메뉴 건너뛰기




Volumn 29, Issue 12, 2011, Pages 601-606

Organ printing: The future of bone regeneration?

Author keywords

[No Author keywords available]

Indexed keywords

BONE FORMATION; BONE GRAFT; BONE REGENERATION; BONE TISSUE; BONE-FORMING CELLS; COMBINED ACTIONS; INTERNAL STRUCTURE; LIVING CELL; MATRIX; ORGAN PRINTING; RAPID PROTOTYPING TECHNOLOGY; VASCULARIZATION;

EID: 81155150132     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2011.07.001     Document Type: Review
Times cited : (190)

References (38)
  • 2
    • 70449629693 scopus 로고    scopus 로고
    • Optimizing mesenchymal stem cell-based therapeutics
    • Wagner J., et al. Optimizing mesenchymal stem cell-based therapeutics. Curr. Opin. Biotechnol. 2009, 20:531-536.
    • (2009) Curr. Opin. Biotechnol. , vol.20 , pp. 531-536
    • Wagner, J.1
  • 3
    • 47049097487 scopus 로고    scopus 로고
    • Vascularization in tissue engineering
    • Rouwkema J., et al. Vascularization in tissue engineering. Trends Biotechnol. 2008, 26:434-441.
    • (2008) Trends Biotechnol. , vol.26 , pp. 434-441
    • Rouwkema, J.1
  • 4
    • 38349195609 scopus 로고    scopus 로고
    • Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing
    • Fedorovich N.E., et al. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng. Part A 2008, 14:127-133.
    • (2008) Tissue Eng. Part A , vol.14 , pp. 127-133
    • Fedorovich, N.E.1
  • 5
    • 60549108145 scopus 로고    scopus 로고
    • Organ printing: tissue spheroids as building blocks
    • Mironov V., et al. Organ printing: tissue spheroids as building blocks. Biomaterials 2009, 30:2164-2174.
    • (2009) Biomaterials , vol.30 , pp. 2164-2174
    • Mironov, V.1
  • 6
    • 79952700142 scopus 로고    scopus 로고
    • Cell patterning technologies for organotypic tissue fabrication
    • Guillotin B., Guillemot F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 2011, 29:183-190.
    • (2011) Trends Biotechnol. , vol.29 , pp. 183-190
    • Guillotin, B.1    Guillemot, F.2
  • 7
    • 79952189303 scopus 로고    scopus 로고
    • Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments
    • Fonseca K.B., et al. Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments. Acta Biomater. 2011, 7:1674-1682.
    • (2011) Acta Biomater. , vol.7 , pp. 1674-1682
    • Fonseca, K.B.1
  • 8
    • 78650862905 scopus 로고    scopus 로고
    • Laser printing of stem cells for biofabrication of scaffold-free autologous grafts
    • Gruene M., et al. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng. Part C: Methods 2011, 17:79-87.
    • (2011) Tissue Eng. Part C: Methods , vol.17 , pp. 79-87
    • Gruene, M.1
  • 9
    • 27644568924 scopus 로고    scopus 로고
    • 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties
    • Moroni L., et al. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 2006, 27:974-985.
    • (2006) Biomaterials , vol.27 , pp. 974-985
    • Moroni, L.1
  • 10
    • 21844438003 scopus 로고    scopus 로고
    • Porous scaffold design for tissue engineering
    • Hollister S. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4:518-524.
    • (2005) Nat. Mater. , vol.4 , pp. 518-524
    • Hollister, S.1
  • 11
    • 17844400927 scopus 로고    scopus 로고
    • Porosity of 3D biomaterial scaffolds and osteogenesis
    • Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26:5474-5491.
    • (2005) Biomaterials , vol.26 , pp. 5474-5491
    • Karageorgiou, V.1    Kaplan, D.2
  • 12
    • 33644795317 scopus 로고    scopus 로고
    • Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells
    • Trojani C., et al. Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 2006, 27:3256-3264.
    • (2006) Biomaterials , vol.27 , pp. 3256-3264
    • Trojani, C.1
  • 13
    • 38349076688 scopus 로고    scopus 로고
    • Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations
    • Phillippi J.A., et al. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 2008, 26:127-134.
    • (2008) Stem Cells , vol.26 , pp. 127-134
    • Phillippi, J.A.1
  • 14
    • 77953827622 scopus 로고    scopus 로고
    • Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation
    • Cooper G.M., et al. Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng. Part A 2010, 16:1749-1759.
    • (2010) Tissue Eng. Part A , vol.16 , pp. 1749-1759
    • Cooper, G.M.1
  • 15
    • 67649920749 scopus 로고    scopus 로고
    • Growth factors, matrices, and forces combine and control stem cells
    • Discher D.E., et al. Growth factors, matrices, and forces combine and control stem cells. Science 2009, 324:1673-1677.
    • (2009) Science , vol.324 , pp. 1673-1677
    • Discher, D.E.1
  • 16
    • 19644367664 scopus 로고    scopus 로고
    • Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
    • Lutolf M.P., Hubbell J.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23:47-55.
    • (2005) Nat. Biotechnol. , vol.23 , pp. 47-55
    • Lutolf, M.P.1    Hubbell, J.A.2
  • 17
    • 0037547104 scopus 로고    scopus 로고
    • Repair of bone defects using synthetic mimetics of collagenous extracellular matrices
    • Lutolf M.P., et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 2003, 21:513-518.
    • (2003) Nat. Biotechnol. , vol.21 , pp. 513-518
    • Lutolf, M.P.1
  • 18
    • 79953897232 scopus 로고    scopus 로고
    • Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering
    • Ovsianikov A., et al. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 2011, 12:851-858.
    • (2011) Biomacromolecules , vol.12 , pp. 851-858
    • Ovsianikov, A.1
  • 19
    • 70249091482 scopus 로고    scopus 로고
    • Hydrogels in regenerative medicine
    • Slaughter B.V., et al. Hydrogels in regenerative medicine. Adv. Mater. 2009, 21:3307-3329.
    • (2009) Adv. Mater. , vol.21 , pp. 3307-3329
    • Slaughter, B.V.1
  • 20
    • 15244349103 scopus 로고    scopus 로고
    • The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces
    • Benoit D.S., Anseth K.S. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials 2005, 26:5209-5220.
    • (2005) Biomaterials , vol.26 , pp. 5209-5220
    • Benoit, D.S.1    Anseth, K.S.2
  • 21
    • 61549132911 scopus 로고    scopus 로고
    • Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration
    • Kempen D.H., et al. Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 2009, 30:2816-2825.
    • (2009) Biomaterials , vol.30 , pp. 2816-2825
    • Kempen, D.H.1
  • 22
    • 0033021062 scopus 로고    scopus 로고
    • Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration
    • Bonadio J., et al. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med. 1999, 5:753-759.
    • (1999) Nat. Med. , vol.5 , pp. 753-759
    • Bonadio, J.1
  • 23
    • 79960981201 scopus 로고    scopus 로고
    • Osteogenic differentiation as a result of BMP-2 plasmid DNA based gene therapy in vitro and in vivo
    • Wegman F., et al. Osteogenic differentiation as a result of BMP-2 plasmid DNA based gene therapy in vitro and in vivo. Eur. Cell Mater. 2011, 21:230-242.
    • (2011) Eur. Cell Mater. , vol.21 , pp. 230-242
    • Wegman, F.1
  • 24
    • 33745268898 scopus 로고    scopus 로고
    • Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering
    • Storrie H., Mooney D.J. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Adv. Drug Deliv. Rev. 2006, 58:500-514.
    • (2006) Adv. Drug Deliv. Rev. , vol.58 , pp. 500-514
    • Storrie, H.1    Mooney, D.J.2
  • 25
    • 17644374486 scopus 로고    scopus 로고
    • Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration
    • Huang Y.C., et al. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J. Bone Miner Res. 2005, 20:848-857.
    • (2005) J. Bone Miner Res. , vol.20 , pp. 848-857
    • Huang, Y.C.1
  • 26
    • 58149218412 scopus 로고    scopus 로고
    • Inkjet-mediated gene transfection into living cells combined with targeted delivery
    • Xu T., et al. Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng. Part A 2009, 15:95-101.
    • (2009) Tissue Eng. Part A , vol.15 , pp. 95-101
    • Xu, T.1
  • 27
    • 33644529130 scopus 로고    scopus 로고
    • Capturing complex 3D tissue physiology in vitro
    • Griffith L.G., Swartz M.A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 2006, 7:211-224.
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 211-224
    • Griffith, L.G.1    Swartz, M.A.2
  • 28
    • 33846330965 scopus 로고    scopus 로고
    • Computational modelling of cell spreading and tissue regeneration in porous scaffolds
    • Sengers B.G., et al. Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials 2007, 28:1926-1940.
    • (2007) Biomaterials , vol.28 , pp. 1926-1940
    • Sengers, B.G.1
  • 29
    • 35348975035 scopus 로고    scopus 로고
    • Simulation of tissue differentiation in a scaffold as a function of porosity, Young's modulus and dissolution rate: application of mechanobiological models in tissue engineering
    • Byrne D.P., et al. Simulation of tissue differentiation in a scaffold as a function of porosity, Young's modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 2007, 28:5544-5554.
    • (2007) Biomaterials , vol.28 , pp. 5544-5554
    • Byrne, D.P.1
  • 30
    • 34547676091 scopus 로고    scopus 로고
    • Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: a combined computational and experimental approach
    • Comisar W.A., et al. Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: a combined computational and experimental approach. Biomaterials 2007, 28:4409-4417.
    • (2007) Biomaterials , vol.28 , pp. 4409-4417
    • Comisar, W.A.1
  • 31
    • 71849112759 scopus 로고    scopus 로고
    • Inosculation: connecting the life-sustaining pipelines
    • Laschke M.W., et al. Inosculation: connecting the life-sustaining pipelines. Tissue Eng. Part B: Rev. 2009, 15:455-465.
    • (2009) Tissue Eng. Part B: Rev. , vol.15 , pp. 455-465
    • Laschke, M.W.1
  • 32
    • 17644392452 scopus 로고    scopus 로고
    • Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice
    • Tremblay P.L., et al. Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am. J. Transplant. 2005, 5:1002-1010.
    • (2005) Am. J. Transplant. , vol.5 , pp. 1002-1010
    • Tremblay, P.L.1
  • 33
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • Norotte C., et al. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009, 30:5910-5917.
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1
  • 34
    • 63449112419 scopus 로고    scopus 로고
    • Endothelial progenitor cell-based neovascularization: implications for therapy
    • Krenning G., et al. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol. Med. 2009, 15:180-189.
    • (2009) Trends Mol. Med. , vol.15 , pp. 180-189
    • Krenning, G.1
  • 35
    • 77954525028 scopus 로고    scopus 로고
    • The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs
    • Fedorovich N.E., et al. The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs. Tissue Eng. Part A 2010, 16:2355-2367.
    • (2010) Tissue Eng. Part A , vol.16 , pp. 2355-2367
    • Fedorovich, N.E.1
  • 36
    • 33846441629 scopus 로고    scopus 로고
    • Analysis of ectopic and orthotopic bone formation in cell-based tissue-engineered constructs in goats
    • Kruyt M.C., et al. Analysis of ectopic and orthotopic bone formation in cell-based tissue-engineered constructs in goats. Biomaterials 2007, 28:1798-1805.
    • (2007) Biomaterials , vol.28 , pp. 1798-1805
    • Kruyt, M.C.1
  • 37
    • 70350732729 scopus 로고    scopus 로고
    • The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model
    • Tortelli F., et al. The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model. Biomaterials 2010, 31:242-249.
    • (2010) Biomaterials , vol.31 , pp. 242-249
    • Tortelli, F.1
  • 38
    • 79960782567 scopus 로고    scopus 로고
    • Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells
    • Fedorovich N., et al. Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells. Tissue Eng. Part A 2011, 17:2113-2121.
    • (2011) Tissue Eng. Part A , vol.17 , pp. 2113-2121
    • Fedorovich, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.