of neural cells and stem cells on graphene
    • Ryu, S., and Kim, B.S. Culture of neural cells and stem cells on graphene. Tissue Eng Regen Med 10, 39, 2013.
    • (2013) Tissue Eng Regen Med , vol.10 , pp. 39
    • Ryu, S.1    Kim, B.S.2
  • 34
    • 84887108360 scopus 로고    scopus 로고
    • Differentiation of human neural stem cells into neural networks on graphene nanogrids
    • Akhavan, O., and Ghaderi, E. Differentiation of human neural stem cells into neural networks on graphene nanogrids. J Mater Chem B 1, 6291, 2013.
    • (2013) J Mater Chem B , vol.1 , pp. 6291
    • Akhavan, O.1    Ghaderi, E.2
  • 35
    • 84889076007 scopus 로고    scopus 로고
    • Mechanical characterization of bioprinted in vitro soft tissue models
    • Zhang, T., Yan, K.C., Ouyang, L., and Sun, W. Mechanical characterization of bioprinted in vitro soft tissue models. Biofabrication 5, 045010, 2013.
    • (2013) Biofabrication , vol.5 , pp. 045010
    • Zhang, T.1    Yan, K.C.2    Ouyang, L.3    Sun, W.4
  • 37
    • 84865203034 scopus 로고    scopus 로고
    • Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices
    • Godino, N., Gorkin, R., Bourke, K., and Ducree, J. Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices. Lab Chip 12, 3281, 2012.
    • (2012) Lab Chip , vol.12 , pp. 3281
    • Godino, N.1    Gorkin, R.2    Bourke, K.3    Ducree, J.4
  • 38
    • 84861826955 scopus 로고    scopus 로고
    • Direct human cartilage repair using three-dimensional bioprinting technology
    • Cui, X., Breitenkamp, K., Finn, M.G., Lotz, M., and D'Lima, D.D. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18, 1304, 2012.
    • (2012) Tissue Eng Part A , vol.18 , pp. 1304
    • Cui, X.1    Breitenkamp, K.2    Finn, M.G.3    Lotz, M.4    D'Lima, D.D.5
  • 39
    • 77953651709 scopus 로고    scopus 로고
    • Bioprinting vessel-like constructs using hyaluronan hydrogels cross-linked with tetrahedral polyethylene glycol tetracrylates
    • Skardal, A., Zhang, J., and Prestwich, G.D. Bioprinting vessel-like constructs using hyaluronan hydrogels cross-linked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31, 6173, 2010.
    • (2010) Biomaterials , vol.31 , pp. 6173
    • Skardal, A.1    Zhang, J.2    Prestwich, G.D.3
  • 40
    • 0032188397 scopus 로고    scopus 로고
    • A comparison of rapid prototyping technologies
    • Pham, D.T., and Gault, R.S. A comparison of rapid prototyping technologies. Int J Mach Tool Manu 38, 1257, 1998.
    • (1998) Int J Mach Tool Manu , vol.38 , pp. 1257
    • Pham, D.T.1    Gault, R.S.2
  • 41
    • 84864145655 scopus 로고    scopus 로고
    • Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering
    • Kolan, K.C., Leu, M.C., Hilmas, G.E., and Velez, M. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering. J Mech Behav Biomed Mater 13C, 14, 2012.
    • (2012) J Mech Behav Biomed Mater , vol.13 C , pp. 14
    • Kolan, K.C.1    Leu, M.C.2    Hilmas, G.E.3    Velez, M.4
  • 42
    • 84865157328 scopus 로고    scopus 로고
    • A paradigm for the development and evaluation of novel implant topologies for bone fixation: Implant design and fabrication
    • Kang, H., Long, J.P., Urbiel Goldner, G.D., Goldstein, S.A., and Hollister, S.J. A paradigm for the development and evaluation of novel implant topologies for bone fixation: Implant design and fabrication. J Biomech 45, 2241, 2012.
    • (2012) J Biomech , vol.45 , pp. 2241
    • Kang, H.1    Long, J.P.2    Urbiel Goldner, G.D.3    Goldstein, S.A.4    Hollister, S.J.5
  • 43
    • 79960050093 scopus 로고    scopus 로고
    • Reverse engineering - Rapid prototyping of the skull in forensic trauma analysis
    • Kettner, M., Schmidt, P., Potente, S., Ramsthaler, F., and Schrodt, M. Reverse engineering - rapid prototyping of the skull in forensic trauma analysis. J Forensic Sci 56, 1015, 2011.
    • (2011) J Forensic Sci , vol.56 , pp. 1015
    • Kettner, M.1    Schmidt, P.2    Potente, S.3    Ramsthaler, F.4    Schrodt, M.5
  • 44
    • 84892703743 scopus 로고    scopus 로고
    • Treatment of severe porcine tracheomalacia with a 3-dimensionally printed, bioresorbable, external airway splint
    • Zopf, D.A., Flanagan, C.L., Wheeler, M., Hollister, S.J., and Green, G.E. Treatment of severe porcine tracheomalacia with a 3-dimensionally printed, bioresorbable, external airway splint. JAMA Otolaryngol 140, 66, 2014.
    • (2014) JAMA Otolaryngol , vol.140 , pp. 66
    • Zopf, D.A.1    Flanagan, C.L.2    Wheeler, M.3    Hollister, S.J.4    Green, G.E.5
  • 45
    • 84877995448 scopus 로고    scopus 로고
    • Bioresorbable airway splint created with a three-dimensional printer
    • Zopf, D.A., Hollister, S.J., Nelson, M.E., Ohye, R.G., and Green, G.E. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 368, 2043, 2013.
    • (2013) N Engl J Med , vol.368 , pp. 2043
    • Zopf, D.A.1    Hollister, S.J.2    Nelson, M.E.3    Ohye, R.G.4    Green, G.E.5
  • 46
    • 84867307534 scopus 로고    scopus 로고
    • Projection printing of 3-dimensional tissue scaffolds
    • Lu, Y., and Chen, S. Projection printing of 3-dimensional tissue scaffolds. Methods Mol Biol 868, 289, 2012.
    • (2012) Methods Mol Biol , vol.868 , pp. 289
    • Lu, Y.1    Chen, S.2
  • 47
    • 84866863826 scopus 로고    scopus 로고
    • Stereolithography based method of creating custom gas density profile targets for high intensity laser-plasma experiments
    • Jolly, S.W., He, Z., McGuffey, C., Schumaker, W., Krushelnick, K., and Thomas, A.G. Stereolithography based method of creating custom gas density profile targets for high intensity laser-plasma experiments. Rev Sci Instrum 83, 073503, 2012.
    • (2012) Rev Sci Instrum , vol.83 , pp. 073503
    • Jolly, S.W.1    He, Z.2    McGuffey, C.3    Schumaker, W.4    Krushelnick, K.5    Thomas, A.G.6
  • 48
    • 84864678601 scopus 로고    scopus 로고
    • Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography
    • Zhang, A.P., Qu, X., Soman, P., Hribar, K.C., Lee, J.W., Chen, S., and He, S. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv Mater 24, 4266, 2012.
    • (2012) Adv Mater , vol.24 , pp. 4266
    • Zhang, A.P.1    Qu, X.2    Soman, P.3    Hribar, K.C.4    Lee, J.W.5    Chen, S.6    He, S.7
  • 50
    • 79951598449 scopus 로고    scopus 로고
    • Three-dimensional hierarchical composite scaffolds consisting of polycaprolactone, βtricalcium phosphate, and collagen nanofibers: Fabrication, physical properties, and in vitro cell activity for bone tissue regeneration
    • Yeo, M., Lee, H., and Kim, G. Three-dimensional hierarchical composite scaffolds consisting of polycaprolactone, βtricalcium phosphate, and collagen nanofibers: fabrication, physical properties, and in vitro cell activity for bone tissue regeneration. Biomacromolecules 12, 502, 2010.
    • (2010) Biomacromolecules , vol.12 , pp. 502
    • Yeo, M.1    Lee, H.2    Kim, G.3
  • 51
    • 77950207519 scopus 로고    scopus 로고
    • A novel small animal model for biocompatibility assessment of polymeric materials for use in prosthetic heart valves
    • Wang, Q., McGoron, A.J., Pinchuk, L., and Schoephoerster, R.T. A novel small animal model for biocompatibility assessment of polymeric materials for use in prosthetic heart valves. J Biomed Mater Res A 93, 442, 2010.
    • (2010) J Biomed Mater Res A , vol.93 , pp. 442
    • Wang, Q.1    McGoron, A.J.2    Pinchuk, L.3    Schoephoerster, R.T.4
  • 52
    • 25144522739 scopus 로고    scopus 로고
    • Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling
    • Schantz, J.T., Brandwood, A., Hutmacher, D.W., Khor, H.L., and Bittner, K. Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling. J Mater Sci Mater Med 16, 807, 2005.
    • (2005) J Mater Sci Mater Med , vol.16 , pp. 807
    • Schantz, J.T.1    Brandwood, A.2    Hutmacher, D.W.3    Khor, H.L.4    Bittner, K.5
  • 53
    • 84886168504 scopus 로고    scopus 로고
    • Nanomaterials for improved orthopedic and bone tissue engineering applications
    • Basu, B., Katti, D., and Kuma, A., eds., New Jersey: John Wiley & Sons, Inc.
    • Zhang, L., Sirivisoot, S., Balasundaram, G., and Webster, T.J. Nanomaterials for improved orthopedic and bone tissue engineering applications. In: Basu, B., Katti, D., and Kuma, A., eds. Advanced Biomaterials: Fundamentals, Processing and Application. New Jersey: John Wiley & Sons, Inc., 2009, p. 205.
    • (2009) Advanced Biomaterials: Fundamentals, Processing and Application , pp. 205
    • Zhang, L.1    Sirivisoot, S.2    Balasundaram, G.3    Webster, T.J.4
  • 56
    • 84880702026 scopus 로고    scopus 로고
    • Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering
    • Tarafder, S., Balla, V.K., Davies, N.M., Bandyopadhyay, A., and Bose, S. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med 7, 631, 2013.
    • (2013) J Tissue Eng Regen Med , vol.7 , pp. 631
    • Tarafder, S.1    Balla, V.K.2    Davies, N.M.3    Bandyopadhyay, A.4    Bose, S.5
  • 58
    • 84896792598 scopus 로고    scopus 로고
    • Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects
    • Castilho, M., Moseke, C., Ewald, A., Gbureck, U., Groll, J., Pires, I., Tessmar, J., and Vorndran, E. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6, 015006, 2014.
    • (2014) Biofabrication , vol.6 , pp. 015006
    • Castilho, M.1    Moseke, C.2    Ewald, A.3    Gbureck, U.4    Groll, J.5    Pires, I.6    Tessmar, J.7    Vorndran, E.8
  • 60
    • 84880702026 scopus 로고    scopus 로고
    • Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering
    • Tarafder, S., Balla, V.K., Davies, N.M., Bandyopadhyay, A., and Bose, S. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med 7, 631, 2013.
    • (2013) J Tissue Eng Regen Med , vol.7 , pp. 631
    • Tarafder, S.1    Balla, V.K.2    Davies, N.M.3    Bandyopadhyay, A.4    Bose, S.5
  • 61
    • 84873409962 scopus 로고    scopus 로고
    • Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control
    • Wagner, D.E., Jones, A.D., Zhou, H., and Bhaduri, S.B. Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control. Mater Sci Eng C Mater Biol Appl 33, 1710, 2013.
    • (2013) Mater Sci Eng C Mater Biol Appl , vol.33 , pp. 1710
    • Wagner, D.E.1    Jones, A.D.2    Zhou, H.3    Bhaduri, S.B.4
  • 62
    • 84922718254 scopus 로고    scopus 로고
    • Cell proliferation and vitality determination of osteoblasts on different materials and surface characteristics
    • Ganey, T. Cell proliferation and vitality determination of osteoblasts on different materials and surface characteristics; Interpretation of laboratory data. Available at www.oxfordpm .com/files/OXPEKK-OsteoFab-cell-proliferation---cell- vitality-report---Tim-Ganey-March-2011---CONFIDEN TIAL.pdf, 2011.
    • (2011) Interpretation of Laboratory Data
    • Ganey, T.1
  • 63
    • 77949667869 scopus 로고    scopus 로고
    • The role of tissue engineering in articular cartilage repair and regeneration
    • Zhang, L., Hu, J., and Athanasiou, K.A. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37, 1, 2009.
    • (2009) Crit Rev Biomed Eng , vol.37 , pp. 1
    • Zhang, L.1    Hu, J.2    Athanasiou, K.A.3
  • 64
    • 84870316597 scopus 로고    scopus 로고
    • Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
    • Xu, T., Binder, K.W., Albanna, M.Z., Dice, D., Zhao, W., Yoo, J.J., and Atala, A. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5, 015001, 2013.
    • (2013) Biofabrication , vol.5 , pp. 015001
    • Xu, T.1    Binder, K.W.2    Albanna, M.Z.3    Dice, D.4    Zhao, W.5    Yoo, J.J.6    Atala, A.7
  • 65
    • 84876736841 scopus 로고    scopus 로고
    • Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement
    • Nimeskern, L., Avila, H.M., Sundberg, J., Gatenholm, P., Muller, R., and Stok, K.S. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed 22, 12, 2013.
    • (2013) J Mech Behav Biomed , vol.22 , pp. 12
    • Nimeskern, L.1    Avila, H.M.2    Sundberg, J.3    Gatenholm, P.4    Muller, R.5    Stok, K.S.6
  • 66
    • 84876680617 scopus 로고    scopus 로고
    • Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation
    • Fu, L.N., Zhou, P., Zhang, S.M., and Yang, G. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Mat Sci Eng C Mater 33, 2995, 2013.
    • (2013) Mat Sci Eng C Mater , vol.33 , pp. 2995
    • Fu, L.N.1    Zhou, P.2    Zhang, S.M.3    Yang, G.4
  • 68
    • 84921415363 scopus 로고    scopus 로고
    • Development of novel 3D printed scaffolds for osteochondral regeneration
    • Epub ahead of print
    • Holmes, B., Zhu, W., Li, J., Lee, J.D., and Zhang, L.G. Development of novel 3D printed scaffolds for osteochondral regeneration. Tissue Eng Part A 2014 [Epub ahead of print]; DOI:10.1089/ten.TEA.2014.0138.
    • (2014) Tissue Eng Part A
    • Holmes, B.1    Zhu, W.2    Li, J.3    Lee, J.D.4    Zhang, L.G.5
  • 69
    • 84903769764 scopus 로고    scopus 로고
    • 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration
    • Zhu, W., O'Brien, C., O'Brien, J.R., and Zhang, L.G. 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine, 9, 859, 2014.
    • (2014) Nanomedicine , vol.9 , pp. 859
    • Zhu, W.1    O'Brien, C.2    O'Brien, J.R.3    Zhang, L.G.4
  • 71
    • 84890980878 scopus 로고    scopus 로고
    • Axon-soma communication in neuronal injury
    • Rishal, I., and Fainzilber, M. Axon-soma communication in neuronal injury. Nat Rev Neurosci 15, 32, 2014.
    • (2014) Nat Rev Neurosci , vol.15 , pp. 32
    • Rishal, I.1    Fainzilber, M.2
  • 72
    • 84889012321 scopus 로고    scopus 로고
    • Biofabrication and testing of a fully cellular nerve graft
    • Owens, C.M., Marga, F., Forgacs, G., and Heesch, C.M. Biofabrication and testing of a fully cellular nerve graft. Biofabrication 5, 045007, 2013.
    • (2013) Biofabrication , vol.5 , pp. 045007
    • Owens, C.M.1    Marga, F.2    Forgacs, G.3    Heesch, C.M.4
  • 73
    • 33645883539 scopus 로고    scopus 로고
    • Viability and electrophysiology of neural cell structures generated by the inkjet printing method
    • Xu, T., Gregory, C.A., Molnar, P., Cui, X., Jalota, S., Bhaduri, S.B., and Boland, T. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27, 3580, 2006.
    • (2006) Biomaterials , vol.27 , pp. 3580
    • Xu, T.1    Gregory, C.A.2    Molnar, P.3    Cui, X.4    Jalota, S.5    Bhaduri, S.B.6    Boland, T.7
  • 74
    • 84875008763 scopus 로고    scopus 로고
    • Bio-ink for on-demand printing of living cells
    • Cameron, J., and Ferris, K.J.G. Bio-ink for on-demand printing of living cells. Biomater Sci 1, 224, 2013.
    • (2013) Biomater Sci , vol.1 , pp. 224
    • Cameron, J.1    Ferris, K.J.G.2
  • 75
    • 84862909001 scopus 로고    scopus 로고
    • Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering
    • Suri, S., Han, L.H., Zhang, W., Singh, A., Chen, S., and Schmidt, C.E. Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed Microdevices 13, 983, 2011.
    • (2011) Biomed Microdevices , vol.13 , pp. 983
    • Suri, S.1    Han, L.H.2    Zhang, W.3    Singh, A.4    Chen, S.5    Schmidt, C.E.6
  • 76
    • 80053101180 scopus 로고    scopus 로고
    • Neural stem cell niches: Roles for the hyaluronan-based extracellular matrix
    • Preston, M., and Sherman, L.S. Neural stem cell niches: roles for the hyaluronan-based extracellular matrix. Front Biosci (Schol Ed) 3, 1165, 2011.
    • (2011) Front Biosci (Schol Ed) , vol.3 , pp. 1165
    • Preston, M.1    Sherman, L.S.2
  • 77
    • 0029989042 scopus 로고    scopus 로고
    • The structure and function of hyaluronan: An overview
    • Laurent, T.C., Laurent, U.B., and Fraser, J.R. The structure and function of hyaluronan: an overview. Immunol Cell Biol 74, A1, 1996.
    • (1996) Immunol Cell Biol , vol.74 , pp. A1
    • Laurent, T.C.1    Laurent, U.B.2    Fraser, J.R.3
  • 78
    • 80355125390 scopus 로고    scopus 로고
    • Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography
    • Curley, J.L., Jennings, S.R., and Moore, M.J. Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography. J Vis Exp 2636, 2011.
    • (2011) J Vis Exp , pp. 2636
    • Curley, J.L.1    Jennings, S.R.2    Moore, M.J.3
  • 81
    • 79959731599 scopus 로고    scopus 로고
    • Omnidirectional printing of 3D microvascular networks
    • Wu, W., DeConinck, A., and Lewis, J.A. Omnidirectional printing of 3D microvascular networks. Adv Mater 23, H178, 2011.
    • (2011) Adv Mater , vol.23 , pp. H178
    • Wu, W.1    DeConinck, A.2    Lewis, J.A.3
  • 82
    • 84896991473 scopus 로고    scopus 로고
    • Phenotypic modulation of smooth muscle cells by chemical and mechanical cues of electrospun Tecophilic/gelatin nanofibers
    • Vatankhah, E., Prabhakaran, M.P., Semnani, D., Razavi, S., Zamani, M., and Ramakrishna, S. Phenotypic modulation of smooth muscle cells by chemical and mechanical cues of electrospun Tecophilic/gelatin nanofibers. ACS Appl Mater Interfaces 6, 4089, 2014.
    • (2014) ACS Appl Mater Interfaces , vol.6 , pp. 4089
    • Vatankhah, E.1    Prabhakaran, M.P.2    Semnani, D.3    Razavi, S.4    Zamani, M.5    Ramakrishna, S.6
  • 84
    • 84898059103 scopus 로고    scopus 로고
    • Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
    • Duan, B., Kapetanovic, E., Hockaday, L.A., and Butcher, J.T. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10, 1836, 2014.
    • (2014) Acta Biomater , vol.10 , pp. 1836
    • Duan, B.1    Kapetanovic, E.2    Hockaday, L.A.3    Butcher, J.T.4
  • 86
    • 84956909810 scopus 로고    scopus 로고
    • Re: Innervation of reconstructed bladder above the level of spinal cord injury for inducing micturition by contractions of the abdomen-to-bladder reflex arc
    • Atala, A. Re: innervation of reconstructed bladder above the level of spinal cord injury for inducing micturition by contractions of the abdomen-to-bladder reflex arc. J Urol 185, 354, 2011.
    • (2011) J Urol , vol.185 , pp. 354
    • Atala, A.1
  • 87
    • 79952570027 scopus 로고    scopus 로고
    • Tissue engineering of human bladder
    • Atala, A. Tissue engineering of human bladder. Br Med Bull 97, 81, 2011.
    • (2011) Br Med Bull , vol.97 , pp. 81
    • Atala, A.1
  • 88
    • 33646052556 scopus 로고    scopus 로고
    • Tissue-engineered autologous bladders for patients needing cystoplasty
    • Atala, A., Bauer, S.B., Soker, S., Yoo, J.J., and Retik, A.B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241, 2006.
    • (2006) Lancet , vol.367 , pp. 1241
    • Atala, A.1    Bauer, S.B.2    Soker, S.3    Yoo, J.J.4    Retik, A.B.5
  • 89
    • 84988381143 scopus 로고    scopus 로고
    • A novel hybrid printing system for the generation of organized bladder tissue
    • Fullhase, C., Soler, R., Atala, A., Andersson, K.-E., and Yoo, J.J. A novel hybrid printing system for the generation of organized bladder tissue. J Urol 181, 282, 2009.
    • (2009) J Urol , vol.181 , pp. 282
    • Fullhase, C.1    Soler, R.2    Atala, A.3    Andersson, K.-E.4    Yoo, J.J.5
  • 90
    • 84868125762 scopus 로고    scopus 로고
    • Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology
    • Xu, T., Zhao, W., Zhu, J.M., Albanna, M.Z., Yoo, J.J., and Atala, A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34, 130, 2013.
    • (2013) Biomaterials , vol.34 , pp. 130
    • Xu, T.1    Zhao, W.2    Zhu, J.M.3    Albanna, M.Z.4    Yoo, J.J.5    Atala, A.6
  • 91
    • 84922697514 scopus 로고    scopus 로고
    • Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system
    • Williams, S.K., Touroo, J.S., Church, K.H., and Hoying, J.B. Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system. Biores Open Access 2, 448, 2013.
    • (2013) Biores Open Access , vol.2 , pp. 448
    • Williams, S.K.1    Touroo, J.S.2    Church, K.H.3    Hoying, J.B.4
  • 94
    • 33745786636 scopus 로고    scopus 로고
    • Direct freeform fabrication of seeded hydrogels in arbitrary geometries
    • Cohen, D.L., Malone, E., Lipson, H., and Bonassar, L.J. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng 12, 1325, 2006.
    • (2006) Tissue Eng , vol.12 , pp. 1325
    • Cohen, D.L.1    Malone, E.2    Lipson, H.3    Bonassar, L.J.4
  • 96
    • 80053384750 scopus 로고    scopus 로고
    • Organ printing: From bioprinter to organ biofabrication line
    • Mironov, V., Kasyanov, V., and Markwald, R.R. Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 22, 667, 2011.
    • (2011) Curr Opin Biotechnol , vol.22 , pp. 667
    • Mironov, V.1    Kasyanov, V.2    Markwald, R.R.3
  • 98
    • 79551649124 scopus 로고    scopus 로고
    • A three-dimensional in vitro ovarian cancer co-culture model using a high-throughput cell patterning platform
    • Xu, F., Celli, J., Rizvi, I., Moon, S., Hasan, T., and Demirci, U. A three-dimensional in vitro ovarian cancer co-culture model using a high-throughput cell patterning platform. Biotechnol J 6, 204, 2011.
    • (2011) Biotechnol J , vol.6 , pp. 204
    • Xu, F.1    Celli, J.2    Rizvi, I.3    Moon, S.4    Hasan, T.5    Demirci, U.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.